
International Journal of Computer Applications (0975 – 8887)

Volume 76– No.7, August 2013

42

Simulation of an Optimum Multilevel Dynamic Round

Robin Scheduling Algorithm

Neetu Goel
Research Scholar

Teerthanker Mahaveer University,
Moradabad, India

 R.B. Garg, Ph.D
Professor

Tecnia Institute of Advanced Studies,
Rohini, Delhi

ABSTRACT

CPU scheduling has valiant effect on resource utilization as

well as overall quality of the system. Round Robin algorithm

performs optimally in timeshared systems, but it performs

more number of context switches, larger waiting time and

larger response time. The devised tool “OMDRRS” was

utilized to simulate the four algorithms (FCFS, SJF, ROUND

ROBIN & Proposed Dynamic Round Robin Algorithm)

utilizing either manual entered process with burst time as well

as system generated processes with randomly generated burst

time. In order to simulate the behavior of various CPU

scheduling algorithms and to improve Round Robin

scheduling algorithm using dynamic time slice concept, in

this paper we produce the implementation of new CPU

scheduling algorithm called An Optimum Multilevel Dynamic

Round Robin Scheduling (OMDRRS), which calculates

intelligent time slice and warps after every round of

execution. The results display the robustness of this software,

especially for academic, research and experimental use, as

well as proving the desirability and efficiency of the

probabilistic algorithm over the other existing techniques and

it is observed that this OMDRRS projects good performance

as compared to the other existing CPU scheduling algorithms.

General Terms

Scheduling, Round Robin Scheduling, Simulator

Keywords

Operating System, FCFS, SJF, Dynamic Time Slice, Context

Switch, Waiting time, Turnaround time

1. INTRODUCTION

The scheduling simulator illustrates the behavior of

scheduling algorithms against a simulated mix of process

loads. It is a framework that lets you to swiftly and easily

devise and collect metrics for custom CPU scheduling

strategies. There are a number of such algorithms with each

having its respective advantages and drawbacks. In order to

calculate the comparative and competitive advantages and

disadvantages of these algorithms, the algorithm requires to

be simulated and their performance indices studied and

utilized for better capturing of operating system principles.

Some of these algorithms would reflect promising results in

terms of ease of implementation but perform poorly in terms

of turnaround time, waiting time, context switch and vice

versa. In Round Robin (RR) every process has equal priority

and is provided a time quantum or time slice after which the

process is preempted. Although Round Robin displays

improved response time and utilizes shared resources

effectively, its limitations are larger waiting time, undesirable

overhead and larger turnaround time for processes with

inconstant CPU bursts due to use of static time quantum. This

motivates us to implement Round Robin algorithm with

dynamic burst time concept.

To properly illustrate the functionality of various CPU

scheduling algorithms and improvement of Round Robin

scheduling using dynamic time slice concept called “Dynamic

Round Robin” was depicted using VB6.0 and the results of

all algorithms were collected and analyzed with the help of

Turnaround time, waiting time, Context Switch & Gantt

Chart.

1.1 Organization of the Paper

This paper is sliced into five sections. Section 1 projects a

brief introduction on the various aspects of the scheduling

algorithms, the approach to the current paper and the

motivational factors leading to this improvement. Section 2

reflects an overview of some of the simulators that are

available and their respective drawbacks. A brief overview,

characteristics and flaws of some of the existing process

scheduling algorithms are discussed in Section 3. Section 4

describes the datasets, design issues, mode of operation, and

the details of implementation of the simulator on the

algorithms. Results also show the comparative performance of

the four algorithms in this section. Conclusion is presented in

Section 5 followed up by the references used.

2. EXISTING SIMULATORS

Process Scheduling Simulator[5] is a java-based web

application that implements FCFS, SJF, Priority SJF and

Round Robin. It requires a high-speed internet connection to

load the applet, and also requires that Java software to be

either installed or updated. Each input in the system is

visualized by its arrival time, CPU burst and I/O bursts. It

claims to be very efficient but a sample run divulged that it is

very slow. Another simulator “CPU Scheduling Simulator

(CPUSS)” [6], it is a framework that permits users to swiftly

and easily devise and collects metrics for custom CPU

scheduling strategies including FCFS, Round Robin, SJF,

Priority First, and SJF with Priority Elevation rule. The long

list of the capabilities it can possess proves it too complex and

complicated for simple academic demonstrations and utilize

by non-computer geeks such as greenhorn students that are

just taking their first course in Computer Science. Above all,

it flows in the windows-DOS environment which is

characterized by no lucrative user interface and hence, lacks

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.7, August 2013

43

user-friendliness. A project that is very close to our work is a

simulator presented by (Padberg, 2003)[7]. However, this

simulator was devised for a software project scheduling rather

than CPU process scheduling, hence impertinent for our

consideration in this study. MOSS[8], Modern Operating

Systems Simulators, it is a bible of Java-based simulation

programs which illustrate key operating system concepts

portrayed in a textbook by Tanenbaum (2001) for university

students utilizing the text. This does not suit in to independent

software that can be utilized freely without any such

constraint. The best simulator we could find, so far, during

our survey of previous related work was presented by

(Cardella, 2002) [9]. It was developed in Visual Basic 6.0 and

implemented the Round Robin as a non-preemptive

scheduling algorithm. It uses Average Completion Time

(ACT) and Average Turn-around Times (ATT) as the criteria

for performance evaluation. However, it is not as robust as

ours in the sense that we implemented a Dynamic Round

Robin algorithm in addition to FCFS, SJF and ROUND

ROBIN algorithms. Our major objective is to simulate the

behavior of various CPU scheduling algorithms and to

improve Round Robin scheduling algorithm using dynamic

time slice concept, called Dynamic Round Robin, which

calculates intelligent time slice and changes after every round

of execution.

3. CONVENTIONAL PROCESS

SCHEDULING ALGORITHMS

3.1 First Come First Serve

The ultimate intuitive and down to earth technique is to permit

the first process submitted to flow first. This technique is

called as first-come, first-served (FCFS) scheduling. In effect,

processes are inserted into the tail of a queue when they are

submitted. The next process is picked from the head of the

queue when each finishes running.

Characteristics

 The drawback of prioritization does permit every process

to eventually fulfill, hence no starvation.

 Turnaround time, waiting time and response time is at

the acme.

 One, process with longest burst time can monopolize

CPU, even if other process burst time is too short. Hence

throughput is low [12] .

3.2 Non preempted Shortest Job First

The process is sanctioned to the CPU which has minimum

burst time. A scheduler arranges the processes with the

minimum burst time in head of the queue and longest burst

time in tail of the queue. This strives advanced knowledge or

estimations about the time required for a process to complete

[1]. This algorithm is devised for maximum throughput in most

scenarios.

Characteristics

 The real difficulty with the SJF algorithm is, to know the

length of the next CPU request.

 SJF minimizes the average waiting time [12] because it

services small processes before it services large ones.

While it minimizes average wait time, it may penalize

processes with high service time requests.

3.3 Round Robin

The Round Robin (RR) scheduling algorithm allocates a small

unit of time, called time slice or quantum time. The ready

processes are kept in a queue. The scheduler goes in the order

of this queue, allocating the CPU to each process for a time

interval of assigned quantum. New processes are added to the

tail of the queue [13].

Characteristics

 Setting the quantum too short originate too many context

switches and lower the CPU efficiency.

 Setting the quantum too long may cause poor response

time and fairly nearby the FCFS.

 Because of high waiting times, deadlines are rarely met

in a pure RR system.

3.4 Priority Scheduling

The operating system provides a fixed priority rank to each

process. Lower priority processes get interrupted by incoming

higher priority processes.

Characteristics

 Starvation can happen to the low priority process.

 The waiting time gradually increases for the equal

priority processes [14].

 Higher priority processes have smaller waiting time and

response time.

4. DESIGN, IMPLEMENTATION AND

DATA DESCRIPTION

4.1 Our Proposed Algorithm

In our algorithm, combines the fundamental principles of

various scheduling algorithms as well as the dynamically

Time Slice (DTS) concept based on priority, shortest CPU

burst time. Main steps are:

Step 1: Shuffle the processes in ascending order in the ready

queue such that the head of the ready queue contains the

lowest burst time.

Step 2: If one or more process has equal burst time then

{

Allocate the CPU to the processes according to First Come

basis.

}

Step 3: Assign the time quantum and apply for each process

say TQ=k.

Step 4: IF (burst time of the process < TQ)

 {

Allocate the CPU to that process till it terminates.

 }

 ELSE IF (Remaining burst time of the process <

TQ/F)

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.7, August 2013

44

 {

Allocate the CPU again to that process till it terminates.

 }

 ELSE

 {

(i) The process will occupy the CPU till

the time quantum and it is added to the ready queue in

ascending order for the next round of execution.

(ii) TQ= TQ * F

(iii) TQ= K

(iv) Goto Step 3

 }

4.2 Software Design

The simulator OMDRRS was designed and developed using

the Microsoft Visual Basic 6.0 Professional Edition’s

Integrated Developed Environment (IDE). The input data

were created either as Manual Process Entry with burst time

as well as Automatic Process Generator with randomly

generated burst time. In Automatic Process Generator system,

it fetches all the active processes with randomly generated

burst time while in the manual entered process user entered

the burst time as per their requirement. Based on the selected

input type: 1) Manual Process Entry 2) Automatic Process

Generator and the scheduling algorithm FCFS, SJF, Round

Robin and the Dynamic Round Robin algorithm were

computed and display the ATT(Average Turnaround Time),

AWT(Average Waiting Time), CS(Context Switch) and Gantt

Chart were automatically generated & displayed at runtime.

The result of each algorithm is also displayed on a window for

the user to view. The OMDRRS software was designed as a

simple, light-weight system for academic as well as the

research purpose for the simulation of the behavior of FCFS,

SJF, Round Robin and Dynamic Round Robin scheduling

algorithms. Quality is further strengthened with the fact that

the entire software does not exceed 4MB in size. The user

interfaces are simple, concise, unambiguous and easy to use

but replete with only the relevant information. The input of

burst time is re-useable for comparing with all other

algorithms. The innovative Dynamic algorithm is well

implemented and its mode of operation was clearly shown and

presented in the simulator.

4.3 Implementation

The software was implemented to simulate the procedure of

FCFS, SJF, Round Robin and Improving of Round Robin

scheduling algorithm. These algorithms were implemented in

order to establish a valid premise for effective comparison.

The simulator takes process IDs as integer, randomly

generated burst times and their respective positions in terms

of their order like in a virtual queue. For simplicity, the

simulator was built on three major assumptions:

 The scheduling policy of FCFS & SJF are non-

preemptive,

 The quantum time of Round Robin and Dynamic

Algorithm are generated randomly.

 All the Processes arrive at the same time.

The Automatic Process Generator simulator was run on

different datasets depending on how many applications were

activate in the existing system with randomly produce burst

time that have been positioned in queue for the process arrival

scenarios in the system. This was done to determine, as part of

the experiment, whether the location of a process in a queue

will affect the results of the entire simulation algorithm. The

simulation was run several times to ensure fairness to all

datasets and presented for each algorithm using Average

Turn-around Time, Average Waiting Time, Context Switch

and Gantt chart as the performance evaluation indices.

The Manual Process Entry simulator tool was run on

different datasets depending on user requirements that have

been positioned in queue for the process arrival scenarios in

the system. This was done to determine, as part of the

experiment, whether the location of a process in a queue will

affect the results of the all simulation algorithm. The

simulation was run several times to ensure fairness to all

datasets and presented for each algorithm using Average

Turn-around Time, Average Waiting Time, Context Switch

and Gantt chart as the performance evaluation indices.

4.4 Description of Data

(Table 1) & (Table 2) shows the datasets representing

processes that are identified by their IDs, with their randomly

generated burst times and the output of FCFS, SJF, RR,

Dynamic RR system generated Turn Around Time (TAT),

Waiting Time (WT) according to the Automatic Process

Generator & Manual Process Entry. The different

arrangement of the jobs was intended to significant the

different real-world scenario, jobs can take with different

estimated burst times on the waiting queue. The number of

processes can be extended to any length as desired. For

demonstration purpose, a maximum of 10 jobs in the

Automatic Process Generator (APG) & 5 jobs in the Manual

Process Entry (MPE) were taken and reported in this paper. It

was tested with 20 and 30 jobs during testing. However, the

maximum attainable number of jobs was not determined

because it totally depends on the Memory size.

Table 1: Assume ten processes arrived at time =0 with

randomly generated burst time and simulator generated

automatically TAT, WT as per scheduling policy

APG FCFS

SJF(Non

Preemptive) RR Dynamic RR

PID BT TAT WT TAT WT TAT WT TAT WT

P1 16 16 0 74 58 134 118 94 78

P2 13 29 16 43 30 106 93 73 60

P3 15 44 29 58 43 111 96 83 68

P4 10 54 44 18 8 70 60 58 48

P5 12 66 54 30 18 113 101 65 53

P6 22 88 66 96 74 156 134 141 119

P7 8 96 88 8 0 83 75 53 45

P8 24 120 96 120 96 160 136 160 136

P9 26 146 120 171 145 171 145 171 145

P10 25 171 146 145 120 170 145 165 140

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.7, August 2013

45

Table 2: Assume five processes arrived at time =0 with

user entered the burst time and simulator generated

automatically TAT, WT as per scheduling policy

MPE FCFS

SJF(Non

Preemptive) RR Dynamic RR

PID BT TAT WT TAT WT TAT WT TAT WT

P1 15 15 0 26 11 50 35 38 23

P2 20 35 15 46 26 64 44 52 32

P3 7 42 35 11 4 41 34 11 4

P4 30 72 42 76 46 76 46 76 46

P5 4 76 72 4 0 28 24 4 0

From the above comparisons, it is apparent that the dynamic

time quantum approach is more effective then the fixed time

quantum approach in terms of turnaround time, waiting time

and context switch.

4.5 Experimental Computing Environment

We conducted a simulation-based experimental study that

runs on a laboratory Personal Computer with the Service Park

3 update of Windows XP Professional Edition version 2002.

The processor is based on Intel(R) Core (TM)2 Duo CPU with

a speed of 2.93 GHz and a RAM size of 1.96 GB. Hence the

ATT, AWT, CS and Gantt chart used as criteria for

performance evaluation to validate the results. (Table 3)

portray the assessment between FCFS, SJF, Round Robin and

the proposed algorithm based on data given in the (Table 1).

(Table 4) depicts the assessment between FCFS, SJF, Round

Robin and the proposed algorithm based on (Table 2).

Table 3: Simulator generated automatically Average

Turnaround Time(ATT), Average Waiting Time(AWT),

Context Switch (CS)

SCH.

CRITERIA FCFS SJF

ROUND
ROBIN

ALGO

DYNAMIC

RR

CONTEXT

SWITCH 10 10 38 27

TURNAROUND

TIME 83 76.3 127.4 106.3

WAITING
TIME 65.9 59.2 110.3 89.2

Table 4: Simulator generated automatically Average

Turnaround Time(ATT). Average Waiting Time(AWT),

Context Switch (CS)

SCH. CRITERIA FCFS SJF

ROUND

ROBIN

ALGO

DYNAMIC

RR

CONTEXT

SWITCH 5 5 15 10

TURNAROUND

TIME 48 32.6 51.8 36.2

WAITING TIME 32.8 17.4 36.6 21

4.6 RESULTS AND DISCUSSIONS

This section depicts the graphically representation of

comparison of the proposed algorithm with the existing

algorithm based on the average turnaround time, average

waiting time and context switches. Results for the Automatic

Process Generator using 10 processes using four scheduling

algorithm as well as in the Manual Process Entry using 5

processes using four scheduling algorithm. (Fig. 1) shows the

bar graph of Automatic Process Generator based on (Table 3).

(Fig. 2) shows the bar graph of Manual Process Entry based

on (Table 4).

Fig. 1: Bar graph of Simulator generated automatically

Average Turnaround Time (ATT), Average Waiting

Time(AWT), Context Switch (CS) of ten processes

0

20

40

60

80

100

120

140

C
O

NTE
XT S

W
IT

C
H

TU
R
N
AR

O
U
N
D
 T

IM
E

W
A
IT

IN
G
 T

IM
E

FCFS

SJF

ROUND ROBIN

ALGO

DYNAMIC RR

Fig. 2: Bar graph of Simulator generated automatically

Average Turnaround Time (ATT), Average Waiting

Time(AWT), Context Switch (CS) of five processes

0

10

20

30

40

50

60

CONTEXT SWITCH TURNAROUND TIME WAITING TIME

FCFS

SJF

ROUND ROBIN ALGO

DYNAMIC RR

5. CONCLUSION

Simulator (OMDRRS) has been developed. OMDRRS has

presented a light-weight simulator which depicts First Come

First Serve, Shortest Job First, Round Robin and improvement

of Round Robin Scheduling. Simulator (OMDRRS) Software,

comparing the efficiency and performance in terms of

Average Turn-around Time, Average Waiting Time, Context

Switch and Gantt chart. Ready queue is maintained as a FIFO

queue to implement all the major algorithms. Processes are

selected from the head of the ready queue. A preempted

process is linked at the tail of the ready queue. Dynamic

Round Robin Algorithm has proven, on an average, to be very

fair to the process to be selected from the ready queue, and

quick in terms of execution time. Each process, having fair

chances, is scheduled by random sampling from among

waiting processes in the ready queue. It is analyzed that the

Dynamic Scheduling algorithm is superior as it has less

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.7, August 2013

46

waiting response time, usually less pre-emption and context

switching thereby reducing the overhead and saving of

memory space.

6. REFERENCES

[1] Silberschatz, Abraham and Galvin, P. and Gagne

G., Operating System Concepts (8th edition, India:

Wiley, 2012), 12-13

[2] F. Sabrina et al., “Processing resource scheduling in

programmable networks”, Computer communication

(2005):676-687

[3] Rakesh Kumar Yadav et. al., “An Improved Round

Robin Scheduling Algorithm for CPU scheduling”,

International Journal on Computer Science and

Engineering (2010): 1064-1066

[4] S. Suranauwarat, “A CPU Scheduling Algorithm

Simulator”, Proceedings. of the 37th ASEE/IEEE

Frontiers in Education Conference, Milwaukee,

Wisconsin, USA(2007) :19-24

[5] http://vip.cs.utsa.edu/classes/cs3733s2004/notes/ps/r

unps.html

[6] http://www.codeplex.com/cpuss

[7] F. Padberg, “A Software Process Scheduling

Simulator”, Proceedings. of the 25th IEEE International

Conference on Software Engineering (ICSE’03)

[8] http://www.ontko.com/moss

[9] D.A. Cardella, “A Simulator of Operating system

Job Scheduling”, Visual Basic 6. Available for download

http://www.freevbcode.com/ShowCode.asp?ID=4079,20

02

[10] S. H. Nazleeni et. al., “Time comparative simulator

for distributed process scheduling algorithms” World

Academy of Science, Engineering and

Technology(2006):84-89

[11] Anifowose F. A., “MySIM: A Light-Weight Tool for

the simulation of Probabilistic CPU Process Scheduling

Algorithm”, International Journal of Computer and

Electrical Engineering (2012)

[12] Abur Maria Mngohol et. al., “A Critical Simulation

of CPU Scheduling Algorithm using Exponential

Distribution”, IJCSI PUBLICATION(2011):201-206

[13] Sun Huajin et. al., “Design fast Round Robin

Scheduler in FPGA”, International Conference on

Communications, Circuits and Systems and West Sino

Expositions, IEEE (2002)

[14] Md. Mamunur Rashid and Md. Nasim Adhtar, “A

New Multilevel CPU Scheduling Algorithm”, Journals of

Applied Sciences (2009)

[15] Goel N., Garg R. B., “A Comparative Study of CPU

Scheduling Algorithms”, International Journal of

Graphics Image Processing (2012)

IJCATM : www.ijcaonline.org

http://vip.cs.utsa.edu/classes/cs3733s2004/notes/ps/runps.html
http://vip.cs.utsa.edu/classes/cs3733s2004/notes/ps/runps.html
http://www.codeplex.com/cpuss
http://www.ontko.com/moss
http://www.freevbcode.com/ShowCode.asp?ID=4079,2002
http://www.freevbcode.com/ShowCode.asp?ID=4079,2002
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8402
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8402

