
International Journal of Computer Applications (0975 – 8887)

Volume 77– No.1, September 2013

11

Measuring Processor Frequency for Load Stability in

Multi-Core MIMD Architecture

Hari Nandan
M.Tech(IT)

 GNDEC, Ludhiana

Amanpreet Singh Brar
Associate Prof. & Head

GNDEC, Ludhiana

Ankit Arora
Assistant Professor.

LLRIET, Moga

ABSTRACT

Parallelism, a massive achievement in the field of processor

architecture leading towards increased speed up by

incorporating data as well as computation intensive work.

Parallel architectural components interconnected with major

consideration as communication among coupled hardware in

order to stabilize workload distribution and management.

Workload distribution with load stability fundamentally a

tricky aspect of parallel distribution. Static policies covers

load factors which are pre-determined before actually

distribution takes place. Dynamic load stability and

distribution periodically measures the load for each and every

processor in heterogenic parallel processor systems..

Development of heterogenic multiprocessor machines with

dynamic load stability matrices or measurements incorporates

vast amount of efforts and covers varied amount of

configuration factors on the behalf of the underlying

communication architecture. So much of the processor’s

efforts may lose for load stabilization, which may be

controlled by improved dynamic load stability techniques and

theories. In this research, the major aspect of development is

to measure processor efficiency by analyzing frequency speed

along with current processor load, only then the distribution

takes place. Measuring cycle speed (i.e. no. of cycle per

second elapsed) in terms of Hz, Mhz, Ghz is one of the

measurement metric to analyze the processor efficiency.

Further the research covers MIMD based core processor

simulation version integrate frequency based distribution for

load steadiness and control. Although, load consistency will

not be completely managed with in any type of system. Load

steadiness and uniformity will only be controlled up to some

extent.

General Terms

Dynamic Job scheduling, Load Balancing and consistency,

Processor Efficiency, Multi-Core MIMD Systems, Cycle

Speed.

Keywords

Heterogenic Multi-Core Processor Simulation, Load

steadiness, Workload Distribution, Time Sharing

Environment, Frequency Cycle Speed Measurements.

1. INTRODUCTION
Experimental research generally covers homogeneous

processor interconnection structures, this is because the

underlying platforms used for test scenarios provides such

types of environment. Homogeneous structures generally

covers redundant logic and parametric values which are

common and fixed for each and every hardware linked.

Simulation behind Heterogenic processor designs requires

great deal of implementation work if structure covers

scheduling as well as load balancing and other dynamic

constraints. One of the major bottlenecks among parallel

execution is job scheduling which mostly covers time sharing

and space sharing aspects of distribution [2][9]. Scheduling at

operating system level covers global scheduling at upper

level, which manages jobs that are firstly arranged in disk

queue. At lower level processors local scheduling exists

manages their own local ready queue management. Static

aspects of scheduling cover factors such as capacity of

memory buffers, no. of jobs scheduled, their arrivals etc.

Dynamic scheduling on the other hand covers processor

frequency speed, their periodic workload management and

final job distribution after workload characterization. Further

the research towards this field covers dynamic factor of

workload analysis by estimating processor efficiency in terms

of frequency measurement. Simulated version is developed to

analyze the performance of heterogenic multi-core processors

incorporating dual core and tri/quad core structures. Jobs are

distributed among processors by estimating their cycle speed

in terms of seconds by comparing their existing load and

current incoming job workload. Job workload is considered as

burst cycles arranged via random distribution mechanism in

the incoming batch queue. Simulated log will be generated

containing workload estimation of each and every processor

core including overall workload estimation. Finally, the

graphical results are produced to describe load stability and

steadiness growth over different time barriers. Although

different samples have been taken in analysis process which

exhibit up to vast amount of extent the load will be balanced,

distribution consistency will only be controlled, not

completely fully balanced. Idea behind this research

implementation is to understand the working of multi-core

heterogenic architectures which are not generally available in

today parallel machines Experimentation is possible only in

simulation environment virtually designed to produce effects

which may or may not be close to real results depending upon

the logical configuration implementation and methodologies

used.

2. LITERATURE REVIEW
Literature behind multi-core architectures has been enhanced

day to day because of performance of multi-core processors is

much more than single core processor versions. Mohesh

Lokhande in his paper entitled “Real-Time Scheduling for

Parallel Task Models on Multi-Core Processors-A Critical

review” 2012 describes multi-core performance analysis by

incorporating real time scheduling methods. Other research

includes “Dynamic Load Balancing of Parallel Computational

Iterative Routines on Platforms with Memory Heterogeneity “

2010 by David Clarke demonstrates Traditional load

balancing algorithms for data-intensive iterative routines can

successfully load balance relatively small problems. Adaptive

asynchronous applications are described by Kevin Barker in

his research “A Load Balancing Framework for Adaptive and

Asynchronous Applications” 2004 covers a design of flexible

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.1, September 2013

12

load balancing framework and run times software system for

supporting the development of adaptive applications on

distributed-memory parallel computers. The runtime system

support a global namespace, transparent object migration,

automatic message forwarding and routing, and automatic

load balancing. Research towards distributed job processing

with dynamic load balancing has been also described by P.

Srinivasa Rao in a paper “Dynamic Load Balancing With

Central Monitoring of Distributed Job Processing System”

2013, the detail covers Dynamic load balancing with a

centralized monitoring capability. The purpose of using a

centralized monitoring feature was based on the idea that the

computation in a environment may be distributed, but the

status of each task or job must be available at a central

location for monitoring and better scheduling. This also

allows better management of the jobs. The framework also

addresses the inherent need for uniform load distribution by

allowing the dispatcher to check against the status of the

processors before a job is dispatched for processing.

3. OBJECTIVE
Objective is to simulate heterogenic Multi-Core processor

architectures by measuring processor efficiency in terms of

processor frequency speed along with present processor load

and incoming workload distribution. The idea covers dynamic

aspect for load steadiness and constancy during job

scheduling in heterogenic environment. Each processors 1-

cycle time will be calculated and remaining cycles still to be

processed will be measured along with new job workload

cycles. The processor which consumes minimum amount of

time will undertakes that particular job and in this way

distribution takes place.

4. WORKLOAD CHARACTERIZATION
Workload selection for simulation implementation is based

upon random distribution. Front end long term queue will be

build to carry virtual job description, which further covers

process id, their time in terms of burst cycles requires. Such

burst cycles are actually the no. of CPU cycles required to

process by each job. Such data is arranged automatically

during simulation execution. Input data covers such types of

aspects, resultant output data will carry workload detail on

processor cores described in terms of status log of the

processors. The status log exhibits individual load of each

processor core and finally the overall load of the processor, on

basis of which overall workload distribution of job scheduling

takes place. Other detail includes no. of jobs processed by

each core, their pending workload status. The log will be

maintained periodically behind database as well. This is

required at different time barriers because collection of

simulation results at differential time samples will actually

justify the results. Below is the dummy sample of status log

grid demonstrated in the fig-12. First attribute represents time

barrier basis on which the periodic simulation results will be

measured. Processor frequency describes the type of processor

speed. Other parametric values describe the varying load of

each of the processor core. The results collected after

executing simulation no. of times and describes that the load

steadiness is maintained up to very large extent, although not

completely fully controlled but above 85% is controlled and

consistent.

Load estimator estimates the present processor workload and

sends this detail to the load analyzer, which in turn receives

the current job workload in terms of cycles required from the

load distributor, the job which ready for current distribution

and finally analyzes the compete load of each processor along

with their frequency cycle speed and finds the processor

which overtake the job execution quickly. In this way, the

distribution takes place. Below is the metric used for load

finding processor index which quickly performs the job

execution after cycle speed measurements.

5. INTERCONNECTION STRUCTURE
Interconnection structure covers seven virtual processor multi-

threaded designed to incorporate parallel behavior. Out of

these seven one is tri-core and another is quad core

configured, remaining five are of dual core. Fig-1 describes

internal structure of workload distribution over core

processors along with cache memories and front side disk

queue. Several logical component modules exists for final

implementation such as load estimator, which periodically

measures the load of each processor and a load distributor

similarly to load estimator, but whose task is to distribute jobs

after analyzing processor present workload. Load distributor

is actually the master scheduler cooperatively worked along

with load estimator and balances the load.

 Jobs Workload

 Sends job workload currently

 Ready for distribution

 Accepts incoming job and present

 Processor load from load estimator

 and finally finds the processor index

 Which quickly completes the job?

 Estimates the present processor load

 and transfers to load analyzer

 Front side

 L-2 Cache

 L-1 Cache

 CPU cores

Fig 1: Multi-Core Interconnection Structure

6. EFFICIENCY ESTIMATION
Cycle based scheduling requires the calculation of processor’s

cycle speed in terms of no. of cycles per second. Fastest

processors may pass many no. of cycles in a second as

compare to low speed processors [2]. This approach basically

computes the no. of cycles elapsed by processor in one second

and then measures the amount of time required to compute

current job cycles along with the present workload cycles. The

load analyzer firstly perform the summation of pending jobs

workload cycles from each processor’s ready queue along

with the newly arrived job, and then compare it with the

Load

Estimator

Load

Analyzer

Load

Distributor

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.1, September 2013

13

processor cycle speed/sec. Processor having smallest no. of

timing requirements for the overall workload will take care of

newly arrived job [2]. This will perform the balanced load

assignment. The load analyzer finds the processor index as –

For each pth processor where p=1 to n

Do

PTotCycleT[p]= (PEloadp + CjobWcycle)*TReqCOneCyclep)

End For

PIndex=Min(PTotCycle)

Allocate(Current_Job,PIndex)

7. SIMULATED VIEW
Simulated view described below is implemented via visual

basic 6.0 programming. The structure represents

interconnection among seven multi-core processors along

with their workload status details. The underlying logical

scenario covers multi-threaded environment along with

synchronized communication flow. Each processor having

different frequency speed as described in the research. Jobs

come under level-2 processor caches described as front end

memory bus. Internally the processor manages their cores via

level-1 caches buses. The workload is distributed after

measurement of processors present workload and cycle speed.

Simulator also shows workload of each of the processor core

along with overall workload on the basis of which the

illustrations have been described. Status logs are also

maintained in the database table at different time barriers for

analysis. Fig-11 depicts the simulated running view of multi-

core processors.

8. MULTI-THREADED ENVIRONMENT
Parallel experimental setup containing simulation structures

virtually designed generally covers implementation via

multithreading programming, where multiple threads of

execution covers each dimension of simulation integral

interconnection. In reality, such threads actually executes on a

single system but exhibits like they are working as real

parallel system covering many interconnected processors

cooperatively executes various tasks . Although these threads

can be mapped over to actual parallel system, only the logical

ability will be distributed among processors. Multi-threading

in general requires some sort of synchronization aspects when

common shared environment is involved. Experimental setup

also covers cluster based parallel execution where no. of

machines in a network are incorporated to behave like a

parallel system. Such simulated threads can also be mapped to

these cluster based architecture with partial modification.

9. RESULTS AND DISCUSSIONS
Results illustrated below are captured by executing simulation

at different distribution samples, where each sample carries

different scheduling workload. The research results shows that

great amount of efforts is performed at underlying architecture

during workload distribution. Load stability and steadiness is

controlled at greater extent above to the 85%. As in the

illustrations the processor having low frequency rate will

processed load according to that as compare to fastest

processor with greater frequency speed. Overall load will be

balanced. This dynamic approach has the advantage over

static scheduling polices. Following are the resultants tables

and graphs captured-

Table 1 - Sample-1-Time Barrier-20-View-1

Sr.

No

Processor

Freq. Speed

Overall

Load

on

multi-

core

Load

on

Core

1

Load

on

Core

2

Load

on

Core

3

Load

on

Core

4

1. 850 MHZ DC 3425 1315 2110 0 0

2. 1 GHZ DC 3802 2444 1358 0 0

3. 1.3 GHZ DC 4245 2234 2011 0 0

4. 1.7 GHZ TC 6884 1245 3196 2443 0

5. 2.0 GHZ DC 6433 2526 3907 0 0

6. 2.6 GHZ DC 8870 5644 3226 0 0

7. 2.8 GHZ QC 10285 1548 1367 3727 3643

 Fig 2: Sample-1- TimeBarrier-20 View-1

Table 2 - Sample-1-Time Barrier-45-View-2

Sr.

No

Processor

Freq. Speed

Overall

Load

on

multi-

core

Load

on

Core

1

Load

on

Core

2

Load

on

Core

3

Load

on

Core

4

1. 850 MHZ

DC
2555 1228 1327 0 0

2. 1 GHZ DC 3311 2230 1081 0 0

3. 1.3 GHZ DC 3826 2167 1659 0 0

4. 1.7 GHZ TC 9014 4440 1076 3498 0

5. 2.0 GHZ DC 12208 5955 6253 0 0

6. 2.6 GHZ DC 12818 6546 6272 0 0

7. 2.8 GHZ QC 14137 4353 3591 3487 2706

 Fig 3: Sample-1- TimeBarrier-45 View-2

Processor Load Status-Time Barrier-20

0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7

Processor No.
O

v
er

a
ll

 W
o

rk
lo

a
d

C
y

cl
e

Processor Load Status-Time Barrier-45

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7

Processor No.

O
v

er
a

ll
 W

o
rk

L
o

a
d

 c
y

cl
e

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.1, September 2013

14

Table 3 - Sample-1-Time Barrier-65-View-3

Table 5 - Sample-2-Time Barrier-20-View-1

Sr.

No

Processor

Freq. Speed

Overall

Load

on

multi-

core

Load

on

Core

1

Load

on

Core

2

Load

on

Core

3

Load

on

Core

4

1. 850 MHZ DC 3221 3221 0 0 0

2. 1 GHZ DC 4164 1691 2473 0 0

3. 1.3 GHZ DC 4057 1826 2231 0 0

4. 1.7 GHZ TC 8692 3345 3572 1775 0

5. 2.0 GHZ DC 11818 3654 8164 0 0

6. 2.6 GHZ DC 13324 9502 3822 0 0

7. 2.8 GHZ QC 13650 5898 2410 3167 2175

 Fig 4: Sample-1- TimeBarrier-65 View-3

Table 4 - Sample-2-Time Barrier-40-View-2

Sr.

No

Processor

Freq. Speed

Overall

Load

on

multi-

core

Load

on

Core

1

Load

on

Core

2

Load

on

Core

3

Load

on

Core

4

1. 850 MHZ
DC

3590 1939 1651 0 0

2. 1 GHZ DC 3062 3062 0 0 0

3. 1.3 GHZ DC 4761 1039 3722 0 0

4. 1.7 GHZ TC 6679 1995 2170 2514 0

5. 2.0 GHZ DC 8818 6665 2153 0 0

6. 2.6 GHZ DC 12992 8764 4229 0 0

7. 2.8 GHZ QC 14735 2831 7167 3438 1299

Fig 5: Sample-2- TimeBarrier-40 View-2

 Fig 6: Sample-2- TimeBarrier-20 View-1

Table 6 - Sample-2-Time Barrier-80-View-3

Sr.

No

Processor

Freq. Speed

Overall

Load

on

multi-

core

Load

on

Core

1

Load

on

Core

2

Load

on

Core

3

Load

on

Core

4

1. 850 MHZ

DC
2450 1121 1329 0 0

2. 1 GHZ DC 1511 1511 0 0 0

3. 1.3 GHZ DC 3000 0 3000 0 0

4. 1.7 GHZ TC 4277 1311 1428 1538 0

5. 2.0 GHZ DC 6413 2297 4116 0 0

6. 2.6 GHZ DC 7671 4476 3196 0 0

7. 2.8 GHZ QC 8409 2895 1023 1539 1482

Fig 7: Sample-2- TimeBarrier-80 View-3

Processor Load Status-Time Barrier-65

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7

Processor No.

O
v

e
r
a

ll
 w

o
r
k

lo
a

d
 c

y
c
le

s

Processor Load Status-Time Barrier-40

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 6 7

Processor No.

O
v

e
r
a

ll
 W

o
r
k

L
o

a
d

C
y

c
le

Processor Load Status-Time Barrier-20

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7

Processor No.

O
v

e
r
a

ll
 w

o
r
k

lo
a

d

c
y

c
le

s

Processor Load Status-Time Barrier-80

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7

Processor No.

O
v

e
r
a

ll
 W

o
r
k

lo
a

d

C
y

c
le

s

Sr.

No

Processor

Freq. Speed

Overall

Load

on

multi-

core

Load

on

Core

1

Load

on

Core

2

Load

on

Core

3

Load

on

Core

4

1. 850 MHZ DC 2119 2119 0 0 0

2. 1 GHZ DC 3593 1767 1826 0 0

3. 1.3 GHZ DC 4557 2126 2431 0 0

4. 1.7 GHZ TC 6180 3149 3031 0 0

5. 2.0 GHZ DC 7745 6391 1354 0 0

6. 2.6 GHZ DC 12820 7497 5323 0 0

7. 2.8 GHZ QC 12026 3683 2060 3064 3219

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.1, September 2013

15

Table 7 - Sample-3-Time Barrier-35-View-1

Sr.

No

Processor

Freq. Speed

Overall

Load

on

multi-

core

Load

on

Core

1

Load

on

Core

2

Load

on

Core

3

Load

on

Core

4

1. 850 MHZ

DC
2931 2931 0 0 0

2. 1 GHZ DC 3484 1152 2332 0 0

3. 1.3 GHZ DC 3523 3523 0 0 0

4. 1.7 GHZ TC 4901 2837 0 2064 0

5. 2.0 GHZ DC 5843 2088 3756 0 0

6. 2.6 GHZ DC 9013 2757 6256 0 0

7. 2.8 GHZ QC 8705 3061 1535 1983 2126

 Fig 8: Sample-3- TimeBarrier-35 View-1

Table 8 - Sample-3-Time Barrier-75-View-2

Sr.

No

Processor

Freq. Speed

Overall

Load

on

multi-

core

Load

on Core

1

Loa

d on

Cor

e 2

Load

on

Core

3

Load

on

Core

4

1. 850 MHZ

DC
1416 1416 0 0 0

2. 1 GHZ DC 2106 1 2105 0 0

3. 1.3 GHZ DC 2932 2932 0 0 0

4. 1.7 GHZ TC 4462 2100 2362 0 0

5. 2.0 GHZ DC 4937 0 4938 0 0

6. 2.6 GHZ DC 4849 2433 2416 0 0

7. 2.8 GHZ QC 6439 2342 1493 0 2604

 Fig 9: Sample-3- TimeBarrier-75 View-2

Table 9 - Sample-3-Time Barrier-95-View-3

Sr.

No

Processor

Freq. Speed

Overall

Load

on

multi-

core

Load

on

Core

1

Load

on

Core

2

Load

on

Core

3

Load

on

Core

4

1. 850 MHZ

DC

6222 4287 1935 0 0

2. 1 GHZ DC 5628 2280 3348 0 0

3. 1.3 GHZ DC 8230 5345 2885 0 0

4. 1.7 GHZ TC 11108 3588 6488 1032 0

5. 2.0 GHZ DC 13687 5385 8303 0 0

6. 2.6 GHZ DC 17487 10277 7210 0 0

7. 2.8 GHZ QC 19733 4985 7606 1959 5183

 Fig 10: Sample-3- TimeBarrier-95 View-3

10. CONCLUSION AND FUTUREWORK
Conclusion behind this implementation is to balance job

distribution in time sharing environment where jobs are

encountered frequently and no. of processors are available to

handle their processing workload. The results demonstrate

that the distribution results are stable upto very high extents

nearly 85 to 95 percent. As the graphs shows the each core

processors will carrier workload according to their cycle

speed and job distribution will be in steadiness state. The

processor having lower frequency will no be over burdened or

processor with high frequency speed will not be possessed

with less workload. So overall distribution will be controlled

with consistency. Three different running sampling views are

illustrated to show the effects. Future version of this research

may consider the further hetro-cores, in which each processor

may have different frequency cores. Such architectures are

one level above to these because underlying logical aspects of

load balancing is increased. Firstly the load is balanced over

multi-core MIMD and then each core processor will manage

load over their underlying cores by estimating their current

load and frequency speed. Simulated implementation will

carry great amount of synchronization efforts among

processor cores. Load is balanced in two perspectives, either

firstly distributes in static fashion and then manages or either

during distribution the load mechanisms must be considered

along with distribution mechanism, the process is on going,

periodically estimates the load and distributes, load analyzers

and scheduler work cooperatively to balance the system

steady state.

Processor Load Status-Time Barrier-35

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7

Processor No.

O
v

e
r
a

ll
 W

o
r
k

L
o

a
d

C
y

c
le

Processor Load Status-Time Barrier-75

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7

Processor No.

O
v

e
r
a

ll
 W

o
r
k

L
o

a
d

C
y

c
le

Processor Load Status-Time Barrier-95

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7

Processor No.

O
v

e
r
a

ll
 W

o
r
k

L
o

a
d

C
y

c
le

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.1, September 2013

16

Fig 11: Simulated View

 Fig 12: Processor Status log Table (Dummy Sample)

International Journal of Computer Applications (0975 – 8887)

Volume 77– No.1, September 2013

17

11. REFERENCES
[1] Srinivasa Rao, P. and Govardhan, 2013 A. Dynamic

Load Balancing With Central Monitoring of Distributed

Job Processing System. Foundation of Computer Science

New York.

[2] Arora, S., Arora, A. 2013. Scheduling simulations: An

experimental approach to time-sharing multiprocessor

scheduling schemes. Foundation of Computer Science

New York

[3] Lokhande, M., Atique, M., 2012. Real-Time Scheduling

for Parallel Task Models on Multi-Core Processors-A

Critical review”. .

[4] Hager, G. and Wellein, G. 2012 Ingredients for good

parallel performance multi-core based systems spring

sim, Alexander university Orlando USA

[5] Marowka, A. J. 2011 Back to thin-core massively

parallel processors. Bar-llan University, Israel. IEEE

computer society.

[6] Varbanescu, A. 2010. On the effective parallel

programming on multi-core processors. Universitatea

POLITEHNICA Bucuresti Romania

[7] Jurczuk, K. Kretowski, M. 2010 Load balancing in

parallel implementation of vascular network modeling.

University of Rennes, France.

[8] Chhabra, A. Singh, G. 2009. Simulated Performance

Analysis of Multiprocessor Dynamic Space-Sharing

Scheduling policy.

[9] Jaques, M. and Couturier, R. 2005 IEEE, Sylvain

Contassot-Vivier, Member, Dynamic Load Balancing

and Efficient Load Estimators for Asynchronous

Iterative Algorithms

[10] Barker, K. Chernikov, A. 2004 A Load Balancing

Framework for Adaptive and Asynchronous

Applications. IEEE Transactions on parallel and

distributed computing.

[11] Jacques, M. and Contassot, S. 2003. Coupling Dynamic

Load Balancing with Asynchronism in Iterative

Algorithms on the Computational Grid. IEEE computer

society.

[12] Marc, H. Lemair, W.1993. Strategies for load balancing

for highly parallel computers IEEE transactions on

parallel and distributed systems.

[13] Cybenko, G. 1989. Dynamic load balancing for

distributed memory multi-processor Department of

Computer Science, Tufts University, Medford,

Massachusetts.

IJCATM : www.ijcaonline.org

