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ABSTRACT 

Parallelism, a massive achievement in the field of processor 

architecture leading towards increased speed up by 

incorporating data as well as computation intensive work. 

Parallel architectural components interconnected with major 

consideration as communication among coupled hardware in 

order to stabilize workload distribution and management. 

Workload distribution with load stability fundamentally a 

tricky aspect of parallel distribution. Static policies covers 

load factors which are pre-determined before actually 

distribution takes place. Dynamic load stability and 

distribution periodically measures the load for each and every 

processor in heterogenic parallel processor systems.. 

Development of heterogenic multiprocessor machines with 

dynamic load stability matrices or measurements incorporates 

vast amount of efforts and covers varied amount of 

configuration factors on the behalf of the underlying 

communication architecture. So much of the processor’s 

efforts may lose for load stabilization, which may be 

controlled by improved dynamic load stability techniques and 

theories. In this research, the major aspect of development is 

to measure processor efficiency by analyzing frequency speed 

along with current processor load, only then the distribution 

takes place. Measuring cycle speed (i.e. no. of cycle per 

second elapsed) in terms of Hz, Mhz, Ghz is one of the 

measurement metric to analyze the processor efficiency. 

Further the research covers MIMD based core processor 

simulation version integrate frequency based distribution for 

load steadiness and control. Although, load consistency will 

not be completely managed with in any type of system. Load 

steadiness and uniformity will only be controlled up to some 

extent. 

General Terms 

Dynamic Job scheduling, Load Balancing and consistency, 

Processor Efficiency, Multi-Core MIMD Systems, Cycle 

Speed. 

Keywords 

Heterogenic Multi-Core Processor Simulation, Load 

steadiness, Workload Distribution, Time Sharing 

Environment, Frequency Cycle Speed Measurements. 

1. INTRODUCTION 
Experimental research generally covers homogeneous 

processor interconnection structures, this is because the 

underlying platforms used for test scenarios provides such 

types of environment. Homogeneous structures generally 

covers redundant logic and parametric values which are 

common and fixed for each and every hardware linked. 

Simulation behind Heterogenic processor designs requires 

great deal of implementation work if structure covers 

scheduling as well as load balancing and other dynamic 

constraints. One of the major bottlenecks among parallel 

execution is job scheduling which mostly covers time sharing 

and space sharing aspects of distribution [2][9]. Scheduling at 

operating system level covers global scheduling at upper 

level, which manages jobs that are firstly arranged in disk 

queue. At lower level processors local scheduling exists 

manages their own local ready queue management. Static 

aspects of scheduling cover factors such as capacity of 

memory buffers, no. of jobs scheduled, their arrivals etc. 

Dynamic scheduling on the other hand covers processor 

frequency speed, their periodic workload management and 

final job distribution after workload characterization. Further 

the research towards this field covers dynamic factor of 

workload analysis by estimating processor efficiency in terms 

of frequency measurement. Simulated version is developed to 

analyze the performance of heterogenic multi-core processors 

incorporating dual core and tri/quad core structures. Jobs are 

distributed among processors by estimating their cycle speed 

in terms of seconds by comparing their existing load and 

current incoming job workload. Job workload is considered as 

burst cycles arranged via random distribution mechanism in 

the incoming batch queue. Simulated log will be generated 

containing workload estimation of each and every processor 

core including overall workload estimation. Finally, the 

graphical results are produced to describe load stability and 

steadiness growth over different time barriers. Although 

different samples have been taken in analysis process which 

exhibit up to vast amount of extent the load will be balanced, 

distribution consistency will only be controlled, not 

completely fully balanced. Idea behind this research 

implementation is to understand the working of multi-core 

heterogenic architectures which are not generally available in 

today parallel machines Experimentation is possible only in 

simulation environment virtually designed to produce effects 

which may or may not be close to real results depending upon 

the logical configuration implementation and methodologies 

used.  

2. LITERATURE REVIEW 
Literature behind multi-core architectures has been enhanced 

day to day because of performance of multi-core processors is 

much more than single core processor versions. Mohesh 

Lokhande in his paper entitled “Real-Time Scheduling for 

Parallel Task     Models on Multi-Core Processors-A Critical 

review” 2012 describes multi-core performance analysis by 

incorporating real time scheduling methods. Other research 

includes “Dynamic Load Balancing of Parallel Computational 

Iterative Routines on Platforms with Memory Heterogeneity “ 

2010 by David Clarke demonstrates Traditional load 

balancing algorithms for data-intensive iterative routines can 

successfully load balance relatively small problems. Adaptive 

asynchronous applications are described by Kevin Barker in 

his research “A Load Balancing Framework for Adaptive and 

Asynchronous Applications” 2004 covers a design of  flexible 
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load balancing framework and run times software system for 

supporting the development of adaptive applications on 

distributed-memory parallel computers. The runtime system 

support a global namespace, transparent object migration, 

automatic message forwarding and routing, and automatic 

load balancing. Research towards distributed job processing 

with dynamic load balancing has been also described by P. 

Srinivasa Rao in a paper “Dynamic Load Balancing With 

Central Monitoring of Distributed Job Processing System” 

2013, the detail covers Dynamic load balancing with a 

centralized monitoring capability. The purpose of using a 

centralized monitoring feature was based on the idea that the 

computation in a environment may be distributed, but the 

status of each task or job must be available at a central 

location for monitoring and better scheduling. This also 

allows better management of the jobs. The framework also 

addresses  the inherent need for uniform load distribution by 

allowing the dispatcher to check against the status of the 

processors before a job is dispatched for processing. 

3.  OBJECTIVE 
Objective is to simulate heterogenic Multi-Core processor 

architectures by measuring processor efficiency in terms of 

processor frequency speed along with present processor load 

and incoming workload distribution. The idea covers dynamic 

aspect for load steadiness and constancy during job 

scheduling in heterogenic environment. Each processors 1-

cycle time will be calculated and remaining cycles still to be 

processed will be measured along with new job workload 

cycles. The processor which consumes minimum amount of 

time will undertakes that particular job and in this way 

distribution takes place. 

 

4. WORKLOAD CHARACTERIZATION 
Workload selection for simulation implementation is based 

upon random distribution. Front end long term queue will be 

build to carry virtual job description, which further covers 

process id, their time in terms of  burst cycles requires. Such 

burst cycles are actually the no. of CPU cycles required to 

process by each job. Such data is arranged automatically 

during simulation execution. Input data covers such types of 

aspects, resultant output data will carry workload detail on 

processor cores described in terms of status log of the 

processors. The status log exhibits individual load of each 

processor core and finally the overall load of the processor, on 

basis of which overall workload distribution of job scheduling 

takes place. Other detail includes no. of jobs processed by 

each core, their pending workload status. The log will be 

maintained periodically behind database as well. This is 

required at different time barriers because collection of 

simulation results at differential time samples will actually 

justify the results. Below is the dummy sample of status log 

grid demonstrated in the fig-12. First attribute represents time 

barrier basis on which the periodic simulation results will be 

measured. Processor frequency describes the type of processor 

speed. Other parametric values describe the varying load of 

each of the processor core. The results collected after 

executing simulation no. of times and describes that the load 

steadiness is maintained up to very large extent, although not 

completely fully controlled but above 85% is controlled and 

consistent. 

Load estimator estimates the present processor workload and 

sends this detail to the load analyzer, which in turn receives 

the current job workload in terms of cycles required from the 

load distributor, the job which ready for current distribution 

and finally analyzes the compete load of each processor along 

with their frequency cycle speed and finds the processor 

which overtake the job execution quickly. In this way, the 

distribution takes place. Below is the metric used for load 

finding processor index which quickly performs the job 

execution after cycle speed measurements. 
 

5. INTERCONNECTION STRUCTURE 
Interconnection structure covers seven virtual processor multi-

threaded designed to incorporate parallel behavior. Out of 

these seven one is tri-core and another is quad core 

configured, remaining five are of dual core. Fig-1 describes 

internal structure of workload distribution over core 

processors along with cache memories and front side disk 

queue. Several logical component modules exists for final 

implementation such as load estimator, which periodically 

measures the load of each processor and a load distributor 

similarly to load estimator, but whose task is to distribute jobs 

after analyzing processor present workload.  Load distributor 

is actually the master scheduler cooperatively worked along 

with load estimator and balances the load. 

                                                                           Jobs Workload  

 

 

                                        Sends job workload currently 

                                        Ready for distribution     

 

                                         Accepts incoming job and present                  

                                         Processor load  from load estimator  

                                         and finally finds the processor index                                         

                                         Which quickly completes the job? 

 

                                                                         

                                       Estimates the present processor load 

                                      and transfers to load analyzer 

 

 

 

 

                                                                                Front side 

                                                                                L-2 Cache 

 

                                                                                L-1 Cache 

 

                                                                             CPU cores 

                         

Fig 1: Multi-Core Interconnection Structure 

 

6. EFFICIENCY ESTIMATION 
Cycle based scheduling requires the calculation of processor’s 

cycle speed in terms of no. of cycles per second. Fastest 

processors may pass many no. of cycles  in a second as 

compare to low speed processors [2]. This approach basically 

computes the no. of cycles elapsed by processor in one second 

and then measures the amount of time required to compute 

current job cycles along with the present workload cycles. The 

load analyzer firstly perform the summation of pending jobs  

workload  cycles  from  each  processor’s  ready  queue  along 

with the newly arrived job, and then compare it with the 

Load 

Estimator 

Load 

Analyzer 

Load 

Distributor 
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processor cycle speed/sec. Processor having    smallest no. of 

timing requirements for the overall workload will take care of 

newly arrived job [2].  This will perform the balanced load 

assignment. The load analyzer finds the processor index as – 

For each pth processor where p=1 to n 

Do 
 

PTotCycleT[p]= (PEloadp + CjobWcycle)*TReqCOneCyclep) 
 

End For 

 

PIndex=Min(PTotCycle) 

Allocate(Current_Job,PIndex) 
      
7. SIMULATED VIEW 
Simulated view described below is implemented via visual 

basic 6.0 programming. The structure represents 

interconnection among seven multi-core processors along 

with their workload status details. The underlying logical 

scenario covers multi-threaded environment along with 

synchronized communication flow. Each processor having 

different frequency speed as described in the research. Jobs 

come under level-2 processor caches described as front end 

memory bus. Internally the processor manages their cores via 

level-1 caches buses. The workload is distributed after 

measurement of processors present workload and cycle speed. 

Simulator also shows workload of each of the processor core 

along with overall workload on the basis of which the 

illustrations have been described. Status logs are also 

maintained in the database table at different time barriers for 

analysis. Fig-11 depicts the simulated running view of multi-

core processors. 

 

8.  MULTI-THREADED ENVIRONMENT 
Parallel experimental setup containing simulation structures 

virtually designed generally covers implementation via 

multithreading programming, where multiple threads of 

execution covers each dimension of simulation integral 

interconnection. In reality, such threads actually executes on a 

single system but exhibits like they are working as real 

parallel system covering many interconnected processors 

cooperatively executes various tasks . Although these threads 

can be mapped over to actual parallel system, only the logical 

ability will be distributed among processors. Multi-threading 

in general requires some sort of synchronization aspects when 

common shared environment is involved. Experimental setup 

also covers cluster based parallel execution where no. of 

machines in a network are incorporated to behave like a 

parallel system. Such simulated threads can also be mapped to 

these cluster based architecture with partial modification. 

 

9.  RESULTS AND DISCUSSIONS 
Results illustrated below are captured by executing simulation 

at different distribution samples, where each sample carries 

different scheduling workload. The research results shows that 

great amount of efforts is performed at underlying architecture 

during workload distribution. Load stability and steadiness is 

controlled at  greater  extent  above  to  the  85%.  As  in   the  

illustrations the processor having low frequency rate will 

processed load according to that as compare to fastest 

processor with greater frequency speed. Overall load will be 

balanced. This dynamic approach has the advantage over 

static scheduling polices. Following are the resultants tables 

and graphs captured- 

 

Table 1 - Sample-1-Time Barrier-20-View-1 
 

Sr. 

No 

Processor 

Freq. Speed 

Overall 

Load 

on 

multi-

core 

Load 

on 

Core 

1 

Load 

on 

Core

2 

Load 

on 

Core   

3 

Load 

on 

Core   

4 

1. 850 MHZ DC 3425 1315 2110 0 0 

2. 1 GHZ DC 3802 2444 1358 0 0 

3. 1.3 GHZ DC 4245 2234 2011 0 0 

4. 1.7 GHZ TC 6884 1245 3196 2443 0 

5. 2.0 GHZ DC 6433 2526 3907 0 0 

6. 2.6 GHZ DC 8870 5644 3226 0 0 

7. 2.8 GHZ QC 10285 1548 1367 3727 3643 
 

 
                    Fig 2: Sample-1- TimeBarrier-20 View-1 

 

Table 2 - Sample-1-Time Barrier-45-View-2 
 

Sr. 

No 

Processor 

Freq. Speed 

Overall 

Load 

on 

multi-

core 

Load 

on 

Core 

1 

Load 

on 

Core 

2 

Load 

on 

Core   

3 

Load 

on 

Core   

4 

1. 850 MHZ 

DC 
2555 1228 1327 0 0 

2. 1 GHZ DC 3311 2230 1081 0 0 

3. 1.3 GHZ DC 3826 2167 1659 0 0 

4. 1.7 GHZ TC 9014 4440 1076 3498 0 

5. 2.0 GHZ DC 12208 5955 6253 0 0 

6. 2.6 GHZ DC 12818 6546 6272 0 0 

7. 2.8 GHZ QC 14137 4353 3591 3487 2706 

 
                  Fig 3: Sample-1- TimeBarrier-45 View-2 
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Table 3 - Sample-1-Time Barrier-65-View-3 

 
Table 5 - Sample-2-Time Barrier-20-View-1 

 
Sr. 

No 

Processor 

Freq. Speed 

Overall 

Load 

on 

multi-

core 

Load 

on 

Core 

1 

Load 

on 

Core 

2 

Load 

on 

Core   

3 

Load 

on 

Core   

4 

1. 850 MHZ DC 3221 3221 0 0 0 

2. 1 GHZ DC 4164 1691 2473 0 0 

3. 1.3 GHZ DC 4057 1826 2231 0 0 

4. 1.7 GHZ TC 8692 3345 3572 1775 0 

5. 2.0 GHZ DC 11818 3654 8164 0 0 

6. 2.6 GHZ DC 13324 9502 3822 0 0 

7. 2.8 GHZ QC 13650 5898 2410 3167 2175 

 

                   Fig 4: Sample-1- TimeBarrier-65 View-3 

Table 4 - Sample-2-Time Barrier-40-View-2 

Sr. 

No 

Processor 

Freq. Speed 

Overall 

Load 

on 

multi-

core 

Load 

on 

Core 

1 

Load 

on 

Core 

2 

Load 

on 

Core   

3 

Load 

on 

Core   

4 

1. 850 MHZ 
DC 

3590 1939 1651 0 0 

2. 1 GHZ DC 3062 3062 0 0 0 

3. 1.3 GHZ DC 4761 1039 3722 0 0 

4. 1.7 GHZ TC 6679 1995 2170 2514 0 

5. 2.0 GHZ DC 8818 6665 2153 0 0 

6. 2.6 GHZ DC 12992 8764 4229 0 0 

7. 2.8 GHZ QC 14735 2831 7167 3438 1299 

 

Fig 5: Sample-2- TimeBarrier-40 View-2 

 

 

                   Fig 6: Sample-2- TimeBarrier-20 View-1 

Table 6 - Sample-2-Time Barrier-80-View-3 

Sr. 

No 

Processor 

Freq. Speed 

Overall 

Load 

on 

multi-

core 

Load 

on 

Core 

1 

Load 

on 

Core 

2 

Load 

on 

Core   

3 

Load 

on 

Core   

4 

1. 850 MHZ 

DC 
2450 1121 1329 0 0 

2. 1 GHZ DC 1511 1511 0 0 0 

3. 1.3 GHZ DC 3000 0 3000 0 0 

4. 1.7 GHZ TC 4277 1311 1428 1538 0 

5. 2.0 GHZ DC 6413 2297 4116 0 0 

6. 2.6 GHZ DC 7671 4476 3196 0 0 

7. 2.8 GHZ QC 8409 2895 1023 1539 1482 

 

Fig 7: Sample-2- TimeBarrier-80 View-3 
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Sr. 

No 

Processor 

Freq. Speed 

Overall 

Load 

on 

multi-

core 

Load 

on 

Core 

1 

Load 

on 

Core 

2 

Load 

on 

Core   

3 

Load 

on 

Core   

4 

1. 850 MHZ DC 2119 2119 0 0 0 

2. 1 GHZ DC 3593 1767 1826 0 0 

3. 1.3 GHZ DC 4557 2126 2431 0 0 

4. 1.7 GHZ TC 6180 3149 3031 0 0 

5. 2.0 GHZ DC 7745 6391 1354 0 0 

6. 2.6 GHZ DC 12820 7497 5323 0 0 

7. 2.8 GHZ QC 12026 3683 2060 3064 3219 



International Journal of Computer Applications (0975 – 8887)  

Volume 77– No.1, September 2013 

15 

Table 7 - Sample-3-Time Barrier-35-View-1 

Sr. 

No 

Processor 

Freq. Speed 

Overall 

Load 

on 

multi-

core 

Load 

on 

Core 

1 

Load 

on 

Core 

2 

Load 

on 

Core   

3 

Load 

on 

Core   

4 

1. 850 MHZ 

DC 
2931 2931 0 0 0 

2. 1 GHZ DC 3484 1152 2332 0 0 

3. 1.3 GHZ DC 3523 3523 0 0 0 

4. 1.7 GHZ TC 4901 2837 0 2064 0 

5. 2.0 GHZ DC 5843 2088 3756 0 0 

6. 2.6 GHZ DC 9013 2757 6256 0 0 

7. 2.8 GHZ QC 8705 3061 1535 1983 2126 

 

 

                      Fig 8: Sample-3- TimeBarrier-35 View-1 

 

Table 8 - Sample-3-Time Barrier-75-View-2 

             
Sr. 

No 

Processor 

Freq. Speed 

Overall 

Load 

on 

multi-

core 

Load 

on Core 

1 

Loa

d on 

Cor

e 2 

Load 

on 

Core   

3 

Load 

on 

Core   

4 

1. 850 MHZ 

DC 
1416 1416 0 0 0 

2. 1 GHZ DC 2106 1 2105 0 0 

3. 1.3 GHZ DC 2932 2932 0 0 0 

4. 1.7 GHZ TC 4462 2100 2362 0 0 

5. 2.0 GHZ DC 4937 0 4938 0 0 

6. 2.6 GHZ DC 4849 2433 2416 0 0 

7. 2.8 GHZ QC 6439 2342 1493 0 2604 

 

 

                 Fig 9: Sample-3- TimeBarrier-75 View-2 

 

Table 9 - Sample-3-Time Barrier-95-View-3 

Sr. 

No 

Processor 

Freq. Speed 

Overall 

Load 

on 

multi-

core 

Load 

on 

Core 

1 

Load 

on 

Core 

2 

Load 

on 

Core   

3 

Load 

on 

Core   

4 

1. 850 MHZ 

DC 

6222 4287 1935 0 0 

2. 1 GHZ DC 5628 2280 3348 0 0 

3. 1.3 GHZ DC 8230 5345 2885 0 0 

4. 1.7 GHZ TC 11108 3588 6488 1032 0 

5. 2.0 GHZ DC 13687 5385 8303 0 0 

6. 2.6 GHZ DC 17487 10277 7210 0 0 

7. 2.8 GHZ QC 19733 4985 7606 1959 5183 

 
 

 

                     Fig 10: Sample-3- TimeBarrier-95 View-3 

 

10. CONCLUSION AND FUTUREWORK 
Conclusion behind this implementation is to balance job 

distribution in time sharing environment where jobs are 

encountered frequently and no. of processors are available to 

handle their processing workload. The results demonstrate 

that the distribution results are stable upto very high extents 

nearly 85 to 95 percent. As the graphs shows the each core 

processors will carrier workload according to their cycle 

speed and job distribution will be in steadiness state. The 

processor having lower frequency will no be over burdened or 

processor with high frequency speed will not be possessed 

with less workload. So overall distribution will be controlled 

with consistency. Three different running sampling views are 

illustrated to show the effects. Future version of this research 

may consider the further hetro-cores, in which each processor 

may have different frequency cores. Such architectures are 

one level above to these because underlying logical aspects of 

load balancing is increased. Firstly the load is balanced over 

multi-core MIMD and then each core processor will manage 

load over their underlying cores by estimating their current 

load and frequency speed. Simulated implementation will 

carry great amount of synchronization efforts among 

processor cores. Load is balanced in two perspectives, either 

firstly distributes in static fashion and then manages or either 

during distribution the load mechanisms must be considered 

along with distribution mechanism, the process is on going, 

periodically estimates the load and distributes, load analyzers 

and scheduler work cooperatively to balance the system 

steady state.  
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Fig 11: Simulated View 

 

        

      Fig 12: Processor Status log Table (Dummy Sample) 
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