
International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.11, September 2013

1

 Path Prioritization using Meta-Heuristic Approach

Himanshi, Nitin Umesh, Saurabh Srivastava

Computer Science and Engineering

India

ABSTRACT
Software testing is one of the most important phase in

development life cycle of any software system as testing

assures the quality of the software i.e. a software is bug-free

can judged using software testing. Although, creating bug-free

software is impossible but we can find out most of the bugs

and recover them. Software testing can be done in many ways

but here we will focus on structural testing. This paper

presents an approach which can prioritize the paths among a

set of paths such that they can be executed accordingly and

comparison between existing methods is done. All results

have been produced using a software developed for the

purpose.

1. INTRODUCTION
When the computers were first made, they were big-room

sized machines which operate on mechanical relays and

glowing vacuum tubes. At Harvard University technicians

were running the new computer when it suddenly stopped

working. The reason was, a moth was stuck between the relay

contacts of the computer. It had apparently flown to the

system attracted by the light.

From that day computer bug was born. A bug caused the

computer to stop working, thus software’s need to be tested in

order to prevent flaws which may lead to the system failure.

Software testing is now an integral part of software

development life cycle (SDLC). Some companies now have

an entire different section of testing team in their company for

testing the quality of the product. The main goal of

performing software testing is to find the bugs in the software

before release of product to the end users. Software testing

assures the quality of the product and now-a-days most of the

expenses are done for performing quality testing such that

errors can be removed and we can have bug-free software.

There is a test criteria hierarchy. As we know there are several

testing criteria and we need to give preference one over other

on some basis. Obviously, the better one which can provide

better result will be preferred over others.

Theoretical analysis concerning the hierarchy shows that the

most of the testing criteria are incomparable.

There are two major ways of testing any software product.

 Structural testing

 Functional testing

1.1 Structural testing
Structural testing is also known as white box testing or logic-

driven testing, it is the process of testing the internal logic for

the program. It covers the lines of code written for the

software. There are several types of structural testing such as

 Data flow testing

 Control flow testing

 Statement coverage

 Branch coverage

 Path coverage

 Condition coverage

 Basis path testing

These are few important testing techniques in white-box

testing. We will keep our focus on basis path testing.

 Fig 1.1 Testing criteria hierarchy

Structured testing

All-Path

All du paths

All use

P-use C-use

Branch

Statement

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.11, September 2013

2

1.1.1 Basis path testing
Basis path testing was proposed by Thomas McCabe in 1976.

Basis path testing is a kind of structural testing which is based

on control flow graph. This method derives a set of feasible

independent paths to design a set of test cases through which

testing can be performed. In graph based testing there can be

infinite no. of paths if there is any loop or cycle in the graph.

We can deal with such condition using Cyclomatic complexity

which was again given by McCabe.

In Basis Path testing we particularly need to avoid selection of

infeasible paths in the graph which can increase the amount of

time required for testing, as infeasible paths can’t be tested

using any set of test cases.

Basis path testing worksheet is shown on next page.

1.1.2 Functional testing
Functional testing which is also known as black-box testing is

another very famous technique of software testing which only

concerns about the functionality of a software product. In this

testing we test software as a whole. We give input to the

software and check for the output. We have a reference model

to check whether the output is correct or not. If the output is

correct we consider the software as correct. The functionality

can be tested either by an expert tester or by any other person

who may not have the best of knowledge about the software.

One good thing about this testing is that, the tester need not to

be an expert programmer or having the in-depth knowledge

about the code on which the software is built.

1.2 Cyclomatic complexity
A graph with M predicate nodes, have 2m possible paths, and

if the graph contains any loop (one or more), it may have an

infinite number of paths; to overcome this situation we use

Cyclomatic complexity, as it is an important method to reduce

the total number of paths. Cyclomatic complexity is used to

generate a number of linearly independent paths in the graph.

A path is considered as linearly independent path if it has at

least one new node than previous path.

Cyclomatic complexity is also denoted as V(G) while v means

the Cyclomatic number in graph theory and G stands for that

the complexity is a function of the graph. We have many

formulae to calculate the Cyclomatic complexity and one of

these is V (G) = e – n + 2, where e represents the number of

edges in the CFG and n denotes the no. of nodes. Another

formula for calculating V (G) is no. of predicate node + 1. V

(G) = P + 1 where P stands for no. of predicate nodes in

control flow graph.

1.3 Control Flow Graph
CFG describes the logical structure of the source code or

software under test. Every control flow graph consists of

various nodes and edges. The nodes in CFG shows

computational statements and the edges represent control

switching between nodes.

We use Control Flow Graph (CFG) diagrams to generate

optimal or efficient path for software under test (SUT).In

other words, a control flow graph describes how the control

flows throughout the program.

CFG based testing provides all statement coverage, branch

nodes coverage, event coverage and provides all path

coverage.

This is the most effective technique for software testing.

1.3.1 Node
It is expressed as a labeled circle, representing, one or more

statement, decision, condition, procedures of a program etc.

1.3.2 Control Flow
It is expressed by an arc or directional edge from one node to

another representing statement flow of the program. In CFG a

node with condition is known as predicate node i.e. if out-

degree of any particular node is more than one then it is said

to be a predicate node.

1.3.3 Ant Colony Optimization Algorithm
Ant colony optimization (ACO) is a population-based meta-

heuristic that can be used to find estimated solutions to tricky

optimization problems.

A meta-heuristic refers to a master strategy that guides and

modifies other heuristics to produce solutions beyond those

that are normally generated in a quest for local optimality.

—Tabu Search, Fred Glover and Manuel Laguna, 1998

A predominantly triumphant meta-heuristic is inspired by the

behaviour of real ants. Starting with Ant System, a number of

algorithmic approaches based on the very same facts were

developed and applied with substantial success to a diversity

of combinatorial optimization problems from scholastic as

well as from real-world applications. The chapter introduces

ant colony optimization, a meta-heuristic framework which

covers the algorithmic approach mentioned above. The ACO

meta-heuristic has been projected as a common frame for the

existing applications and algorithmic variants of a diversity of

ant algorithms. Algorithms that fit into the ACO meta-

heuristic framework will be called in the following ACO

algorithms.

In ACO, a set of software agents called mock ants hunt for

good quality solutions to a given optimization problem. To

apply ACO, the optimization problem is transformed into the

problem of judgment of the best path on a weighted graph.

The mock ants incrementally construct solutions by affecting

on the graph. The solution building process is stochastic and is

influenced by a pheromone model, that is, a set of parameters

associated with graph components (either nodes or edges)

whose values dynamically change at runtime by the ants.

The thought behind ant algorithms is then to use a form of

artificial stigmergy to harmonize societies of artificial agents.

ACO is motivated by the foraging actions of ant colonies, and

targets discrete optimization problems.

Ant colony optimization (ACO) is a very notorious technique

which was used for several purposes such as path sequencing

or shortest path selection in travelling salesman problem and

many more. There are quite a few extension of this algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.11, September 2013

2

given by many researchers which were then used in different

field of computer science and mathematics.

In computer science and engineering, ant colony is termed as

probabilistic technique in order to solve computational

problems. Ant colony algorithm uses graphs for finding the

superior paths. Ant colony algorithm was used to generate test

sequences for state based testing. This algorithm was used to

find the shortest path between the start node and any other

random intermediary or destination node, this algorithm has

loom to cover all the nodes in execution state sequence graph

(ESSG) but unsuccessful to do so at higher level or strong

level.

Ant optimization technique was majorly applied to the area of

testing, where one needs path sequencing in a set of paths to

be tested. This algorithm was focused on finding the test data

for control flow based testing. A novel approach of testing

was given for data flow testing via ant colony optimization

algorithm.

There are some common extensions of ACO algorithm but, in

this paper, the major prominence is given on the selection of

shortest feasible path which needs to be tested first in order to

get efficient algorithm. As we have discussed earlier, ACO is

based on graph thus, we have nodes and edges collectively

forming a graph which then needs to be traversed in order to

get path sequence which can then be tested after applying test

cases.

In ACO we calculate probability of each path and on the basis

of probability the priority is measured.

There are four parameters on which probability depends.

1) Feasibility of path (fij)

2) Pheromone value (τ)

3) Heuristic value (µ)

4) Visited status (Vs).

1.3.4 Feasibility (fij)
It can be defined as the availability of edge from node i to j.

 Fij = 1 if possible path exists from i to j

 Fij = 0 if possible path does not exist from i to j

1.3.5 Pheromone value (τ)
Pheromone helps ants to make decision in prospect. It keeps a

trace from path i to j. The pheromone value is updated after

each path is traversed.

1.3.6 Heuristic value (µ)
It indicates the visibility of a path for an ant at current vertex i

to j.

1.3.7 Visited status (Vs)
It shows the status of all nodes traversed by any ant p for any

state i.

 Vs = 0, node is not traversed by ant p.

 Vs = 1, node is already traversed by p.

A node can be simply denoted using N and edges can be

denoted using E.

Related works:

Zhonglin et al., (2010) put forward an improved approach for

basis path testing. This technique combines the baseline

method with dependence relation analysis. This method

generates a set of linearly independent paths, which we call

basis paths. However, when applying these basis paths to

designing test cases, we will always find that some of them

are infeasible. These infeasible paths are impossible to test

using any set of test cases. Thus, we need to avoid selection of

infeasible paths using some technique such that an efficient

path selection technique can be produced.

Qingfeng et al. (2011) elaborated the work of zhonglin for

selection of infeasible paths. In this paper he proposed a new

approach for selection of independent paths and at the same

time avoiding selection of infeasible paths. He illustrated his

work on the program triangle showing the effectiveness of the

work.

Kumar et al. (2012) discussed the basis path testing as an

imperative testing method in white box testing. As, basis path

testing follows internal logic thus it generates a feasible set of

independent path present in source code and is known as basis

path. Some of these paths may be infeasible.

Balakrishnan et al. (2008) proposed a method to determine the

semantically infeasible paths in program using abstract

interpretation. Their technique uses path-insensitive forward

and backward run sequence of an abstract interpreter to

deduce paths in the CFG that cannot be exercised in tangible

executions of the program.

Srivastava et al (2009) proposed an approach for optimal path

generation using ant colony optimization algorithm. In this

paper author presents a simple and novel approach using ACO

for optimal path identification using basic property of ants.

Let us take an example of CFG for program Product and see

the no. of feasible and independent paths in it.

Prog.1

1. Begin

2. int no., product;

3. bool done;

4. product=1;

5. input(done);

6. while(!done)

{

7. input(num);

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.11, September 2013

3

8. product= product*no.;

9. input(done);

10. }

11. output(product);

12. end

Fig 2.1 CFG for program product

We can now calculate the Cyclomatic complexity and no. of

paths in the graph.

Cyclomatic complexity = no. of predicate nodes + 1

 1+1 = 2

OR) V (G) = no. of cyclic region = 2

Thus, CC or Cyclomatic complexity or V (G) = 2

Path1: start2345611end

Path2:

start23456789102345611

end

Now the aim is to determine out of these two paths which path

must be selected first for testing.

Proposed work:

The aim of current study focuses on developing a concept of

optimizing the way of prioritizing the paths among the set of

feasible paths generated from the control flow graph (CFG).

There is a great deal of research on path prioritization for path

testing or routing. There are several methods of solving such

problems. A very renowned travelling salesman problem is

one of the best example for which path prioritization becomes

a necessity. Although, there are several way of solving

travelling salesman problem but there are many other

problems which needs to be solved.

One such problem is path prioritization in basis path testing.

In order to test the path in efficisent and fast manner we need

a prioritization approach which can easily solve our problem

and prioritize the path from the set of path such that they can

be tested in same order using path prioritization technique.

Basis path testing uses CFG and Cyclomatic complexity to

carry out the process. But there are several limitations and

drawbacks of control flow graph. A control flow graph may or

may not be providing feasible set of path. We need to take

care of that thing. A feasible set of path must be generated in

order to obtain a correct testing path. In CFG there are many

paths which cannot be called in any condition.

The main objective of the work is to produce an algorithm

which can prioritize the shortest path first to longest path last

among the set of paths first.

 To develop software which gives higher priority to the

paths with shorter length i.e. if the path is shorter then it

can be given higher priority on the basis of probability

such that it can be executed before other longer paths.

Formulae:

 Pcum = Pij/Lk

 Pcum is average probability of any path

 Tij = (1-p)Tij + Σ delTij

 or

 Tij = (Tij)^x+ (Nij)^y

 Tij is pheromone value

 Nij = 1/Dij

 Nij is heuristic value

 delTij = Q/Lk

 del Tij is diff. in pheromone

 Lk is length of path

 Q is random no.

Steps of iteration:

For both ants, Lk = 10 for ant 1 and 5 for ant 2

Except the length parameter, all other parameters are taken

same as we need to show that shorter paths can have greater

probability thus priority increases.

Q is a random value which should be same for every ant

Q for ant 1 = Q for ant 2 = 200

 ∆ Txy = Q/Lk , ∆Txy = 200/10 for ant 1, 200/5 for

ant 2

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.11, September 2013

4

 Pheromone evaporation constant (PEC) must lie

between 0 and 0.5

Here value of PEC is taken as .1

Calculate Txy = (1-P)Txy + ∆ Txy

 Calculated Txy for ant 1 and ant 2 is, 20.9 and 40.9

respectively.

In order to calculate Nxy we need value of Dxy

Nxy = 1/Dxy

Value for Nxy for ant 1 and 2 is calculated: 0.5 for both the

ants.

Finally we need to calculate Pxy which requires value of N

N is the no. of nodes connected to parent node in any CFG.

Pxy is calculated using ant colony optimization formula

Here Pij = Pxy , Ʈij = sTxy, µij = Nxy

Pxy for ant 1 and ant 2 is calculated at value of N = 2: 0.5 and

0.5

The input will be taken again and same procedure will be

followed.

 Lk = 24 (ant 1) , Lk = 12 (ant 2)

Q = 120

∆ Txy = 5 and 10

PEC = .2

Txy = 21.72 and 42.72

Dxy = 1 and 1

Nxy = 1 and 1

N = 4

Pxy = 0.25 and 0.25

In the third iteration we will take all the values same but for

showing the effectiveness of algorithm we will, this time, take

value of ant 1 less than the value of ant 2 unlike previous 2

iterations.

Lk = 5 (ant 1) and 10 (ant 2)

Q = 20, 20

∆ Txy = 4 and 2

PEC = 0.3, 0.3

Txy = 19.204, 31.904

Dxy = 3, 3

Nxy = .33, .33

N = 2, 4

Pxy = 0.5, 0.25

Pxy final = 1.25 and 1

Path length final = 39 and 27

Pcum = Pxy final /Path length final

Pcum (ant 1) = 1.25/39 = 0.032

Pcum (ant 2) = 1/27 = 0.037

Pcum for ant 1 < Pcum for ant 2

2. CONCLUSION
Path prioritization is major necessity to efficiently test all the

paths involved in CFG so we can prioritize the paths for

testing using ant colony optimization algorithm by prioritizing

the paths by calculating probability of selection of each node.

In path testing we start from the shortest path first. The

proposed approach allows tester to find out the priority for

each path among the set of paths and put them in ascending

order on the basis of path length.

Thus, the proposed approach allows tester to find out the

probability for each path and priority of the shortest path

comes out to be maximum i.e 1(first). For this approach a

software is developed which is helpful is finding out the

probability under given path length for different ants, and then

sequence them on the basis of higher to lower priority and in

ascending order of path length.

3. REFERENCES
[1] Baby, K. M. (2009). An Approach of Optimal Path

Generation using Ant colony optimization. IEEE , 1-

6.

[2] Bhuvnesh Sharma, I. G. (2011). Software Coverage

: A Testing Approach through Ant Colony

Optimization. Swarm, Evolutionary, and Memetic

Computing - Second International Conference,

SEMCCO 2011 (pp. 618-625). vishakhapatnam:

Springer-Verlag Berlin Heidelberg 2011.

[3] Christian Blum, M. B. (2005). Combining Ant

Colony Optimization with Dynamic Programming

for Solving the k-Cardinality Tree Problem.

Computational Intelligence and Bioinspired Systems

, 25-30.

International Journal of Computer Applications (0975 – 8887)

Volume 77 – No.11, September 2013

5

[4] Dorigo, M. (1992). Optimization, Learning and

Natural Algorithms. italy: the Milano polytechnic.

[5] Ghiduk, A. S. (2010). A New Software Data-Flow

Testing Approach via Ant Colony Algorithms.

Universal Journal of Computer Science and

Engineering Technology , 64-72.

[6] Gogul Balakrishnan, S. S. (2008). SLR: Path-

Sensitive Analysis through Infeasible-Path

Detection and Syntactic Language Refinement.

springer verlag , 1-16.

[7] Greco, F. (2008). travelling salesman problem.

croatia: in-teh.

[8] Hunt, t. (2002). Advanced Topics in Computer

Science: Testing. wales: swansea univesity.

[9] Mathur, a. (2007). foundation of software testing.

new delhi: pearson education.

[10] McCabe, t. J. (1976). A Complexity Measure. IEEE

transactions on software engineering , 308-320.

[11] Mousavi. (2012). Path Testing. Eindhoven

University of Technology, The Netherlands , 1-7.

[12] Qingfeng, D. (2009). An improved algortihm for

basis path testing. IEEE (pp. 175-178). hefei: IEEE.

[13] Rai. (2009). An Ant Colony Optimization Approach

to Test Sequence Generation for Control Flow based

Software Testing. ICISTM' 09 (pp. 345-356). berlin:

springr.

[14] Roggenbach, H. S. (2002). Topics in Computer

Science: Testing, Path Testing”. wales: swansea

university.

[15] Sommerville, i. (2009). software engineering.

london: pearson edition.

[16] Srivastava, p. r. (2010). Automated Software

Testing Using Metahurestic Technique Based on An

Ant Colony Optimization. electronic system design .

[17] Stutzle, t. (2004). ant colony optimzation. london:

MIT press.

[18] T. Bharat Kumar, N. H. (2012). An Catholic and

Enhanced Study on Basis Path Testing to Avoid

Infeasible Paths in CFG. Global Trends in

Information Systems and Software Applications ,

386-395.

[19] Zhang Zhonglin, M. L. (2010). An Improved

Method of Acquiring Basis Path for software

testing. ICCSE'10 (pp. 1891-1894). hefei: IEEE.

[20] Zhao, R. (2012). A Path-oriented Automatic

Random Testing based on Double Constraint

Propagation. IJSEA , 1-11.

IJCATM : www.ijcaonline.org

