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ABSTRACT 

Packet classification is one of the most important enabling 

technologies for next generation network services. Four of the 

main challenges in the packet classification are increase in 

size of the classifier, link speed, amount of multimedia traffic, 

and number of media-rich and bandwidth intensive internet 

applications. Due to this there is a need of memory efficient 

and high throughput packet classification schemes. 

In this paper a novel technique for fast parallel packet       

classification (FPPC) is proposed. A recent paper [14] showed 

how to construct a hierarchical 𝑇𝑟𝑒𝑒 − 𝑇𝑟𝑖𝑒𝜖  (𝑇𝑇𝜖)  search 

structure and a clustering algorithm that partitions a given 

classifier into a fixed number of clusters. This dramatically 

enhances memory efficiency and throughput. This idea is 

extended to address the more challenging problem of general 

packet classification. The hierarchical search results are 

passed on to the bloom filter for final classification. Also it is 

observed that in a large classifier many rules have very poor 

hit rate. If Top-𝑁 selection approach is used, without affecting 

minimum Quality of Service (QoS) requirements it is possible 

to reduce mean delay and increase the throughput. The     

simulation results shows that proposed scheme gives 22.5% 

rise in the    throughput and 5.62% decrease in mean delay 

with slight decrease in memory efficiency as compared to 

Hierarchical Hybrid Search Structure (HHSS) scheme. 
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Keywords 
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1. INTRODUCTION 
The process of mapping packets to different service classes or 

flows in an internet router is referred to as packet               

classification. Flow is defined as the collection of all the 

packets which obey a same predefined rule. Traditional    

routers do not provide service differentiation because they 

treat all traffic going to a particular Internet address in the 

same way. Packet classification is an enabling function for a 

variety of Internet applications including QoS, security, traffic 

monitoring, Virtual Private Networks (VPN) and multimedia 

communications. In order to classify a packet as belonging to 

a particular flow routers must perform a search over a set of 

filters or rules also known as classifier using multiple fields of 

the packet header as the search key. The multi-field or                

multi-dimensional packet classification becomes a critical 

operation in networking devices such as routers. In general, 

there have been two major threads of research addressing 

packet classification: algorithmic and architectural [1]. A few 

pioneering groups of researchers posed the  problem, provided  

complexity bounds, and   offered a  collection of algorithmic 

solutions [2], [3]. Subsequently, the design space has been 

vigorously explored by many offering new algorithms and 

improvements upon existing algorithms [4-7]. Given the  

inability of early algorithms to meet performance              

constraints imposed by high speed links, researchers in      

industry and academia devised architectural solutions to the 

problem. This thread of research produced the most widely 

used packet classification device technology, Ternary Content 

Addressable Memory (TCAM) [8], [9]. New architectural 

research in this area combines  intelligent algorithms and 

novel architectures to eliminate many of the unfavorable  

characteristics of current TCAMs. It is observed that the 

community appears to be converging on a combined         

algorithmic and architectural approach [10], [11].  

The growing complexity of the Internet is creating new    

applications, placing additional demands on the packet              

classification subsystem of routers and other packet handling 

devices.  Several protocols and techniques such as DiffServ or 

NSLP (Network Address Translation (NAT) / Firewall NSIS 

Signaling protocol) assumes that the information relevant to 

packet classification is contained in  five or less number of 

IPv4-fields namely source IP address (32 bits), destination IP 

address (32 bits),  source port number (16 bits), destination 

port number (16 bits), and the protocol (8 bits). 

1. 1 Need of Packet Classification 
Packet classification is very important in improving the    

performance of internet traffic.  

Technology innovations of network systems: Network      

Processor Unit (NPU) has emerged as a promising candidate 

for a networking system building block. NPU opens a new 

venture to explore advanced technologies such as multi-core 

network processors, thread-level parallelism to attack the 

performance bottleneck of classification. Also they provide us 

with unprecedented computing power, as well as highly   

integrated resources. Hence novel packet classification     

solutions must be well suited for the advanced hardware and   

software technologies to break the bottleneck, providing the 

availability of these innovative technologies to a vast majority 

of customers. NPU has potential to provide total solution for 

packet processing, including forwarding and classification 

[12], [13]. 

Ever-increasing complexity of network applications: The 

growth and diversification of the Internet imposes increasing 

demands on the performance and functionality of network 

infrastructure. Traditional packet classification is mainly  

employed by firewalls to screen unwanted traffics. With more 

and more network applications implemented in today‟s     

networking devices, packet classification is widely used for 

various kinds of applications, such as service-aware routing, 

intrusion prevention and traffic shaping. Thus, novel solutions 
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must be more intelligent to effectively handle multifarious 

types of rule sets without significant loss of performance [13]. 

1.2 Types of Packet Classification 
Packet classification approaches can be classified into four 

main groups; exhaustive search, decomposition, decision tree, 

and hierarchical-trie (H-trie) [14]. 

For any searching problem the most rudimentary solution is 

simply to search through all the entries. In exhaustive search, 

all the entries in a rule set are analyzed [15]. The two basic 

approaches in this group are linear search and TCAM based 

search. Linear search is performed by comparing the header of 

a packet with all the entries in a rule set sequentially. Linear 

search becomes a slow process for large rule sets. Hence it is 

popular for the final stage of a search when the set of possible 

matching rules has been reduced to a bounded constant.  

TCAM devices allow a parallel search over all rules in the 

classifiers. In this the header of a packet is compared with all 

the entries in parallel. TCAMs have several disadvantages 

such as high cost, storage inefficiency, high power            

consumption, and limited scalability to long input keys. The 

storage inefficiency occurs due to the need of conversion of 

ranges into prefixes. 

In decomposition based solutions, independent searches on 

each header field are performed, and then the results are   

combined. These approaches offer high throughput but require 

high amount of storage space in order to aggregate the results 

of single searches efficiently. The primary challenge for these 

approaches is how to efficiently aggregate the results of the 

single field searches.  

Most of the proposed packet classification algorithms and 

architectures are based on decision trees, which take the  

geometric view of the packet classification problem. HiCuts 

and its enhanced version HyperCuts are representatives of 

such algorithms. At each node of the decision tree, the search 

space is cut based on the information from one or more fields 

in the rule. HiCuts builds a decision tree using local          

optimization decisions at each node to choose the next      

dimension to test, and how many cuts to make in the chosen 

dimension. The HyperCuts algorithm allows cutting on     

multiple fields per step, resulting in a fatter and shorter     

decision tree. The common problem of these approaches is 

that it is difficult to support incremental updates.  

Hierarchical-trie (H-trie) is built using the source IP address 

(𝑆𝑎𝑑 ) and destination IP address (𝐷𝑎𝑑 ) prefixes. Initially, a 

𝑆𝑎𝑑  trie is constructed using all the 𝑆𝑎𝑑  prefixes. For each 

prefix node in 𝑆𝑎𝑑  trie, a 𝐷𝑎𝑑  trie is constructed using 𝐷𝑎𝑑  

prefix(es) associated with that 𝑆𝑎𝑑  prefix. Thus, the structure 

consists of a large 𝑆𝑎𝑑  trie and hierarchically connected    

multiple small 𝐷𝑎𝑑  tries. Search starts from the 𝑆𝑎𝑑  trie. If a 

prefix node of the 𝑆𝑎𝑑  trie is visited, then the corresponding 

𝐷𝑎𝑑  trie connected to that prefix node is traversed. Even 

though a match can be found at any node in the 𝐷𝑎𝑑  trie, 

search has to backtrack to the 𝑆𝑎𝑑  trie and continue the search 

to find other possible matches. The search terminates after 

each leaf node in the 𝑆𝑎𝑑  trie is visited. Set-pruning trie     

eliminates the backtracking by replicating the rules. Grid-of-

Tries (GoT) data structure for 2-field packet classification         

eliminates the backtracking by introducing switch pointers to 

some trie nodes and hence each rule is stored at only one 

node. Despite of good memory efficiency, extension of the 

GoT to multiple fields is not clear. 

1.3 Issues of Packet Classification 
Continual growth of network bandwidth is the very important 

issue of packet classification.  The explosion in demand for 

network bandwidth owes much to the growth in data traffic. 

Leading service providers report bandwidths doubling on their 

backbones about every six to nine months [13]. 

Power consumption is also another important issue of packet 

classification. As routers achieve aggregate throughputs of 

trillions of bits per second, power consumption becomes an 

increasingly critical concern. Both the power consumed by the 

router itself and the infrastructure to dissipate the tremendous 

heat generated by the router components significantly       

contribute to the operating costs. Given that each port of           

high-performance routers must contain route lookup and 

packet classification devices, the power consumed by search 

engines is becoming an increasingly important evaluation 

parameter [1], [15]. 

Speed and flexibility in specifications is also another issue in 

packet classification. In the general packet classification  

problem, packets are classified according to a set of packet 

filters, which define patterns that are matched against       

incoming packets. Typically, packet filters specify possible 

values of the source and destination address fields of the IP 

header, the protocol field (often including flags) and the 

source and destination port numbers (for TCP and UDP). The 

address fields are often specified as address prefixes, although 

arbitrary bit masks of the address fields are commonly      

allowed in packet filters and this feature is used in real filter 

sets, although relatively infrequently. Filters typically specify 

a range of port numbers for matching packets. Protocols can 

be either specified exactly or as a wildcard. Some systems 

allow protocol values to be specified by bit masks as well, 

although it‟s not clear how useful that feature is [1], [15]. 

The following sections are organized as follows: section 2 

gives literature review of packet classification; section 3  

identifies problem; the proposed algorithm FPPC is described 

in section 4 and evaluated in section 5 and concluded in   

section 6. 

2. LITERATURE REVIEW 
Yaxuan Qi et al., [13] have proposed a novel packet           

classification algorithm named HyperSplit. Compared to the  

well-known HiCuts and HSM algorithms, HyperSplit 

achieves superior performance in terms of classification 

speed, memory usage and preprocessing time. In this paper, 

they combined the advantages of existing algorithms:        

rule-based space decomposition and local-optimized          

recursion. This algorithm guarantees explicit worst-case    

classification speed and explores the data redundancy in rule 

sets to reduce memory usage. The data structure of HyperSplit 

is also carefully designed for efficient storage and fast access. 

The practicability of the proposed algorithm is manifested by 

two facts in their test: HyperSplit is the only algorithm that 

can successfully handle all the rule sets; HyperSplit is also the 

only algorithm that reaches more than 6 Gbps throughput on 

the Octeon3860 multi-core platform when tested with 64-byte 

Ethernet packets against 10K ACL rules. 

Oguzhan Erdem et al., [14] have proposed a high-throughput 

and memory-efficient SRAM-based linear pipelined         

architecture for packet classification. A clustering algorithm 

that partitions a given rule database into a fixed number of 

clusters to eliminate backtracking in the state-of-the-art     

hierarchical search structure. A special type of ternary trie 

data structure (𝑇𝜖) and a two-stage hierarchical search     
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structure that achieves substantial memory saving in hardware 

implementation are used. Their design achieves memory  

efficiency between 10.37 and 22.81 bytes of memory per rule, 

and sustains a high throughput of 418 million packets per 

second on a state-of-the-art FPGA device. 

Weirong Jiang et al., [15] have proposed Decision-tree-based, 

two-dimensional dual-pipeline architecture for multi-field 

packet classification. To fit the current largest rule set in the 

on-chip memory of the FPGA device, they propose several 

optimization techniques for the state of-the-art decision-tree-

based algorithm, so that the memory requirement is almost 

linear with the number of rules. Specialized logic is developed 

to support varying number of branches at each decision tree 

node. A tree-to-pipeline mapping scheme is carefully        

designed to maximize the memory utilization. Since their 

architecture is linear and memory based, on-the-fly update 

without disturbing the ongoing operations is feasible.  

Yadi Ma and Suman Banerjee, [16] have proposed a practical 

and efficient solution which introduces a smart pre-classifier 

to reduce power consumption of TCAMs for                      

multidimensional packet classification. They reduce the   

dimension of the problem through the pre-classifier which 

pre-classifies a packet on two header fields, source and     

destination IP addresses. Then they return to the higher    

dimension problem where only a small portion of a TCAM is 

activated and searched for a given packet. The smart          

pre-classifier is built in a way such that a given packet 

matches at most one entry in the pre-classifier, which make 

commodity TCAMs sufficient to implement the pre-classifier. 

Furthermore, each rule is stored only once in one of the 

TCAM blocks, which avoids rule replication. The presented 

solution uses commodity TCAMs and the proposed          

algorithms are easy to implement. Their scheme achieves a 

median power reduction of 91% and an average power      

reduction of 88% on real and synthetic classifiers              

respectively.  

Alan Kennedy et al., [17] have proposed low power           

architecture for a high speed packet classifier which could be 

used as an on-chip hardware accelerator for a network      

processor or as an external chip. This architecture uses an 

adaptive clocking unit to exploit the fluctuation in Internet 

traffic by reducing the clock frequency during times of low 

traffic and increasing the clock frequency at times of high 

traffic. In order to make the decision of frequency scaling, the 

fields of a packet header used for classification are extracted 

into a buffer upon its arrival and the queue length is           

monitored. The hardware accelerator implements a modified 

version of the HiCuts and HyperCuts packet classification 

algorithms. Instead of comparing a large number of rules  

simultaneously (as is the case with TCAM), the algorithms 

divide the hyperspace of the rule set heuristically into multiple 

groups so that each subset contains only a small number of 

rules that are suitable for linear search, reducing the          

unnecessary comparisons and thus the power consumption. 

The hardware accelerator utilizes the flexibility of a FPGA‟s 

block RAM by using SRAM with long word line to reduce the 

number of clock cycles needed to perform a linear search on 

the selected rules.  

3. PROBLEM IDENTIFICATION 
The approach which is proposed in [14] is based on          

Hierarchical search structure.  In this one Hierarchical 𝑇𝑇𝜖  

structure is used for packet classification. This approach   

eliminates the need for backtracking in hardware                   

implementation and achieves substantial memory saving. The 

following drawbacks are observed in this approach: 

 Low throughput with algorithmic implementation. 

 Mean delay per packet from source to destination is 

more. 

 Potentially long latency for rule sets with large number 

of overlapped rules. 

 The memory efficiency of the design can be negatively 

affected by new rule updates.  

 The power consumption is more. 

In order to solve some of the above problems, in this paper it 

is proposed to use a novel technique of fast parallel packet 

classification. 

4. FAST PARALLEL PACKET   

      CLASSIFICATION 

4.1 Overview 
In this paper, a novel technique for fast parallel packet      

classification for internet traffic is proposed. This technique 

involves the construction of Hierarchical tree architecture. 

The hierarchical search results are transmitted to the bloom 

filter for performing packet classification. In this hash values 

are computed which sets the bits into bit array during        

construction of data structure. The bits in the bit array are 

analyzed during classification and upon observing the first 

unset bit, the analysis is stopped. This process minimizes the 

power consumed also during hashing function. Bloom filter 

has the drawback of false positives but its probability can be 

minimized by proper design of bloom filter. 

4.2 Top-𝑵 Selection Algorithm 
This technique involves the selection of a subset of 𝑁 rules 

with maximum hit-rates as per the traffic scenario. The hit 

rate represents the fraction of packet classification queries 

which is acquired using hit-counts situated in the majority 

switches and also it is a component of open flow               

specification. 

By sorting the hit rate table in descending order of hit-rates, 

the first 𝑁 rules are the target rules and together are called as 

the target set. Since some of the target rules may depend on 

rules that are not in the target set, one cannot simply select the 

𝑁 target rules as the top-𝑁 rules [18]. 

As far as the selection strategy is concerned each target rule is 

examined in order to decide either to include in the top-𝑁 list 

and what position to place it. Let 𝑅 is original rule set, 𝐺 is 

dependency graph and 𝑇 is derived rule set. Then the detailed 

procedure for Top-𝑁 Selection can be given as follows in 

algorithm 1. 

 

Algorithm 1: Top-𝑁 Selection 

 

1. Procedure Top-𝑁 Selection 

2. Select 𝑁 target rules with highest reference 

3. Sort them to descending priority 

4. for each target rule 𝑇𝑖  do 

5. 𝑇𝑖 = 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 _𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑅𝑖 , 𝐺  

6. if Top-𝑁 list is full then 

7. Stop and output the Top-𝑁 list 

8. else 

9. put 𝑇𝑖  into Top-𝑁 list 
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Conflicts can be resolved by splitting the target rule          

concerned into smaller derived rules that are disjoint with the 

dependent rules. It is noteworthy that in either way, some 

target rules, starting from bottom of the target list, have to be 

excluded from the sub-rule set because only 𝑁 rules are    

permitted in the sub-rule set. This unavoidably lowers the 

overall hit-rate provided by the resulting sub-rule set. The 

proper  

choice between the two options mainly depends on; The  

number of derived rules that are required to resolve the     

dependency, the total hit-rate offered by the dependent rule(s); 

and the total hit-rate of the target rules that would be excluded 

in each options.  

The working of Top-𝑁 selection algorithm can be clearly 

understood from fig 1. 

4.3 Proposed Technique 
Let 𝑆𝑎𝑑  and 𝐷𝑎𝑑  be the source and destination IP addresses 

respectively, 𝑆𝑝𝑛  and 𝐷𝑝𝑛  represent the port numbers of 

source and destination respectively, 𝑃𝑡𝑐𝑙  be the protocol,  𝑃𝑇  
be the priority of the rule in the example classifier,   
𝐻𝐶 be the hit count, 𝑆 be the set of  𝑆𝑎𝑑  prefixes, 𝑃𝑠  be the 

number of prefixes in 𝑆, 𝐷 be the set of  𝐷𝑎𝑑   prefixes, 𝑃𝑑  be 

the number of prefixes in 𝐷, 𝐶 be the number of clusters, 𝑆𝑖  

be the sub set of  𝑆 in cluster 𝑖 ( 1 ≤ 𝑖 ≤ 𝐶), 𝑅𝑡𝑟𝑖𝑒  be the    

upper bound for the number of rules per trie node.  

Table 1. An example classifier 

Rule 𝑆𝑎𝑑  𝐷𝑎𝑑  𝑆𝑝𝑛  𝐷𝑝𝑛  𝑃𝑡𝑐𝑙  𝑃𝑇 𝐻𝐶 Action 

𝑅1 00* 00* * 80 TCP 1 2 Act0 

𝑅2 0* 0* 17 * UDP 2 3 Act1 

𝑅3 10* 10* * * TCP 2 1 Act2 
𝑅4 11* 10* * 100 TCP 3 3 Act3 
𝑅5 11* 1* * * * 4 1 Act4 
𝑅6 * 11* 17 44 UDP 5 0 Act5 
𝑅7 0* 10* 80 * TCP 6 6 Act6 
𝑅8 0* 01* 17 17 UDP 6 7 Act7 
𝑅9 0* 1* 44 * TCP 7 5 Act8 
𝑅10  00* 1* 17 44 UDP 7 5 Act9 
𝑅11  00* 11* * 100 TCP 8 6 Act10 
𝑅12  10* 1* * * * 9 7 Act11 
𝑅13  * 00* * * TCP 7 5 Act12 
𝑅14  0* 10* * 100 TCP 5 5 Act13 
𝑅15  0* 1* * * TCP 0 6 Act14 

𝑅16  0* 10* 17 17 UDP 4 7 Act15 

𝑅17  111* 000* 80 * TCP 6 7 Act16 

Let 𝑆𝑉 be the skip value used in path compression, 𝐵𝑆 be the 

bit string used to store missing bits in path compression, 𝜖𝑏  be 

the upper bound for the number of consecutive 𝜖 transitions, 𝛼 

be the ratio of the number of rules stored in secondary    

memory over the total number of rules 𝑅 in the given rule set, 

𝛼𝑇  be the upper bound for 𝛼. The sample rule set is given in 

table 1. 

The pseudo-code for clustering is given in algorithms 2. 

Algorithm 2: Clustering algorithm  

 

Input: Prefix set 𝑆, Number of clusters 𝐶 

Output: A partition of 𝑆 into a collection of non-empty   

             prefix subsets  𝑆𝑖  such that within each subset  

             all the prefixes are pair wise disjoint. 

1. 𝑖 = 1 

2. Construct a binary trie using prefix set 𝑆 

3. while 𝑖 ≤ 𝐶 do 

4. Move the leaves of the trie into 𝑆𝑖  

5. Trim the leaf-removed trie 

6. 𝑖 = 𝑖 + 1 

7. end while 

8. Leaf-push the trie and move the           

leaf-pushed leaves into 𝑆𝑖  

9. return  𝑆𝑖 , 1 ≤ 𝑖 ≤ 𝐶 

 

After this a hierarchical search structure is constructed which 

consists of two stages. In stage one a binary search tree is 

built for each cluster using  𝑆𝑎𝑑  prefixes. In the  binary search 

tree each node consists of a value (prefix), a prefix length, left 

pointer, and right pointer. In stage two each node of  𝑆𝑎𝑑  tree 

connects to a 𝐷𝑎𝑑  trie. Hence in each cluster, the number of 

 𝐷𝑎𝑑  tries is equal to the number of  𝑆𝑎𝑑  prefixes. Each prefix 

node of a  𝐷𝑎𝑑  trie stores at least one rule. For each rule only 

the  
 𝑆𝑝𝑛  , 𝐷𝑝𝑛  ,  𝑃𝑡𝑐𝑙  , and 𝑃𝑇 fields are stored. Here the  over-

lapped rules are stored in the  𝐷𝑎𝑑  trie nodes rather than point-

ing to a list of these rules as did by                  F. Baboescu, S. 

Singh, and G. Varghese in their paper Packet Classification 

for Core Routers: Is there an         alternative to CAMs? 

[4].therefore, the matching results can be resolved at each 

node. However, the number of rules stored at each node is not 

constant. This leads to memory inefficiency for hardware 

implementation. To improve memory inefficiency, a special 

type of ternary trie data structure 𝑇𝜖  is used. 

 A single node in  𝑇𝜖  trie structure may have a single 𝜖  branch 

for which no input bit is consumed or „0‟ and/or „1‟ branch 

Existing Ruleset 

Hit rate Table 

Top- 𝑁 list size 

Dependency Graph 

Top-𝑁 Target list 

Approximation Table 

Processed Top-𝑁 Target 

list 
Top-𝑁 list 

Prior Process 

Execution 
Step 1 Step 2 Step 3 

Partition Technique Dependencies resolved 

Fig 1: Flow diagram of Top-𝑵 selection algorithm 
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same as binary trie, but cannot have both at the same time. 

The main goal of utilizing the 𝜖 transition is to split a super-

node in a trie into multiple small and fixed size nodes. These 

nodes are sequentially connected by the 𝜖 branches. In this 

data structure a limit is set on the number of overlapped rules 

per node, denoted by  𝑅𝑡𝑟𝑖𝑒  . The pseudo-code to construct 𝑇𝜖  

structure is    given in algorithm 3.  

  Algorithm 3: 𝑇𝜖  construction algorithm 

 

Input: Prefix table consisting of prefixes  𝐷𝑖 , 0 ≤
             𝑖 < 𝑃𝑑  with associated next hop info 𝑁𝐻𝐼𝑖  

       Input:  Root node 𝐷𝑟𝑜𝑜𝑡  of  𝑇𝜖 , 𝐷𝑟𝑜𝑜𝑡 . 𝑙𝑒𝑓𝑡 =
                     𝑁𝑈𝐿𝐿,  𝐷𝑟𝑜𝑜𝑡 . 𝑟𝑖𝑔𝑕𝑡 = 𝑁𝑈𝐿𝐿,  𝐷𝑟𝑜𝑜𝑡 . 𝑠𝑖𝑧𝑒 = 0  

         Input: Maximum node size, 𝑅𝑡𝑟𝑖𝑒  

         Output: 𝑇𝜖  trie structure 

1. 𝑖 = 0 

2. while 𝑖 ≤ 𝑃𝑑  do 

3. Binary_trie_insert (𝐷𝑖 ,  𝐷𝑟𝑜𝑜𝑡 ) 

4. Let 𝐷𝑛𝑜𝑑𝑒  be a node where 𝐷𝑖  is stored 

5. if 𝐷𝑛𝑜𝑑𝑒 . 𝑠𝑖𝑧𝑒 < 𝑅𝑡𝑟𝑖𝑒  then 

6. Store 𝑁𝐻𝐼𝑖  to 𝐷𝑛𝑜𝑑𝑒  , 𝐷𝑛𝑜𝑑𝑒 . 𝑠𝑖𝑧𝑒 =
              𝐷𝑛𝑜𝑑𝑒 . 𝑠𝑖𝑧𝑒 + 1 

7. else 

8. if 𝐷𝑛𝑜𝑑𝑒  has 𝜖 branch (𝐷𝑟𝑜𝑜𝑡 . 𝑙𝑒𝑓𝑡 = 𝜖       

            branch, 𝐷𝑛𝑜𝑑𝑒 . 𝑟𝑖𝑔𝑕𝑡 = 0) then 

9. 𝐷𝑛𝑜𝑑𝑒 = 𝐷𝑛𝑜𝑑𝑒 . 𝑙𝑒𝑓𝑡 

10. Go to step 5 

11. else 

12. Create a node 𝐷𝑛𝑒𝑤  

13. 𝐷𝑛𝑒𝑤 . 𝑙𝑒𝑓𝑡 = 𝐷𝑛𝑜𝑑𝑒 . 𝑙𝑒𝑓𝑡 

14. 𝐷𝑛𝑒𝑤 . 𝑟𝑖𝑔𝑕𝑡 = 𝐷𝑛𝑜𝑑𝑒 . 𝑟𝑖𝑔𝑕𝑡 

15. 𝐷𝑛𝑜𝑑𝑒 . 𝑙𝑒𝑓𝑡 = 𝐷𝑛𝑒𝑤  

16. 𝐷𝑛𝑜𝑑𝑒 . 𝑟𝑖𝑔𝑕𝑡 = 0 

17. Store 𝑁𝐻𝐼𝑖  to 𝐷𝑛𝑒𝑤 , 𝐷𝑛𝑒𝑤 . 𝑠𝑖𝑧𝑒 =
              𝐷𝑛𝑒𝑤 . 𝑠𝑖𝑧𝑒 + 1 

18. end if 

19. end if 

20. 𝑖 = 𝑖 + 1 

21. end while 

22. return 𝑇𝜖  trie 

 
Fig 2: Hierarchical  𝑻𝑻𝝐 search structure 

 

 

 

The entire process is illustrated using the following           

architecture shown in fig 2. The incoming packet is passed on 

to the header extractor; from which the different field values 

are separated. These header field values are routed to all   

pipelines to perform the search. These results are transmitted 

to the Bloom filter for performing packet classification.  

 

This process involves the following two phases. Initially, for a 

given set of rules 𝑅 Bloom filter computes 𝑘 hash values for 

each element 𝑟𝑖  ranging from 1 to 𝑏 using 𝑘 hash functions, 

𝑕1(), … . , 𝑕𝑘(). Each of these values addresses a single bit in 

the 𝑏 bit vector and sets it to one. Note that if one of the 𝑘 

hash values addresses a bit that is already set to 1, that bit is 

not changed. The following pseudo-code describes adding an 

element 𝑟 to a Bloom filter. 

BFAdd  𝑟  

1. for  𝑖 = 1 𝑡𝑜 𝑘  

2. Vector  𝑕𝑖 𝑟  ← 1   
 

Querying the filter for set membership of a given element 𝑟 is 

similar to the above process. Given element 𝑟, 𝑘 hash values 

are generated using the same hash functions. The bits in the  

𝑏-bit long vector at the locations corresponding to the 𝑘 hash 

values are checked. If at least one of the 𝑘 bits is 0, then the 

element is declared to be a nonmember of the set. If all the 

bits are found to be 1, then the element is said to belong to the 

set with a certain probability. If all the 𝑘 bits are found to be 1 

and 𝑥 is not a member of 𝑅, then it is a false positive. The 

following pseudo-code describes the query process. 

BFQuery  𝑥                       

1. for  𝑖 = 1 𝑡𝑜 𝑘              

2.      if  𝑉𝑒𝑐𝑡𝑜𝑟[𝑕𝑖 𝑟 ] = 0  return false 

3. return true 

At the time of querying the filter in case of 𝑘-stage pipelined 

Bloom filter as soon as the first unset bit is found, the analysis 

is stopped. The same process is illustrated in the following 

sections. 

4.3.1  𝑘-Stage Pipelined Bloom Filter 
The 𝑘-Stage Pipelined Bloom Filter is defined as the Bloom 

filter implementing its hash functions in a pipelined fashion 

[19]. The main advantage of this filter is that it prevents using 

subsequent stages for resolving the input as the member of 

bit-array. At worst, it operates like a standard Bloom filter that 

uses the entire hashing functions prior to deciding the input 

category. 

Fig 3 shows the architecture of 𝑘-stage pipelined Bloom filter. 

It includes 𝑘 set of hashing functions. The hash values are 

constantly computed in each stage for the given input. Also, 

only when the input matches with the bit-array sought, the 

subsequent stage computes hash values. The term En means 

enable. This reveals the matching criteria in the earlier stage 

enabling the next stage of the pipeline.   

With regards to the programming stage, the entire hashing 

function is used and pipelined stages are permanently        

occupied. Hence 𝑘-stage pipelined bloom filter is used in 

membership checking stage which is shown below.     

Let 𝑏 represent the size of the bit-array and 𝑛 be the input 

count. The probability that one of 𝑏 bits is set using single 

hashing function working on a single input is given by      

equation 1. 
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       𝑝𝑠 =
1

𝑏
                                                                    (1) 

and the probability of unsetting a bit is computed as  

     𝑝𝑢𝑠 =   1 −
1

𝑏
  .                                                    2  

Similarly, subsequent to the process of programming, all the 

inputs into the pipelined bloom filter using 𝑘 independent 

hashing functions, the probability of bit still remaining unset 

can be calculated using following equation.  

                       𝑝𝑢𝑠
′ =   1 −

1

𝑏
 
𝑘𝑛

  ≈   𝑒
−𝑘𝑛
𝑏                              (3) 

 

Thus the probability by which the bit is set is  

               𝑝𝑠
′ =   1 − 𝑝𝑢𝑠

′  = 1 − 𝑒
−𝑘𝑛
𝑏   .                              (4) 

4.3.1.1 Power Consumption  
Let  𝑃𝑕  be the power consumed by the hashing function, 𝑃𝑙𝑢  

be the power consumed by the bit-array lookup function, 𝑃&𝑘  

be the power consumed by the  𝑘  input AND operation.    

The power consumed by pipelined bloom filter 𝑃𝑝𝑏𝑓  is       

computed from fig 3 and is given by the following equation 

𝑃𝑝𝑏𝑓 = 𝑃𝑕𝑕 1 
+  𝑃𝑙𝑢𝑕1

+ 𝑝𝑠𝑕1

′   𝑃𝑕𝑕 2
+  𝑃𝑙𝑢𝑕2

 

+ 𝑝𝑠𝑕1

′  𝑝𝑠𝑕2

′  𝑃𝑕𝑕 3
+ 𝑃𝑙𝑢𝑕3

 + ⋯

+  𝑝𝑠𝑕1

′ … . . 𝑝𝑠𝑕𝑘−1

′  𝑃𝑕𝑕 𝑘
+ 𝑃𝑙𝑢𝑕𝑘

 + 𝑃&𝑘  

=  𝑃𝑕𝑕 1 
+  𝑃𝑙𝑢𝑕1

+  𝐵  𝑃𝑕𝑕 2
+ 𝑃𝑙𝑢𝑕2

 + 𝐵2   𝑃𝑕𝑕 3
+ 𝑃𝑙𝑢𝑕3

 

+ ⋯ +  𝐵𝑘−1   𝑃𝑕𝑕 𝑘
+ 𝑃𝑙𝑢𝑕𝑘

 + 𝑃&𝑘  

=   𝐵𝑖−1
𝑘

𝑖=1
 𝑃𝑕𝑕 𝑖 

+  𝑃𝑙𝑢𝑕 𝑖
 +  𝑃&𝑘                                       (5) 

Where  𝐵 =   1 − 𝑒
−𝑘𝑛

𝑏  . 

The value 𝑝𝑠𝑕 𝑖

′  used in above equation (5) represents the  

probability of the bit which is set using hashing function with 

index 𝑖. Thus 𝑃𝑝𝑏𝑓  is shown using the following equation  

𝑃𝑝𝑏𝑓 =    1 − 𝑒
−𝑘𝑛
𝑏  

𝑖−1𝑘

𝑖=1
  𝑃𝑕𝑕 𝑖 

+  𝑃𝑙𝑢𝑕 𝑖
 +  𝑃&𝑘  .     (6) 

This approach of using 𝑘-stage pipelined bloom filter       

consumes minimum power. 

4.4 Advantages  

 The top 𝑁 approximation algorithm keeps away rules 

having poor heat rate.    

 The utilization of Bloom filters minimizes the 

processing time of packet classification.  

Fig 3: Architecture of 𝒌-stage pipelined bloom filter 
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 The overall power consumption is also minimized. 

5. SIMULATION RESULTS 

5.1 Simulation Model and Parameters 
In this section, the performance of the  

Fast Parallel Packet Classification (FPPC) algorithm is ex-

amined with an        extensive simulation study by using NS-2 

[20]. The results obtained are compared with HHSS. The 

topology used in the simulation is depicted in Fig 4. The UDP 

traffic flows are used. The filtersetsize is varied as 500, 1000, 

1500, and 2000 number of rules. The filter sets are generated 

by using the ClassBench [21] tool.  

5.2 Performance Metrics 
In the simulation experiments, the following parameters for 

UDP CBR data flows are measured. 
 

 Throughput (average no. of packets processed at the 

node per second) 

 Delay (the overall mean delay occurred including 

searching and matching delays in µseconds) 

 Efficiency (the memory utilized in terms of number 

of bits per rule) 

The results are described in the next section. 

 

Fig 4: Simulation Topology 

In this experimentation the database is generated by varying 

the filtersetsize. The size of the filerset is varied from 500 to 

2000. In this case, a set of CBR flows using UDP protocol is 

transmitted from the same source to different destinations. 

 

Fig 5: Filtersetsize Vs Efficiency 

 

Fig 6: Filtersetsize Vs Delay 

 

Fig 7: Filtersetsize Vs Throughput 

When the filter size is increased, it results in the small      

degradation of efficiency. Fig 5 shows the results of efficiency 

when the filter size is increased. It is observed that the      

efficiency of FPPC is slightly less than that of HHSS, because 

of the increase in bit vector size in Bloom filter in FPPC   

classification.  

The increase in filter size increases the size of database and 

hence the searching and matching delay tends to increase. It is 

observed from fig 6 that the delay of the proposed FPPC is 

less than the existing HHSS technique, since FPPC uses the 

Top-N rule selection approach. 

The increase in filtersetsize does not make any significant 

variations in the overall throughput. This can be depicted from 

the fig 7. It is observed that FPPC has higher throughput as 

compared to HHSS. 

6. CONCLUSIONS 
In this paper, a design of novel technique for fast parallel 

packet classification for internet traffic is proposed. In this 

algorithm a hierarchical search structure constructed by using 

ternary trie data structure is used. This avoids backtracking 

which saves time. By simulation results, it can be concluded 

that the proposed technique minimizes the searching delay 

thereby increasing throughput with little decrease in memory 

efficiency. One of the drawbacks of the design is the         

potentially long latency for rule sets with large number of 

overlapped rules. In future it is planned to explore the       

methods to reduce latency of overlapped rules and update the 

overall performance of above technique. 
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