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ABSTRACT 

In this paper, new techniques to implement the Daubechies 

wavelets and multiwavelets are presented using quantum 

computing synthesis structures. Also, a new quantum 

implementation of inverse Daubechies multiwavelet transform 

is proposed. The permutation matrices, particular unitary 

matrices, play a pivotal role. The particular set of permutation 

matrices arising in quantum wavelet and multiwavelet 

transforms is considered, and efficient quantum circuits that 

implement them are developed. This allows the design of 

efficient and complete quantum circuits for the quantum 

wavelet and multiwavelet transforms.   
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1. INTRODUCTION 
As it happens in classical signal analysis, it is natural to 

expect that quantum wavelet transform will find important 

future applications [1] for the treatment of quantum databases 

and quantum data compression. Therefore, it is important to 

develop quantum circuits for implementing wavelet and 

multiwavelet transforms. Wavelets have been around since the 

late 1980s, and have found many applications in signal 

processing, numerical analysis, operator theory, and other 

fields [2]. The wavelet transform is a tool that cuts up data or 

functions or operators into different frequency components, 

and then studies each component with a resolution matched to 

its scale. The wavelet transform of a signal evolving in time 

depends on two variables: scale (or frequency) and time; 

wavelets provide a tool for time-frequency localization [3]. 

One generalization is multiwavelets, which have been around 

since the early 1990s. Multiwavelets have some advantages: 

they can have short support coupled with high smoothness 

and high approximation order, and they can be both 

symmetric and orthogonal. They also have some 

disadvantages: the discrete multiwavelet transform requires 

preprocessing and post processing steps. Also, the theory 

becomes more complicated [2].  

   In this paper, efficient and complete quantum circuits are 

derived for the quantum Daubechies D(4) wavelet and 

multiwavelet transform representations. Quantum algorithms 

are describable in terms of unitary transformations. 

Fortunately, there is an important class of computations, the 

unitary transforms, such as the Fourier transform, Walsh-

Hadamard transform and wavelet transforms, that are 

describable in terms of unitary operators [4]. The Fourier and 

Walsh-Hadamard transforms have been used most extensively 

by the quantum computing algorithms [5] – [11]. However, 

the wavelet transforms are every bit as useful as the Fourier 

transform; therefore it is considered, here, how to achieve a 

quantum wavelet transform.  

  The process of finding a quantum circuit that implements the 

unitary operator of the wavelet transform is to factor the 

wavelet operator into the direct sum, direct product and dot 

product of smaller unitary operators. These operators 

correspond to 1-qubit and 2-qubit quantum gates. The 

permutation matrices play a pivotal role in the factorization of 

the unitary operators that arise in the wavelet transforms. The 

main issue in deriving feasible and efficient quantum circuits 

for the quantum wavelet transforms considered in this paper, 

is the design of efficient quantum circuits for certain 

permutation matrices. The permutation matrices, due to their 

specific structure, represent a very special subclass of unitary 

matrices [4]. Therefore, the exploitation of this specific 

structure represents the key to achieve an efficient quantum 

implementation of permutation matrices. In this paper, two 

representative wavelet kernels are considered, the Daubechies 

D(4) wavelets and multiwavelets. Two new decompositions 

which lead to gate-level circuits for their implementations are 

developed.  

  The rest of the article is organized as follows. Two 

fundamental quantum wavelet pyramidal and packet 

algorithms are introduced in Section 2, as well as quantum 

circuits for the perfect shuffle permutation matrices which 

arise in quantum wavelet transforms are discussed in this 

section, too. New quantum implementations of the most 

popular discrete wavelet transform, namely, the 4-coefficient 

Daubechies wavelet and multiwavelet transforms are 

developed in Section 3 and Section 4, respectively. While 

Section 5 deals with quantum implementation of the inverse 

Daubechies multiwavelet transform. Finally, the conclusion 

section summarizes this work.   

2. WAVELET PYRAMIDAL AND 

PACKET ALGORITHMS 
Given a wavelet kernel, its corresponding wavelet transform 

is usually performed according to a packet algorithm (PAA) 

or a pyramidal algorithm (PYA). The first step in devising 
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quantum counterparts of these algorithms is the development 

of suitable factorizations. Consider the Daubechies fourth-

order wavelet kernel of dimension 2i , denoted as  
  

   
 . The 

factorizations of PAA and PYA for a 2n –dimensional vector 

are given as [4]  

              
   

                         
  

   
    

                                               
    
   

         
   

         

       
   

                         

                 
  

   
                                   

   
        (2) 

These factorizations allow analysis of the feasibility and 

efficiency of quantum implementations of the packet and 

pyramid algorithms. 

   A set of efficient and practically realizable circuits for 

implementation of Qubit Permutation Matrices can be built by 

using the qubit swap gate,    , where  

     =     

  
  

  
  

  
  

  
  

 .  

The   gate, shown in Figure 1a, can be implemented with 

three EXOR (or Controlled-NOT) gates as shown in Figure 

1b.  

                                                                             

                                                                          

(a)                                         (b)      

Fig 1: The    gate (a) and its implementation by using 

three EXOR (Controlled-NOT) gates (b).  

A circuit for implementation of      by using    gates is 

shown in Figure 2. This circuit is based on a simple idea of 

successive swapping of the neighboring qubits.  

                                                                                                                                 

                                                                                        

 

                                                                                         

                                                                                       

                                                                                       

                                                                                          

Fig 2: Implementation of perfect shuffle permutation 

matrix,    .  

 

The most popular discrete wavelet transform, namely, the 

Daubechies fourth-order wavelet kernel of dimension 2n is 

given in a matrix form as [4]  

 

 

 

 

   
   

 

 

 
 
 
 
 
 
 
 
 
 
         
         

   
   

   
   

      
      

   
   

 

   

      
      

 

      
      

      
      

 

      
       

 
 
 
 
 
 
 
 
 

 

                                                                                                   (3) 

Where  c0 = 
     

    
 ,    c1 = 

      

    
 ,   c2 = 

     

    
 ,  and   c3 = 

      

    
. 

A factorization of    
   

 is proposed in [4] as  

   
   

 =  (I2
n-1

    C1)  Q2
n  (I2

n-1
     C0` )                                      (4) 

Where C0` = 2  
    
     

  and Q2
n is the downshift permutation 

matrix given by  

 

Q2
n = 

 
 
 
 
 
 
   
   
   

  

   
   
   

 
   
    

 
 
 
 
 

                                          (5) 

 

Figure 3 shows a block-level implementation of Equation (4). 

Clearly, the main issue for a practical quantum gate-level 

implementation of Equation (4) is the quantum 

implementation of matrix Q2
n . 

        

            

 

            

                      

 

Fig 3: A block-level circuit for implementation of    
   

 [4]. 

3. QUANTUM IMPLEMENTATION OF 

DAUBECHIES D
(4)

 WAVELET 

TRANSFORM 
A new circuit for implementation of permutation matrix Q2

nis 

developed based on its description as a quantum arithmetic 

operator. Such a quantum arithmetic description of Q2
nis 

given as: 

Q2
n:                       →                                  (6)  

Where                                                                 (7) 

 

 

 

 

Q2
n 

C0`   C1 
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This description of Q2
nallows its quantum implementation and 

hence    
   

 by using quantum arithmetic circuits with a 

complexity of O(n). Whereas, in classical solutions there are 

known algebraic techniques for factoring an arbitrary    
  operator, they are guaranteed to produce O(  ) [4], i.e., 

exponentially many, terms in the factorization. Hence, 

although such a factorization is mathematically valid, it is 

physically unrealizable, because when treated as a quantum 

circuit design, would require too many quantum gates. It is 

therefore clear that for achieving an efficient quantum 

implementation, i.e., with a polynomial time and space 

complexity, it is necessary to exploit the specific structure of 

the given unitary operator. 

  In the following, it is shown how a circuit for       
  1     2  can be constructed. In binary representation, 

this mapping can be specified in terms of the following 

operations:  

                 →                  , with  

b0 = a0  1 

b1 = a1  a0   1 = a1  b0                             

b2 = a2  c1where  c1 = b0 b1 , 

b3 = a3  c2where  c2 = b2 c1 , 

bi  = ai   ci-1 where  ci-1 = bi-1 ci-2 . 

Calculating the ci’s and then the bi’s, the circuit in Figure 4 is 

obtained. Replacing the block Q2
n in Figure 3 with the circuit 

in Figure 4, then Figure 3 represents a complete gate-level 

circuit for implementation of    
   

.  

                                                                                       

  0                                                                                        
 

                                                                                        

  0                                                                                      

                                                                                        

 0                                                                                      

                                                                                       

0                                                                           

                                                                                      

                                                                                     

Fig 4: A new circuit for implementation of permutation 

matrix Q2
n. 

4. QUANTUM IMPLEMENTATION OF 

DAUBECHIES D
(4)

 MULTIWAVELET 

TRANSFORM 
Classical wavelet theory is based on a scaling function ϕ(t) 
and a wavelet function ψ(t), multiwavelets have two or more 

scaling and wavelet functions. The scaling function ϕ(t) is 

replaced by a function Φ(t) = [ϕ1(t) . . . ϕr(t)]
T
 called a 

multiscaling function. Likewise, the multiwavelet function is 

defined from the set of wavelet functions as Ψ(t) = [ψ1(t) . . . 
ψr(t)]

T
 .  

The multiwavelet two-scale equations: 

Φ(t) =       
    k Φ(2t – k)                                  (8) 

Ψ(t) =       
    k Φ(2t – k)                                  (9) 

The recursion coefficients Hk and Gk are the low and high-

pass filter impulse responses. They are r r matrices for each 

integer k. In practice, the value of r equals 2. The Hk and Gk 

scaling and wavelet matrices for GHM filter are [2] 

H0= 

 

   

 

 
 

  

 

    

 , H1= 

 

   
 

 

  

 

  

 , H2= 
  
 

  

  

    

   H3= 
  
  

  
   

                                                                                            (10) 

G0= 

  

  

  

    
 

    

 

  

    G1= 

 

  

  

  
  

    
 
    G2= 

 

  

  

    
 

    

  

  

              

G3= 

  

  
 

  

    
 
                                                                      (11) 

For computing discrete multiwavelet transform (DMWT), the 

transform matrix (T) can be written as in Equation (12). The 

input signal is preprocessed by repeating the input stream with 

the same stream multiplied by a constant  , for GHM system 

functions     
  

  . 

A new quantum implementation of Daubechies D(4) 

multiwavelet is proposed here, as follows. 

T = 

 
 
 
 
 
 
 
      

      

    
    

 

    

    

      

      
 

  

   
        

         
    

     
 
 
 
 
 
 

        (12) 

The transformation matrix T (Equation 12) can be 

decomposed as the summation of two matrices X and Y. The 

matrix X is shown below: 

X = 

 
 
 
 
 
 
 
  

  

  

  

  
  

  
  

 
 

 
 

  

  

  

  

  

   

  
    

     
 
 
 
 
 
 

                             (13) 

The matrix X is a        , where n is the number of input 

bits; it can be described as: 

            A                                                                   (14) 

Where, A =  
    

    
                                                          (15) 

The   ,   ,    , and    are as given in Equations (10) and 

(11), respectively. 

The matrix Y is shown below: 
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Y= 

 
 
 
 
 
 
 
    

    

      
      

 

     
     

     

     
 

  

   
        

         
 
 
 
 
 
 
 

                      (16) 

The matrix Y can be described as: 

Y =                                                                        (17) 

Where, B =  
    

    
                                                     (18) 

       is the downshift permutation matrix as described in the 

previous Section. The H2 , H3 , G2 , and G3 are as given in 

Equations (10) and (11), respectively. Figure 5 shows the 

quantum realizations of the matrices X and Y as specified by 

Equations (14) and (17), respectively. The circuit of the block 

       in Figure 5b is as shown previously in Figure 4. 

                                                                                                      

                                                                                                    

                                                                                                         

                                                                                                 

                                                                                                          

                                                                                           

                                                                                                        

                                                                                                        

(a) (b)                                          

Fig 5: The realization of: (a) Equation 14, (b) Equation 17; 

where q = 2n – 1. 

 Now, to obtain a single level of the D(4) multiwavelet 

transform, the X and Y outputs of Figure 5a&b are applied as 

inputs to a quantum adder circuit as shown in Figure 6. 

                                                                                                        

                                                                                            

                                                                 

                                                                               

                                                                                             

                                                                                                  

 

Fig 6: The realization of the Daubechies D(4) multiwavelet 

transform. 

The addition of two registers       and       can be written as 
                   , where the result of addition is written 

into one of the input registers. To prevent overflows, the 

second register (initially loaded in state      ) should be of size 

q + 1 if both X and Y are encoded on q qubits. In addition, a 

temporary register of size q is required, initially in state      , to 

which the carries of the addition are written (the last carry is 

the most significant bit of the result and is written in the last 

qubit of the second register) [12].  

5. QUANTUM IMPLEMENTATION OF 

INVERSE DAUBECHIES D
(4)

 

MULTIWAVELET TRANSFORM 
A new quantum implementation of inverse Daubechies D(4) 

multiwavelet transform is proposed here, as follows. 

The reconstruction matrix R, Equation (19), which is the 

transformation matrix T transposed, can be decomposed as the 

summation of two matrices Z and W.  

R = 

 
 
 
 
 
 
 
 
 
  

  

  

  

  

      

        

  

  

  

  

 

  

  

  

  

   

  
    

     
 
 
 
 
 
 
 
 

                          (19) 

The matrix Z is shown below:  

Z = 

 
 
 
 
 
 
 
  

  

  

  

  
  

  
  

 
 

 
 

  

  

  

  

  

   

  
    

     
 
 
 
 
 
 

                             (20) 

The matrix Z can be described as:  

            C                                                                   (21) 

Where, C =  
    

    
                                                          (22) 

The H0 , H1 , G0 , and G1 are as given in Equations (10) and 

(11), respectively. The matrix W is:  

W = 

 
 
 
 
 
 
 

  

 
 

 

  

  

  

  

 

      
        
  

  
  

   

  
    

  

       
 
 
 
 
 
 

                           (23) 

The matrix W can be described as:  

W         
    D                                                                 (24)  

Where,  

      
   

 
 
 
 
 
  
  
  

 
  
  
  

   
      

 
 
 
 

                                             (25) 

and  D =  
    

    
 .                                                             (26) 

The H2 , H3 , G2 , and G3 are as given in Equations (10) and 

(11), respectively. The realization of Equation (21) is similar 

to that of Equation (14). Also, the realization of Equation (24) 

is similar to that of Equation (17), but the       
   (i.e. the 

transpose of the downshift permutation matrix) is used instead  
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of        . Figure 7 shows the entire quantum implementation 

of the inverse D(4) multiwavelet transform.  

The quantum arithmetic description of    
  is given as: 

   
  :                                             

Where          (mod   ). 

This description of    
  allows its quantum implementation. 

Hence, it is required to construct a quantum circuit for 
                        . In binary representation, this 

mapping can be specified in terms of the following 

operations:  

 

                                                                

                                                                                             

 

 

 

                                                                                          

 

 

Fig 7: Implementation of the inverse Daubechies D(4) 

multiwavelet transform. 

                                            , with 

b0 = a0   1 

b1 = a1   a0     

b2 = a2   c1 , where c1 = a1 a0     

bi = ai   ci – 1 , where ci – 1 = ai – 1 ci – 2 for 3      n - 1 

Calculating the ci’s and then the bi’s, the circuit in Figure 8 is 

obtained. 

                                                                                                             

                                                                                                        

                                                                                                                  

                                                                                                      

                                                                                                    

                                                                                                      

                                                                                              

                                                                                                    

                                                                                                               

                                                                                                    

                                                                                                               

                                                                         

Fig 8: A new circuit for implementation of permutation 

   
  matrix. 

6. CONCLUSIONS 
In this paper, fast algorithms for quantum Daubechies D(4) 

wavelet, multiwavelet and inverse multiwavelet transforms 

are developed. Three complete circuits for these three types of 

Daubechies D(4) transforms are described. Permutation 

matrices     ,     , and    
  play a pivotal role in the 

development of the three types of transform. In fact, not only 

they arise explicitly in the packet and pyramid algorithms but 

also they play a key role in factorization of wavelet kernels 

and in decomposition of multiwavelet and inverse 

multiwavelet transforms. 

In this paper, the Daubechies quantum wavelet and 

multiwavelet transforms are implemented. In a similar 

manner, the other types of wavelet and multiwavelet 

transformations can be achieved (a promising task for the 

future). 
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