
International Journal of Computer Applications (0975 – 8887)

Volume 76– No.4, August 2013

18

A Novel Technique for Fast Parallel Packet Classification

Balasaheb S. Agarkar

Department of Electronics and Telecommunication
Engineering, SRES’s College of Engineering,

Kopargaon 423603, University of Pune, Pune, India

 Uday V. Kulkarni,Ph.D
Department of Computer Science and Engineering,

SGGS Institute of Engineering and Technology,
Nanded 431 606, India

ABSTRACT

Packet classification is one of the most important enabling

technologies for next generation network services. Four of the

main challenges in the packet classification are increase in

size of the classifier, link speed, amount of multimedia traffic,

and number of media-rich and bandwidth intensive internet

applications. Due to this there is a need of memory efficient

and high throughput packet classification schemes.

In this paper a novel technique for fast parallel packet

classification (FPPC) is proposed. A recent paper [14] showed

how to construct a hierarchical 𝑇𝑟𝑒𝑒 − 𝑇𝑟𝑖𝑒𝜖 (𝑇𝑇𝜖) search

structure and a clustering algorithm that partitions a given

classifier into a fixed number of clusters. This dramatically

enhances memory efficiency and throughput. This idea is

extended to address the more challenging problem of general

packet classification. The hierarchical search results are

passed on to the bloom filter for final classification. Also it is

observed that in a large classifier many rules have very poor

hit rate. If Top-𝑁 selection approach is used, without affecting

minimum Quality of Service (QoS) requirements it is possible

to reduce mean delay and increase the throughput. The

simulation results shows that proposed scheme gives 22.5%

rise in the throughput and 5.62% decrease in mean delay

with slight decrease in memory efficiency as compared to

Hierarchical Hybrid Search Structure (HHSS) scheme.

General Terms

Computer Networks, Internet Traffic

Keywords

Bloom filter, Classifier, Hierarchical structure, Packet

classification.

1. INTRODUCTION
The process of mapping packets to different service classes or

flows in an internet router is referred to as packet

classification. Flow is defined as the collection of all the

packets which obey a same predefined rule. Traditional

routers do not provide service differentiation because they

treat all traffic going to a particular Internet address in the

same way. Packet classification is an enabling function for a

variety of Internet applications including QoS, security, traffic

monitoring, Virtual Private Networks (VPN) and multimedia

communications. In order to classify a packet as belonging to

a particular flow routers must perform a search over a set of

filters or rules also known as classifier using multiple fields of

the packet header as the search key. The multi-field or

multi-dimensional packet classification becomes a critical

operation in networking devices such as routers. In general,

there have been two major threads of research addressing

packet classification: algorithmic and architectural [1]. A few

pioneering groups of researchers posed the problem, provided

complexity bounds, and offered a collection of algorithmic

solutions [2], [3]. Subsequently, the design space has been

vigorously explored by many offering new algorithms and

improvements upon existing algorithms [4-7]. Given the

inability of early algorithms to meet performance

constraints imposed by high speed links, researchers in

industry and academia devised architectural solutions to the

problem. This thread of research produced the most widely

used packet classification device technology, Ternary Content

Addressable Memory (TCAM) [8], [9]. New architectural

research in this area combines intelligent algorithms and

novel architectures to eliminate many of the unfavorable

characteristics of current TCAMs. It is observed that the

community appears to be converging on a combined

algorithmic and architectural approach [10], [11].

The growing complexity of the Internet is creating new

applications, placing additional demands on the packet

classification subsystem of routers and other packet handling

devices. Several protocols and techniques such as DiffServ or

NSLP (Network Address Translation (NAT) / Firewall NSIS

Signaling protocol) assumes that the information relevant to

packet classification is contained in five or less number of

IPv4-fields namely source IP address (32 bits), destination IP

address (32 bits), source port number (16 bits), destination

port number (16 bits), and the protocol (8 bits).

1. 1 Need of Packet Classification
Packet classification is very important in improving the

performance of internet traffic.

Technology innovations of network systems: Network

Processor Unit (NPU) has emerged as a promising candidate

for a networking system building block. NPU opens a new

venture to explore advanced technologies such as multi-core

network processors, thread-level parallelism to attack the

performance bottleneck of classification. Also they provide us

with unprecedented computing power, as well as highly

integrated resources. Hence novel packet classification

solutions must be well suited for the advanced hardware and

software technologies to break the bottleneck, providing the

availability of these innovative technologies to a vast majority

of customers. NPU has potential to provide total solution for

packet processing, including forwarding and classification

[12], [13].

Ever-increasing complexity of network applications: The

growth and diversification of the Internet imposes increasing

demands on the performance and functionality of network

infrastructure. Traditional packet classification is mainly

employed by firewalls to screen unwanted traffics. With more

and more network applications implemented in today‟s

networking devices, packet classification is widely used for

various kinds of applications, such as service-aware routing,

intrusion prevention and traffic shaping. Thus, novel solutions

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.4, August 2013

19

must be more intelligent to effectively handle multifarious

types of rule sets without significant loss of performance [13].

1.2 Types of Packet Classification
Packet classification approaches can be classified into four

main groups; exhaustive search, decomposition, decision tree,

and hierarchical-trie (H-trie) [14].

For any searching problem the most rudimentary solution is

simply to search through all the entries. In exhaustive search,

all the entries in a rule set are analyzed [15]. The two basic

approaches in this group are linear search and TCAM based

search. Linear search is performed by comparing the header of

a packet with all the entries in a rule set sequentially. Linear

search becomes a slow process for large rule sets. Hence it is

popular for the final stage of a search when the set of possible

matching rules has been reduced to a bounded constant.

TCAM devices allow a parallel search over all rules in the

classifiers. In this the header of a packet is compared with all

the entries in parallel. TCAMs have several disadvantages

such as high cost, storage inefficiency, high power

consumption, and limited scalability to long input keys. The

storage inefficiency occurs due to the need of conversion of

ranges into prefixes.

In decomposition based solutions, independent searches on

each header field are performed, and then the results are

combined. These approaches offer high throughput but require

high amount of storage space in order to aggregate the results

of single searches efficiently. The primary challenge for these

approaches is how to efficiently aggregate the results of the

single field searches.

Most of the proposed packet classification algorithms and

architectures are based on decision trees, which take the

geometric view of the packet classification problem. HiCuts

and its enhanced version HyperCuts are representatives of

such algorithms. At each node of the decision tree, the search

space is cut based on the information from one or more fields

in the rule. HiCuts builds a decision tree using local

optimization decisions at each node to choose the next

dimension to test, and how many cuts to make in the chosen

dimension. The HyperCuts algorithm allows cutting on

multiple fields per step, resulting in a fatter and shorter

decision tree. The common problem of these approaches is

that it is difficult to support incremental updates.

Hierarchical-trie (H-trie) is built using the source IP address

(𝑆𝑎𝑑) and destination IP address (𝐷𝑎𝑑) prefixes. Initially, a

𝑆𝑎𝑑 trie is constructed using all the 𝑆𝑎𝑑 prefixes. For each

prefix node in 𝑆𝑎𝑑 trie, a 𝐷𝑎𝑑 trie is constructed using 𝐷𝑎𝑑

prefix(es) associated with that 𝑆𝑎𝑑 prefix. Thus, the structure

consists of a large 𝑆𝑎𝑑 trie and hierarchically connected

multiple small 𝐷𝑎𝑑 tries. Search starts from the 𝑆𝑎𝑑 trie. If a

prefix node of the 𝑆𝑎𝑑 trie is visited, then the corresponding

𝐷𝑎𝑑 trie connected to that prefix node is traversed. Even

though a match can be found at any node in the 𝐷𝑎𝑑 trie,

search has to backtrack to the 𝑆𝑎𝑑 trie and continue the search

to find other possible matches. The search terminates after

each leaf node in the 𝑆𝑎𝑑 trie is visited. Set-pruning trie

eliminates the backtracking by replicating the rules. Grid-of-

Tries (GoT) data structure for 2-field packet classification

eliminates the backtracking by introducing switch pointers to

some trie nodes and hence each rule is stored at only one

node. Despite of good memory efficiency, extension of the

GoT to multiple fields is not clear.

1.3 Issues of Packet Classification
Continual growth of network bandwidth is the very important

issue of packet classification. The explosion in demand for

network bandwidth owes much to the growth in data traffic.

Leading service providers report bandwidths doubling on their

backbones about every six to nine months [13].

Power consumption is also another important issue of packet

classification. As routers achieve aggregate throughputs of

trillions of bits per second, power consumption becomes an

increasingly critical concern. Both the power consumed by the

router itself and the infrastructure to dissipate the tremendous

heat generated by the router components significantly

contribute to the operating costs. Given that each port of

high-performance routers must contain route lookup and

packet classification devices, the power consumed by search

engines is becoming an increasingly important evaluation

parameter [1], [15].

Speed and flexibility in specifications is also another issue in

packet classification. In the general packet classification

problem, packets are classified according to a set of packet

filters, which define patterns that are matched against

incoming packets. Typically, packet filters specify possible

values of the source and destination address fields of the IP

header, the protocol field (often including flags) and the

source and destination port numbers (for TCP and UDP). The

address fields are often specified as address prefixes, although

arbitrary bit masks of the address fields are commonly

allowed in packet filters and this feature is used in real filter

sets, although relatively infrequently. Filters typically specify

a range of port numbers for matching packets. Protocols can

be either specified exactly or as a wildcard. Some systems

allow protocol values to be specified by bit masks as well,

although it‟s not clear how useful that feature is [1], [15].

The following sections are organized as follows: section 2

gives literature review of packet classification; section 3

identifies problem; the proposed algorithm FPPC is described

in section 4 and evaluated in section 5 and concluded in

section 6.

2. LITERATURE REVIEW
Yaxuan Qi et al., [13] have proposed a novel packet

classification algorithm named HyperSplit. Compared to the

well-known HiCuts and HSM algorithms, HyperSplit

achieves superior performance in terms of classification

speed, memory usage and preprocessing time. In this paper,

they combined the advantages of existing algorithms:

rule-based space decomposition and local-optimized

recursion. This algorithm guarantees explicit worst-case

classification speed and explores the data redundancy in rule

sets to reduce memory usage. The data structure of HyperSplit

is also carefully designed for efficient storage and fast access.

The practicability of the proposed algorithm is manifested by

two facts in their test: HyperSplit is the only algorithm that

can successfully handle all the rule sets; HyperSplit is also the

only algorithm that reaches more than 6 Gbps throughput on

the Octeon3860 multi-core platform when tested with 64-byte

Ethernet packets against 10K ACL rules.

Oguzhan Erdem et al., [14] have proposed a high-throughput

and memory-efficient SRAM-based linear pipelined

architecture for packet classification. A clustering algorithm

that partitions a given rule database into a fixed number of

clusters to eliminate backtracking in the state-of-the-art

hierarchical search structure. A special type of ternary trie

data structure (𝑇𝜖) and a two-stage hierarchical search

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.4, August 2013

20

structure that achieves substantial memory saving in hardware

implementation are used. Their design achieves memory

efficiency between 10.37 and 22.81 bytes of memory per rule,

and sustains a high throughput of 418 million packets per

second on a state-of-the-art FPGA device.

Weirong Jiang et al., [15] have proposed Decision-tree-based,

two-dimensional dual-pipeline architecture for multi-field

packet classification. To fit the current largest rule set in the

on-chip memory of the FPGA device, they propose several

optimization techniques for the state of-the-art decision-tree-

based algorithm, so that the memory requirement is almost

linear with the number of rules. Specialized logic is developed

to support varying number of branches at each decision tree

node. A tree-to-pipeline mapping scheme is carefully

designed to maximize the memory utilization. Since their

architecture is linear and memory based, on-the-fly update

without disturbing the ongoing operations is feasible.

Yadi Ma and Suman Banerjee, [16] have proposed a practical

and efficient solution which introduces a smart pre-classifier

to reduce power consumption of TCAMs for

multidimensional packet classification. They reduce the

dimension of the problem through the pre-classifier which

pre-classifies a packet on two header fields, source and

destination IP addresses. Then they return to the higher

dimension problem where only a small portion of a TCAM is

activated and searched for a given packet. The smart

pre-classifier is built in a way such that a given packet

matches at most one entry in the pre-classifier, which make

commodity TCAMs sufficient to implement the pre-classifier.

Furthermore, each rule is stored only once in one of the

TCAM blocks, which avoids rule replication. The presented

solution uses commodity TCAMs and the proposed

algorithms are easy to implement. Their scheme achieves a

median power reduction of 91% and an average power

reduction of 88% on real and synthetic classifiers

respectively.

Alan Kennedy et al., [17] have proposed low power

architecture for a high speed packet classifier which could be

used as an on-chip hardware accelerator for a network

processor or as an external chip. This architecture uses an

adaptive clocking unit to exploit the fluctuation in Internet

traffic by reducing the clock frequency during times of low

traffic and increasing the clock frequency at times of high

traffic. In order to make the decision of frequency scaling, the

fields of a packet header used for classification are extracted

into a buffer upon its arrival and the queue length is

monitored. The hardware accelerator implements a modified

version of the HiCuts and HyperCuts packet classification

algorithms. Instead of comparing a large number of rules

simultaneously (as is the case with TCAM), the algorithms

divide the hyperspace of the rule set heuristically into multiple

groups so that each subset contains only a small number of

rules that are suitable for linear search, reducing the

unnecessary comparisons and thus the power consumption.

The hardware accelerator utilizes the flexibility of a FPGA‟s

block RAM by using SRAM with long word line to reduce the

number of clock cycles needed to perform a linear search on

the selected rules.

3. PROBLEM IDENTIFICATION
The approach which is proposed in [14] is based on

Hierarchical search structure. In this one Hierarchical 𝑇𝑇𝜖

structure is used for packet classification. This approach

eliminates the need for backtracking in hardware

implementation and achieves substantial memory saving. The

following drawbacks are observed in this approach:

 Low throughput with algorithmic implementation.

 Mean delay per packet from source to destination is

more.

 Potentially long latency for rule sets with large number

of overlapped rules.

 The memory efficiency of the design can be negatively

affected by new rule updates.

 The power consumption is more.

In order to solve some of the above problems, in this paper it

is proposed to use a novel technique of fast parallel packet

classification.

4. FAST PARALLEL PACKET

 CLASSIFICATION

4.1 Overview
In this paper, a novel technique for fast parallel packet

classification for internet traffic is proposed. This technique

involves the construction of Hierarchical tree architecture.

The hierarchical search results are transmitted to the bloom

filter for performing packet classification. In this hash values

are computed which sets the bits into bit array during

construction of data structure. The bits in the bit array are

analyzed during classification and upon observing the first

unset bit, the analysis is stopped. This process minimizes the

power consumed also during hashing function. Bloom filter

has the drawback of false positives but its probability can be

minimized by proper design of bloom filter.

4.2 Top-𝑵 Selection Algorithm
This technique involves the selection of a subset of 𝑁 rules

with maximum hit-rates as per the traffic scenario. The hit

rate represents the fraction of packet classification queries

which is acquired using hit-counts situated in the majority

switches and also it is a component of open flow

specification.

By sorting the hit rate table in descending order of hit-rates,

the first 𝑁 rules are the target rules and together are called as

the target set. Since some of the target rules may depend on

rules that are not in the target set, one cannot simply select the

𝑁 target rules as the top-𝑁 rules [18].

As far as the selection strategy is concerned each target rule is

examined in order to decide either to include in the top-𝑁 list

and what position to place it. Let 𝑅 is original rule set, 𝐺 is

dependency graph and 𝑇 is derived rule set. Then the detailed

procedure for Top-𝑁 Selection can be given as follows in

algorithm 1.

Algorithm 1: Top-𝑁 Selection

1. Procedure Top-𝑁 Selection

2. Select 𝑁 target rules with highest reference

3. Sort them to descending priority

4. for each target rule 𝑇𝑖 do

5. 𝑇𝑖 = 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 _𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑖 , 𝐺

6. if Top-𝑁 list is full then

7. Stop and output the Top-𝑁 list

8. else

9. put 𝑇𝑖 into Top-𝑁 list

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.4, August 2013

21

Conflicts can be resolved by splitting the target rule

concerned into smaller derived rules that are disjoint with the

dependent rules. It is noteworthy that in either way, some

target rules, starting from bottom of the target list, have to be

excluded from the sub-rule set because only 𝑁 rules are

permitted in the sub-rule set. This unavoidably lowers the

overall hit-rate provided by the resulting sub-rule set. The

proper

choice between the two options mainly depends on; The

number of derived rules that are required to resolve the

dependency, the total hit-rate offered by the dependent rule(s);

and the total hit-rate of the target rules that would be excluded

in each options.

The working of Top-𝑁 selection algorithm can be clearly

understood from fig 1.

4.3 Proposed Technique
Let 𝑆𝑎𝑑 and 𝐷𝑎𝑑 be the source and destination IP addresses

respectively, 𝑆𝑝𝑛 and 𝐷𝑝𝑛 represent the port numbers of

source and destination respectively, 𝑃𝑡𝑐𝑙 be the protocol, 𝑃𝑇
be the priority of the rule in the example classifier,
𝐻𝐶 be the hit count, 𝑆 be the set of 𝑆𝑎𝑑 prefixes, 𝑃𝑠 be the

number of prefixes in 𝑆, 𝐷 be the set of 𝐷𝑎𝑑 prefixes, 𝑃𝑑 be

the number of prefixes in 𝐷, 𝐶 be the number of clusters, 𝑆𝑖

be the sub set of 𝑆 in cluster 𝑖 (1 ≤ 𝑖 ≤ 𝐶), 𝑅𝑡𝑟𝑖𝑒 be the

upper bound for the number of rules per trie node.

Table 1. An example classifier

Rule 𝑆𝑎𝑑 𝐷𝑎𝑑 𝑆𝑝𝑛 𝐷𝑝𝑛 𝑃𝑡𝑐𝑙 𝑃𝑇 𝐻𝐶 Action

𝑅1 00* 00* * 80 TCP 1 2 Act0

𝑅2 0* 0* 17 * UDP 2 3 Act1

𝑅3 10* 10* * * TCP 2 1 Act2
𝑅4 11* 10* * 100 TCP 3 3 Act3
𝑅5 11* 1* * * * 4 1 Act4
𝑅6 * 11* 17 44 UDP 5 0 Act5
𝑅7 0* 10* 80 * TCP 6 6 Act6
𝑅8 0* 01* 17 17 UDP 6 7 Act7
𝑅9 0* 1* 44 * TCP 7 5 Act8
𝑅10 00* 1* 17 44 UDP 7 5 Act9
𝑅11 00* 11* * 100 TCP 8 6 Act10
𝑅12 10* 1* * * * 9 7 Act11
𝑅13 * 00* * * TCP 7 5 Act12
𝑅14 0* 10* * 100 TCP 5 5 Act13
𝑅15 0* 1* * * TCP 0 6 Act14

𝑅16 0* 10* 17 17 UDP 4 7 Act15

𝑅17 111* 000* 80 * TCP 6 7 Act16

Let 𝑆𝑉 be the skip value used in path compression, 𝐵𝑆 be the

bit string used to store missing bits in path compression, 𝜖𝑏 be

the upper bound for the number of consecutive 𝜖 transitions, 𝛼

be the ratio of the number of rules stored in secondary

memory over the total number of rules 𝑅 in the given rule set,

𝛼𝑇 be the upper bound for 𝛼. The sample rule set is given in

table 1.

The pseudo-code for clustering is given in algorithms 2.

Algorithm 2: Clustering algorithm

Input: Prefix set 𝑆, Number of clusters 𝐶

Output: A partition of 𝑆 into a collection of non-empty

 prefix subsets 𝑆𝑖 such that within each subset

 all the prefixes are pair wise disjoint.

1. 𝑖 = 1

2. Construct a binary trie using prefix set 𝑆

3. while 𝑖 ≤ 𝐶 do

4. Move the leaves of the trie into 𝑆𝑖

5. Trim the leaf-removed trie

6. 𝑖 = 𝑖 + 1

7. end while

8. Leaf-push the trie and move the

leaf-pushed leaves into 𝑆𝑖

9. return 𝑆𝑖 , 1 ≤ 𝑖 ≤ 𝐶

After this a hierarchical search structure is constructed which

consists of two stages. In stage one a binary search tree is

built for each cluster using 𝑆𝑎𝑑 prefixes. In the binary search

tree each node consists of a value (prefix), a prefix length, left

pointer, and right pointer. In stage two each node of 𝑆𝑎𝑑 tree

connects to a 𝐷𝑎𝑑 trie. Hence in each cluster, the number of

 𝐷𝑎𝑑 tries is equal to the number of 𝑆𝑎𝑑 prefixes. Each prefix

node of a 𝐷𝑎𝑑 trie stores at least one rule. For each rule only

the
 𝑆𝑝𝑛 , 𝐷𝑝𝑛 , 𝑃𝑡𝑐𝑙 , and 𝑃𝑇 fields are stored. Here the over-

lapped rules are stored in the 𝐷𝑎𝑑 trie nodes rather than point-

ing to a list of these rules as did by F. Baboescu, S.

Singh, and G. Varghese in their paper Packet Classification

for Core Routers: Is there an alternative to CAMs?

[4].therefore, the matching results can be resolved at each

node. However, the number of rules stored at each node is not

constant. This leads to memory inefficiency for hardware

implementation. To improve memory inefficiency, a special

type of ternary trie data structure 𝑇𝜖 is used.

 A single node in 𝑇𝜖 trie structure may have a single 𝜖 branch

for which no input bit is consumed or „0‟ and/or „1‟ branch

Existing Ruleset

Hit rate Table

Top- 𝑁 list size

Dependency Graph

Top-𝑁 Target list

Approximation Table

Processed Top-𝑁 Target

list
Top-𝑁 list

Prior Process

Execution
Step 1 Step 2 Step 3

Partition Technique Dependencies resolved

Fig 1: Flow diagram of Top-𝑵 selection algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.4, August 2013

22

same as binary trie, but cannot have both at the same time.

The main goal of utilizing the 𝜖 transition is to split a super-

node in a trie into multiple small and fixed size nodes. These

nodes are sequentially connected by the 𝜖 branches. In this

data structure a limit is set on the number of overlapped rules

per node, denoted by 𝑅𝑡𝑟𝑖𝑒 . The pseudo-code to construct 𝑇𝜖

structure is given in algorithm 3.

 Algorithm 3: 𝑇𝜖 construction algorithm

Input: Prefix table consisting of prefixes 𝐷𝑖 , 0 ≤
 𝑖 < 𝑃𝑑 with associated next hop info 𝑁𝐻𝐼𝑖

 Input: Root node 𝐷𝑟𝑜𝑜𝑡 of 𝑇𝜖 , 𝐷𝑟𝑜𝑜𝑡 . 𝑙𝑒𝑓𝑡 =
 𝑁𝑈𝐿𝐿, 𝐷𝑟𝑜𝑜𝑡 . 𝑟𝑖𝑔𝑕𝑡 = 𝑁𝑈𝐿𝐿, 𝐷𝑟𝑜𝑜𝑡 . 𝑠𝑖𝑧𝑒 = 0

 Input: Maximum node size, 𝑅𝑡𝑟𝑖𝑒

 Output: 𝑇𝜖 trie structure

1. 𝑖 = 0

2. while 𝑖 ≤ 𝑃𝑑 do

3. Binary_trie_insert (𝐷𝑖 , 𝐷𝑟𝑜𝑜𝑡)

4. Let 𝐷𝑛𝑜𝑑𝑒 be a node where 𝐷𝑖 is stored

5. if 𝐷𝑛𝑜𝑑𝑒 . 𝑠𝑖𝑧𝑒 < 𝑅𝑡𝑟𝑖𝑒 then

6. Store 𝑁𝐻𝐼𝑖 to 𝐷𝑛𝑜𝑑𝑒 , 𝐷𝑛𝑜𝑑𝑒 . 𝑠𝑖𝑧𝑒 =
 𝐷𝑛𝑜𝑑𝑒 . 𝑠𝑖𝑧𝑒 + 1

7. else

8. if 𝐷𝑛𝑜𝑑𝑒 has 𝜖 branch (𝐷𝑟𝑜𝑜𝑡 . 𝑙𝑒𝑓𝑡 = 𝜖

 branch, 𝐷𝑛𝑜𝑑𝑒 . 𝑟𝑖𝑔𝑕𝑡 = 0) then

9. 𝐷𝑛𝑜𝑑𝑒 = 𝐷𝑛𝑜𝑑𝑒 . 𝑙𝑒𝑓𝑡

10. Go to step 5

11. else

12. Create a node 𝐷𝑛𝑒𝑤

13. 𝐷𝑛𝑒𝑤 . 𝑙𝑒𝑓𝑡 = 𝐷𝑛𝑜𝑑𝑒 . 𝑙𝑒𝑓𝑡

14. 𝐷𝑛𝑒𝑤 . 𝑟𝑖𝑔𝑕𝑡 = 𝐷𝑛𝑜𝑑𝑒 . 𝑟𝑖𝑔𝑕𝑡

15. 𝐷𝑛𝑜𝑑𝑒 . 𝑙𝑒𝑓𝑡 = 𝐷𝑛𝑒𝑤

16. 𝐷𝑛𝑜𝑑𝑒 . 𝑟𝑖𝑔𝑕𝑡 = 0

17. Store 𝑁𝐻𝐼𝑖 to 𝐷𝑛𝑒𝑤 , 𝐷𝑛𝑒𝑤 . 𝑠𝑖𝑧𝑒 =
 𝐷𝑛𝑒𝑤 . 𝑠𝑖𝑧𝑒 + 1

18. end if

19. end if

20. 𝑖 = 𝑖 + 1

21. end while

22. return 𝑇𝜖 trie

Fig 2: Hierarchical 𝑻𝑻𝝐 search structure

The entire process is illustrated using the following

architecture shown in fig 2. The incoming packet is passed on

to the header extractor; from which the different field values

are separated. These header field values are routed to all

pipelines to perform the search. These results are transmitted

to the Bloom filter for performing packet classification.

This process involves the following two phases. Initially, for a

given set of rules 𝑅 Bloom filter computes 𝑘 hash values for

each element 𝑟𝑖 ranging from 1 to 𝑏 using 𝑘 hash functions,

𝑕1(), … . , 𝑕𝑘(). Each of these values addresses a single bit in

the 𝑏 bit vector and sets it to one. Note that if one of the 𝑘

hash values addresses a bit that is already set to 1, that bit is

not changed. The following pseudo-code describes adding an

element 𝑟 to a Bloom filter.

BFAdd 𝑟

1. for 𝑖 = 1 𝑡𝑜 𝑘

2. Vector 𝑕𝑖 𝑟 ← 1

Querying the filter for set membership of a given element 𝑟 is

similar to the above process. Given element 𝑟, 𝑘 hash values

are generated using the same hash functions. The bits in the

𝑏-bit long vector at the locations corresponding to the 𝑘 hash

values are checked. If at least one of the 𝑘 bits is 0, then the

element is declared to be a nonmember of the set. If all the

bits are found to be 1, then the element is said to belong to the

set with a certain probability. If all the 𝑘 bits are found to be 1

and 𝑥 is not a member of 𝑅, then it is a false positive. The

following pseudo-code describes the query process.

BFQuery 𝑥

1. for 𝑖 = 1 𝑡𝑜 𝑘

2. if 𝑉𝑒𝑐𝑡𝑜𝑟[𝑕𝑖 𝑟] = 0 return false

3. return true

At the time of querying the filter in case of 𝑘-stage pipelined

Bloom filter as soon as the first unset bit is found, the analysis

is stopped. The same process is illustrated in the following

sections.

4.3.1 𝑘-Stage Pipelined Bloom Filter
The 𝑘-Stage Pipelined Bloom Filter is defined as the Bloom

filter implementing its hash functions in a pipelined fashion

[19]. The main advantage of this filter is that it prevents using

subsequent stages for resolving the input as the member of

bit-array. At worst, it operates like a standard Bloom filter that

uses the entire hashing functions prior to deciding the input

category.

Fig 3 shows the architecture of 𝑘-stage pipelined Bloom filter.

It includes 𝑘 set of hashing functions. The hash values are

constantly computed in each stage for the given input. Also,

only when the input matches with the bit-array sought, the

subsequent stage computes hash values. The term En means

enable. This reveals the matching criteria in the earlier stage

enabling the next stage of the pipeline.

With regards to the programming stage, the entire hashing

function is used and pipelined stages are permanently

occupied. Hence 𝑘-stage pipelined bloom filter is used in

membership checking stage which is shown below.

Let 𝑏 represent the size of the bit-array and 𝑛 be the input

count. The probability that one of 𝑏 bits is set using single

hashing function working on a single input is given by

equation 1.

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.4, August 2013

23

 𝑝𝑠 =
1

𝑏
 (1)

and the probability of unsetting a bit is computed as

 𝑝𝑢𝑠 = 1 −
1

𝑏
 . 2

Similarly, subsequent to the process of programming, all the

inputs into the pipelined bloom filter using 𝑘 independent

hashing functions, the probability of bit still remaining unset

can be calculated using following equation.

 𝑝𝑢𝑠
′ = 1 −

1

𝑏

𝑘𝑛

 ≈ 𝑒
−𝑘𝑛
𝑏 (3)

Thus the probability by which the bit is set is

 𝑝𝑠
′ = 1 − 𝑝𝑢𝑠

′ = 1 − 𝑒
−𝑘𝑛
𝑏 . (4)

4.3.1.1 Power Consumption
Let 𝑃𝑕 be the power consumed by the hashing function, 𝑃𝑙𝑢

be the power consumed by the bit-array lookup function, 𝑃&𝑘

be the power consumed by the 𝑘 input AND operation.

The power consumed by pipelined bloom filter 𝑃𝑝𝑏𝑓 is

computed from fig 3 and is given by the following equation

𝑃𝑝𝑏𝑓 = 𝑃𝑕𝑕 1
+ 𝑃𝑙𝑢𝑕1

+ 𝑝𝑠𝑕1

′ 𝑃𝑕𝑕 2
+ 𝑃𝑙𝑢𝑕2

+ 𝑝𝑠𝑕1

′ 𝑝𝑠𝑕2

′ 𝑃𝑕𝑕 3
+ 𝑃𝑙𝑢𝑕3

 + ⋯

+ 𝑝𝑠𝑕1

′ … . . 𝑝𝑠𝑕𝑘−1

′ 𝑃𝑕𝑕 𝑘
+ 𝑃𝑙𝑢𝑕𝑘

 + 𝑃&𝑘

= 𝑃𝑕𝑕 1
+ 𝑃𝑙𝑢𝑕1

+ 𝐵 𝑃𝑕𝑕 2
+ 𝑃𝑙𝑢𝑕2

 + 𝐵2 𝑃𝑕𝑕 3
+ 𝑃𝑙𝑢𝑕3

+ ⋯ + 𝐵𝑘−1 𝑃𝑕𝑕 𝑘
+ 𝑃𝑙𝑢𝑕𝑘

 + 𝑃&𝑘

= 𝐵𝑖−1
𝑘

𝑖=1
 𝑃𝑕𝑕 𝑖

+ 𝑃𝑙𝑢𝑕 𝑖
 + 𝑃&𝑘 (5)

Where 𝐵 = 1 − 𝑒
−𝑘𝑛

𝑏 .

The value 𝑝𝑠𝑕 𝑖

′ used in above equation (5) represents the

probability of the bit which is set using hashing function with

index 𝑖. Thus 𝑃𝑝𝑏𝑓 is shown using the following equation

𝑃𝑝𝑏𝑓 = 1 − 𝑒
−𝑘𝑛
𝑏

𝑖−1𝑘

𝑖=1
 𝑃𝑕𝑕 𝑖

+ 𝑃𝑙𝑢𝑕 𝑖
 + 𝑃&𝑘 . (6)

This approach of using 𝑘-stage pipelined bloom filter

consumes minimum power.

4.4 Advantages

 The top 𝑁 approximation algorithm keeps away rules

having poor heat rate.

 The utilization of Bloom filters minimizes the

processing time of packet classification.

Fig 3: Architecture of 𝒌-stage pipelined bloom filter

1

0

0

1

0

0

1

0

0

1

𝑕1

𝐸𝑛 = 1

𝑕𝑘

𝐸𝑛

𝑕3

𝐸𝑛

𝑕2

𝐸𝑛

𝑘 Hashing

functions Bit - Array

Match /

Mismatch

 Stage 1

Stage 2

 Stage 3

 Stage 𝑘

 Membership Analysis

Incoming

key

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.4, August 2013

24

 The overall power consumption is also minimized.

5. SIMULATION RESULTS

5.1 Simulation Model and Parameters
In this section, the performance of the

Fast Parallel Packet Classification (FPPC) algorithm is ex-

amined with an extensive simulation study by using NS-2

[20]. The results obtained are compared with HHSS. The

topology used in the simulation is depicted in Fig 4. The UDP

traffic flows are used. The filtersetsize is varied as 500, 1000,

1500, and 2000 number of rules. The filter sets are generated

by using the ClassBench [21] tool.

5.2 Performance Metrics
In the simulation experiments, the following parameters for

UDP CBR data flows are measured.

 Throughput (average no. of packets processed at the

node per second)

 Delay (the overall mean delay occurred including

searching and matching delays in µseconds)

 Efficiency (the memory utilized in terms of number

of bits per rule)

The results are described in the next section.

Fig 4: Simulation Topology

In this experimentation the database is generated by varying

the filtersetsize. The size of the filerset is varied from 500 to

2000. In this case, a set of CBR flows using UDP protocol is

transmitted from the same source to different destinations.

Fig 5: Filtersetsize Vs Efficiency

Fig 6: Filtersetsize Vs Delay

Fig 7: Filtersetsize Vs Throughput

When the filter size is increased, it results in the small

degradation of efficiency. Fig 5 shows the results of efficiency

when the filter size is increased. It is observed that the

efficiency of FPPC is slightly less than that of HHSS, because

of the increase in bit vector size in Bloom filter in FPPC

classification.

The increase in filter size increases the size of database and

hence the searching and matching delay tends to increase. It is

observed from fig 6 that the delay of the proposed FPPC is

less than the existing HHSS technique, since FPPC uses the

Top-N rule selection approach.

The increase in filtersetsize does not make any significant

variations in the overall throughput. This can be depicted from

the fig 7. It is observed that FPPC has higher throughput as

compared to HHSS.

6. CONCLUSIONS
In this paper, a design of novel technique for fast parallel

packet classification for internet traffic is proposed. In this

algorithm a hierarchical search structure constructed by using

ternary trie data structure is used. This avoids backtracking

which saves time. By simulation results, it can be concluded

that the proposed technique minimizes the searching delay

thereby increasing throughput with little decrease in memory

efficiency. One of the drawbacks of the design is the

potentially long latency for rule sets with large number of

overlapped rules. In future it is planned to explore the

methods to reduce latency of overlapped rules and update the

overall performance of above technique.

0

0.05

0.1

0.15

0.2

0.25

0.3

500 1000 1500 2000M
em

o
ry

ef
fi

ci
en

cy
(M

b
p

r)

Filtersetsize (No. of rules)

Filtersetsize Vs Memory efficiency

FPPC
HHSS

2.4

2.6

2.8

3

3.2

3.4

3.6

500 1000 1500 2000

D
el

ay
 (

µ
S

ec
o

n
d

)

Filtersetsize (No. of rules)

Filtersetsize Vs dealy

FPPC

HHSS

0

10

20

30

40

50

60

500 1000 1500 2000

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Filtersetsize (No. of rules)

Filtersetsize Vs Throughput

FPPC

HHSS

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.4, August 2013

25

7. REFERENCES
[1] David E. Taylor, “Survey & Taxonomy of Packet Clas-

sification Techniques,” Technical Report

WUCSE-2004-24, Department of Computer Science and

Engineering, Washington, May 2004.

[2] V. Srinivasan, S. Suri, G. Varghese, and M. Waldvogel,

“Fast and Scalable Layer Four Switching,” in ACM

SIGCOMM, June 1998.

[3] V. Srinivasan, S. Suri, and G. Varghese, “Packet clas-

sification using tuple space search,” in ACM SIG-

COMM, pp. 135–146, 1999.

[4] F. Baboescu, S. Singh, and G. Varghese, “Packet Clas-

sification for Core Routers: Is there an alternative to

CAMs?” in IEEE INFOCOM, 2003.

[5] P. Gupta and N. McKeown, “Packet Classification using

Hierarchical Intelligent Cuttings,” in Hot Intercon-

nects VII, August 1999.

[6] S. Singh, F. Baboescu, G. Varghese, and J. Wang,

“Packet Classification Using Multidimensional Cut-

ting,” in Proceedings of ACM SIGCOMM, August 2003.

Karlsruhe, Germany.

[7] T. Y. C. Woo, “A Modular Approach to Packet Clas-

sification: Algorithms and Results,” in IEEE INFO-

COM, March 2000.

[8] R. K. Montoye, “Apparatus for Storing “Don‟t Care”in

Content Addressable Memory Cell.” United States Pa-

tent 5,319,590, June 1994. HaL Computer Systems, Inc.

[9] Young-Deok Kim, Hyun-Seok Ahn, Suhwan Kim, and

Deog-Kyoon Jeong, “A High-Speed Range-Matching

TCAM for Storage-Efficient Packet Classification,”

IEEE Transactions on Circuits and Systems-I: Regular

Papers, vol. 56, no. 6, June 2009.

[10] D. E. Taylor and J. S. Turner, “Scalable Packet Clas-

sification using Distributed Crossproducting of Field La-

bels,” Tech. Rep. WUCSE-2004-38, Department

of Computer Science and Engineering, Washington.

[11] J. van Lunteren and T. Engbersen, “Fast and scalable

packet classification,” IEEE Journal on Selected Areas in

Communications, vol. 21, pp. 560–571, May 2003.

[12] Duo Liu, Zheng Chen, Bei Hua, Nenghai Yu and Xinan

Tang, “High-Performance Packet Classification Al-

gorithm for Multithreaded IXP Network Processor,”

ACM Transactions on Embedded Computing Systems,

Vol. 7, no. 2, Article 16, February 2008.

[13] Yaxuan Qi, Lianghong Xu, Baohua Yang, Yibo Xue and

Jun Li, “Packet Classification Algorithms: From Theory

to Practice,” IEEE INFOCOM 2009.

[14] O˜guzhan Erdem, Hoang Le and Viktor K. Prasanna,

“Hierarchical Hybrid Search Structure for High Per-

formance Packet Classification,” in IEEE INFO-

COM, 2012.

[15] Weirong Jiang and Viktor K. Prasanna, “Large-Scale

Wire-Speed Packet Classification on FPGAs,” in ACM,

2009.

[16] Yadi Ma and Suman Banerjee, “A Smart Pre-Classifier

to Reduce Power Consumption of TCAMs for Mul-

ti-dimensional Packet Classification,” in ACM, 2012.

[17] Alan Kennedy, Xiaojun Wang, Zhen Liu and Bin Liu,

“Low Power Architecture for High Speed Packet Clas-

sification,” in ACM, 2008.

[18] Ho-Yu Lam, Donghan Wang and H. Jonathan Chao, “A

Traffic-aware Top-N Firewall Approximation Al-

gorithm,” in the first International workshop on secu-

rity in computers, networking and communications,

2011.

[19] Mahmood Ahmadi and Stephan Wong, “K-Stage Pipe-

lined Bloom Filter for Packet Classification,” in Interna-

tional conference on computational science and engineer-

ing, 2009.

[20] Network simulator, http://www.isi.edu/nsnam/ns

[21] D. E. Taylor and J. S. Turner. “ClassBench: A Packet

Classification Benchmark,” IEEE/ACM Transactions on

Networking, vol. 15, no. 3, pp. 499-511, June 2007.

IJCATM : www.ijcaonline.org

