
International Journal of Computer Applications (0975 – 8887)

Volume 76– No.3, August 2013

25

A Holistic Approach to Autonomic Self-Healing
Distributed Computing System

Abhishek Bhavsar

Department of
Computer

Engineering,

College of
Engineering, Pune

Ameya More

Department of
Computer

Engineering,

College of
Engineering, Pune

Chinmay Kulkarni

Department of
Computer

Engineering,

College of
Engineering, Pune

Dheeraj Oswal

Department of
Computer

Engineering,

College of
Engineering, Pune

Jagannath Aghav

Department of
Computer

Engineering,

College of
Engineering, Pune

ABSTRACT

Distributed Computing systems are prone to errors and faults

and a major amount of time is wasted in maintaining the

system and bringing it back to a stable state after a fault.

Human resources in the distributed systems architecture

currently handle this maintenance. Despite the emergence of

ultra-reliable components, failure in distributed computing

systems is still an unmitigated problem. As a result of this a

lot of resources in the form of money and manpower and

efforts in the form of man months are wasted. The proposed

mechanism focuses efforts to make a distributed systems

environment reliable and robust by proposing an autonomic,

self-healing architecture. A holistic approach to the problem is

adopted and an architecture that is general enough to be

adopted by a wide range of existing systems is proposed.

Some of the major challenges include selecting the

appropriate actions for healing and reducing the overhead thus

making healing lightweight and transparent, yet effective. The

proposed system architecture makes use of data mining

techniques to generate rules based on gathered system data

from logs. The rules are used to make decisions of corrective

action and hence carry out the self-healing mechanism.

General Terms

Fault Tolerance, Failure Prediction, Distributed Systems.

Keywords

Autonomic Computing, Self-Healing Systems, Healing

Engine, Reliable Systems, Dependable Systems

1. INTRODUCTION

The advent of computers kicked off a race for development of

a unified computing platform that could provide for a

centralized computing facility, large and reliable storage and

increased accessibility. This race brought about revolutionary

technologies like Grid Computing, Clustered Systems,

Distributed System and many others. Distributed Computing

is the most recent development in this field and shows a lot of

promise.

There is an ever-increasing demand for large-scale distributed

computing systems with tens to hundreds of

thousands of computing nodes that are being designed and

deployed. The large scale of distributed computing

environments, combined with the ever-growing system

complexity, has made reliability a tremendous challenge.

Component reliability becomes more difficult with the

increasing complexity of the distributed system components

as well as growing system size. [1] In order to improve

component reliability, considerable research has been done to

make distributed computing architectures resilient to faults

and to make their applications more robust. The main aim is

to create a self-healing cloud architecture that can efficiently

detect failures in the system and take the corrective action

based on meta-learning techniques.

2. MAIN CONTRIBUTION

In this study, a dynamic meta-learning architecture that can

detect possible failures in the distributed computing system

has been proposed. These failures are detected with

reasonable prediction accuracy on the basis of failure logs

over a large period of time. The architecture consists of two

basic parts to predict and take corrective action:

 Part one preprocesses and analyzes system event logs.

The preprocessed (scrubbed) data is analyzed by means

of association rule based machine learning to examine

interesting events that may possibly lead to faults. The

machine learning techniques are also used to identify

failure patterns amongst the different distributed system

components. These failure patterns are later used to

generate the necessary association rules required in the

later stages for accurate failure prediction.

 Part two uses the rules generated by the first part in order

to carry out the corrective action and hence prevent

failure. This may be done by means of migrating virtual

machines running on computing nodes that are predicted

to fail to another computing node.

3. HEALING

3.1 Healing – An Overview

Healing is the process of restoring a damaged or diseased

system to its original working state, which is free from these

problems. Being able to automatically detect and discover

faults is of great importance for any healing system. The

necessary actions must be taken in order to return to a

working and fully functional working state. Distributed

computing systems must also incorporate healing in order to

ensure efficient working which can quickly, efficiently and

accurately recover from a problematic state to its previous

working state. The distributed computing environment can

also suffer from a varied range of problems and failures.

Some of these problems are:

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.3, August 2013

26

 Security issues at both the client and at the server ends.

 Privacy of the users that have registered themselves with

a remote distributed computing system.

 Integrity of the user data that is stored on the servers.

 Theft of the user data stored on servers.

 Loss of the user data stored on servers. Applications to

be stored on the distributed system that are infected or

are remotely stored on the distributed system with

malicious intent.

 The services and resources provided by a distributed

computing infrastructure are not limited by geographic

boundaries. The distributed computing systems provide

these services to their clients through a single interface

thus making it very difficult to locate the data of different

users on the physical storage at the distributed server

end.

All the above-mentioned problems make it absolutely

necessary to develop an efficient healing system for the

distributed computing system.

3.2 Faults

Any system that is working perfectly can be susceptible to a

large number of faults. Depending on the tasks executed by

that system, these faults might take a varied number of forms.

The combined effect of these faults is a decrease in the

productivity of the system and hence a drop in the system

efficiency. In layman terms, the given system no longer

functions as it used to before the occurrence of the faults in

the system. These faults may occur at different levels in the

system architecture. Furthermore, certain faults can trigger the

occurrence of subsequent faults and this can be disastrous. A

fault in a system is thus a malfunction that leads to a certain

deviation from the expected behavior of the system. If the

case of a system of inter-connected computers were to be

considered, faults may occur due to a large number of factors,

including hardware failure, software bugs, software failure

and network problems. Three types of faults are observed in a

typical distributed system of computers:

 Transient faults: These faults occur once and then

disappear. For example, a network message doesn’t

reach its destination but does when the message is

retransmitted after some period of time.

 Intermittent faults: Intermittent faults fault that are

reoccurring. These are the most irritating of faults and

occur mainly due to component failures or improper

inter-component operation, like a loose connection.

 Permanent faults: This type of failure is persistent and it

will continue to exist as long as the faulty system

component is repaired or even fully replaced in extreme

cases. Examples of this fault are disk head crashes,

software bugs, and burnt-out power supplies.

It is thus essential for any system to incorporate techniques to

resolve these faults as quickly and effectively as possible. In

general, a fault tolerant system is what is required.

3.3 Fault Tolerance
The basic approach to building fault tolerant systems is

redundancy. Redundancy may be applied at several levels.

 Information redundancy: Information redundancy is

used to provide fault tolerance by replicating or coding

the data. For example, a Hamming code is used to

provide extra bits in the data in order to recover a

certain ratio of failed bits. Other important samples used

to provide information redundancy are parity memory,

ECC (Error Correcting Codes) memory and ECC codes

on data blocks.

 Time redundancy: Time redundancy achieves fault

tolerance by performing an operation several times.

Retransmissions in a reliable point-to-point and the use

of time-outs along with group communication are

examples of time redundancy. This form of redundancy

is extensively useful in the presence of transient or

intermittent faults. It is of no use with permanent faults.

An example is the retransmission of TCP/TP packets.

 Physical redundancy: Physical redundancy deals with

devices rather than data. Extra equipment is added to

enable the system to tolerate the loss of some failed

components. RAID disks and backup name servers are

examples of physical redundancy.

There are many challenges with regard to the implementation

of fault tolerant architecture for any distributed system or

autonomic computing system. Some of these challenges are:

 Implementation of autonomic fault tolerance techniques

is required for multiple instances of any application that

is running on the several virtual machines that are

provided via the distributed computing infrastructure.

 Fault tolerant techniques must be developed which are

integrated with the existing workflow scheduling

algorithms that have been implemented for the

underlying autonomic system.

 It is important that a great level of reliability and

availability of multiple distributed computing providers

with independent software stacks be ensured.

 Autonomic fault tolerant methods must react in accurate

synchronization among the various interacting

distributed systems; otherwise the solution itself can

lead to future faults in the system. It is quite obvious

that the techniques that can be developed for automatic

fault tolerance are accompanied by a large number of

limitations. In the foresight of various users (clients)

registered with a distributed system, requesting services,

it is thus a great ordeal to ensure efficient provision of

services without error. Fault tolerant mechanisms cannot

be relied upon regardless of them being automatic.

It is extremely difficult to synchronize fault repairs amongst

the various interconnected nodes of our autonomic distributed

computing system, thus manual intervention in the healing

process must be kept to a minimal level. Apart from

synchronization, many other aspects must also be considered,

including automatic and accurate load balancing in the

unfortunate case of the failure of a node or any component of

the distributed system. It is this that has led to the growing

demand for an autonomic distributed computing system that is

capable of self- healing keeping in mind that the system is not

completely fault tolerant and impervious to faults.

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.3, August 2013

27

3.4 Need for Prediction
The Distributed Computing environment may be distributed

over geographical locations. Also, inherent in the definition of

distributed computing systems, is the notion of leasing

resources to third parties. The distributed systems service

provider needs to ensure uninterrupted and failure proof

service. Thus the distributed nature and service liabilities

entail a robust system that is reliable and requires minimum

human intervention. One of the most fundamental and

essential features that must be incorporated to achieve these

goals is failure prediction. Failure prediction is an ensemble of

various analytical techniques that work together closely to

predict failures and thus trigger healing action.

3.5 Self-Healing
Ever since development of modern computers it has become

very difficult to rectify the system faults and manage recovery

from malicious attacks due to the increase in complexity of

the systems. All these factors resulted in the study in the field

of autonomic computing and have explored the concept of

self-healing systems. Autonomic computing is a self-

managing computing model named after, and patterned on,

the human body’s autonomic nervous system. Self-healing in

autonomous computing is described as the process to free

people from discovering, recovering, and failures. Self-

healing systems are expected to heal themselves at runtime in

response to any change in environment or operational

circumstances. Thus, the goal of self-healing is to prevent

disastrous failure through prompt execution of certain

proposed actions. A self-healing mechanism that is expected

to monitor, diagnose, recover from faults and regain

normative performance levels independently is needed. The

Self-healing technology enhances the system reliability by

removing the need for human operation, as human

configuration and maintenance of complicated systems makes

the system more vulnerable to errors. Conventional ways to

eliminate these errors would include log-based level, model-

based level, and component-based level approaches. These

approaches do support some parts of the self-healing process

but not the whole process that includes monitoring, filtering,

translation, analysis, diagnosis, decision and healing.

4. PROPOSED PREDICTION SCHEME
The failure prediction scheme incorporates various data

mining techniques to predict failures by generating rules. This

module is independent of the autonomic healing engine and

thus can be upgraded with new and better algorithms

transparently.

A high level diagram of the proposed fault prediction scheme

is proposed below. The scheme involves two parts: data

scrubbing and the other for fault prediction. The RAS logs

from the Blue Gene/L System available at ANL were

used.[2][3][4][5]

4.1 Data Scrubber
The RAS logs cannot be used as is for data mining because of

the unevenness in reporting the same type of error messages.

The Data Scrubber handles all the actions of cleaning data so

as to make it usable for mining. This step also helps in

reducing the amount of data storage space required to store

the statistical data. Upon completion, the data scrubber

intends to provide a list of unique events for failure prediction

4.1.1 Event Categorization
The RAS log, has a lot of information and because of the

inherent distributed nature of the Blue Gene/L System, the

logs cannot be used as is. The logs originate from a variety of

different facilities and carry a lot of information that needs to

be made meaningful to the data-mining program. This can be

achieved by categorizing events. Categorization of events

maps the problem to a binary model where the particular

event either occurs or not. Event categorization is also done

over the fatality of the event. This helps in recognizing

failures efficiently.

Categorizer

Clean

Log

Meta

Learner

Statistical

Rules &

Association

Rules

Effective

Rule Set

Predictor

Raw

Log

Predicted

Failures

Filter

Data

Scrubber

Fig. 1 Failure Prediction Scheme

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.3, August 2013

28

Fig. 2 Failure Count Before Filtering

4.1.2 Event Filtering

The distributed nature of the system causes a lot of

duplication in the logs.[6][7] As the job is distributed across

nodes, the same job reports the same type of events multiple

times. By studying event duplication times, a 300 sec

threshold for temporal compression of data was decided.

Event logs that appeared from the same location within a 300

sec window having the same category field were reported

only once.

Fig. 3 Failure Count After Filtering

4.1.3 Prediction

The scrubbed data can now be processed by the Prediction

Scheme mechanism in the Fault Prediction Engine, to analyze

the data logs for failure patterns and irregular entries. The

techniques of Association Rule Based Learning are used for

this prediction. The scrubbed data logs are fed to the Weka

Data Mining Tool. [8] Weka is configured to find associations

amongst the entries in the data log. The Apriori algorithm is

preferred to other Association Rule Based Learning

algorithms because it can be easily configured to work with

the large datasets that are used in this research work. [9][10]

The parameters of “Apriori Associate” are set to a minimum

support of 0.01 and a threshold confidence value of 0.1. Once

Weka has finished the processing of the data logs, it returns a

set of rules. These rules are supplied with confidence values

and those with high confidence values for failure events are

predicted to be possible future failures. Those events that can

lead to failures with a high confidence value trigger the

Automatic Healing Engine to migrate VMs and their

processes from this compute node that is likely to fail to a

compute node that is processing normally.

5. PREDICTION ALGORITHM

Based on the effective rule-set create two lists: Triggered

Failures List and Triggering Event List

𝑇𝐸 − 𝐿𝑖𝑠𝑡 = {𝑓𝑖 → 𝑒𝑖1, 𝑒𝑖2, … , 𝑒𝑖𝑘 ∶ 1 ≤ 𝑖 ≤ 𝑁𝑓 }

 𝑇𝐹 − 𝐿𝑖𝑠𝑡 = {𝑒𝑚 → 𝑓𝑚1 , 𝑓𝑚2, … , 𝑓𝑚𝑛 ∶ 1 ≤ 𝑚 ≤ 𝑁𝑒 }

Where 𝑓𝑖 is a fatal event and 𝑒𝑗 is an event (non fatal or fatal)

During prediction, when an event 𝑒 occurs:

1. Append 𝑒 into the prediction event set

𝐸 = {𝑒1 , 𝑒2, … , 𝑒𝑛}

where the events are sorted in an increasing order of their

occurrence items, and remove 𝑒𝑖 when

 𝑇𝑒 − 𝑇𝑖 > 𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡 _𝑤𝑖𝑛𝑑𝑜𝑤

2. Obtain potential failures that may be triggered by 𝑒

according to the 𝑇𝐹 − 𝐿𝑖𝑠𝑡 ∶ 𝑒 → {𝑓1 , 𝑓2 , … , 𝑓𝑘}

3. For each failure in the set of {𝑓1 , 𝑓2 , … , 𝑓𝑘}, go through its

event list according to the

𝑇𝐸 − 𝐿𝑖𝑠𝑡 ∶ 𝑓𝑖 → {𝑒𝑖1, 𝑒𝑖2 , … , 𝑒𝑖𝑘 }

4. If {𝑒𝑖1 , 𝑒𝑖2, … , 𝑒𝑖𝑘 } ⊆ 𝐸 , then produce a warning that the

failure 𝑓𝑖 may occur within 𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡 _𝑤𝑖𝑛𝑑𝑜𝑤

6. EVALUATION METRICS

6.1 Precision
Precision is the probability that a (randomly selected)

retrieved document is relevant.

𝑃 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑝

6.2 Recall
Recall is the probability that a (randomly selected)

relevant document is retrieved in a search.

𝑅 =
𝑇𝑝

𝑇𝑝 + 𝐹𝑛

 0

 10000

 20000

 30000

 40000

 50000

 0 50 100 150 200

N
u

m
b

e
r

o
f

F
a

ilu
re

s

Days

Before Filtering

 0

 10000

 20000

 30000

 40000

 50000

 0 50 100 150 200

N
u

m
b

e
r

o
f

F
a

ilu
re

s

Days

After Filtering

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.3, August 2013

29

Fig. 4 Precision And Recall at 0.4 Confidence

7. CONCLUSION
In this paper, a self-healing prediction engine for large-scale

Distributed Systems is proposed. The case studies with the

Blue Gene/L systems logs have shown good accuracy by

correctively predicting high precision and recall values. The

study has also shown that the approach is well suited for

predicting the failures and taking the corrective healing action

before the occurrence of the failure. The aim in future would

be to come up with a more specific healing mechanism. First

being the prediction window. The size of the prediction

window in this approach is fixed. The next aim would be to

make this window size dynamic. This would lessen the

training cost without hampering the prediction accuracy. In

this approach the Apriori Algorithm was used as the data

mining method. Hence, it is planned to use various other data

mining techniques, such as, decision tree, Filtered Associator,

FPGrowth, Predictive Apriori, etc. thereby making the

prediction scheme more efficient.

Fig. 5 Plot of Actual Failure Data

Fig. 6 Plot of Failures Predicted at 0.4 Confidence

Fig. 7 Plot of Failures Predicted at 0.6 Confidence

8. ACKNOWLEDGMENTS
Our thanks to the staff at the data center and the Department

of Computer Engineering at College of Engineering Pune for

supporting us to carry out the research work.

9. REFERENCES
[1] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E.

Moreira, S. Ma, R. Vilalta, and A. Sivasubramaniam,

“Critical event prediction for proactive management in

large-scale computer clusters,” in Proceedings of the

ninth ACM SIGKDD international conference on

Knowledge discovery and data mining, ser. KDD ’03.

New York, NY, USA: ACM, 2003, pp. 426–435.

[Online]. Available:

http://doi.acm.org/10.1145/956750.956799

[2] Y. Liang and Y. Zhang, “Failure prediction in ibm

bluegene/l event logs.”

[3] T. B. Team, T. Domany, M. Dombrowa, W. Donath, M.

Eleftheriou, C. Erway, J. Esch, J. Gagliano, A. Gara, R.

Garg, R. Germain, M. Giampapa, B. Gopalsamy, J.

Gunnels, B. Rubin, A. Ruehli, S. Rus, R. Sahoo, A.

Sanomiya, E. Schenfeld, M. Sharma, S. Singh, P. Song,

V. Srinivasan, B. Steinmacher-burow, K. Strauss, C.

Surovic, T. Ward, J. Marcella, A. Muff, A. Okomo, M.

Rouse, A. Schram, M. Tubbs, G. Ulsh, C. Wait, J.

Wittrup, M. B. (ibm Server Group, K. D. (ibm

Microelectronics, and L. Kissel, “An overview of the

bluegene/l supercomputer,” 2002.

[4] A. Gara, M. Blumrich, D. Chen, G.-T. Chiu, P. Coteus,

M. Giampapa, R. Haring, P. Heidelberger, D. Hoenicke,

G. Kopcsay, T. A. Liebsch, M. Ohmacht, B. D.

Steinmacher-Burow, T. Takken, and P. Vranas,

“Overview of the blue gene/l system architecture,” IBM

Journal of Research and Development, vol. 49, no. 2.3,

pp. 195–212, 2005.

[5] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and

R. Sahoo, “Bluegene/l failure analysis and prediction

models,” in Dependable Systems and Networks, 2006.

DSN 2006. International Conference on, 2006, pp. 425–

434.

[6] J. Hansen and D. Siewiorek, “Models for time

coalescence in event logs,” in Fault-Tolerant Computing,

1992. FTCS-22. Digest of Papers., Twenty-Second

International Symposium on, 1992, pp. 221–227.

[7] S. Fu and C.-Z. Xu, “Exploring event correlation for

failure prediction in coalitions of clusters,” in

Supercomputing, 2007. SC ’07. Proceedings of the 2007

ACM/IEEE Conference on, 2007, pp. 1–12.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14

Weeks

Precision
Recall

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.3, August 2013

30

[8] “Data mining and machine learning using weka.”

http://www.cs.waikato.ac.nz/ml/weka/.

[9] S. B. Aher and L. L.M.R.J, “Article: A comparative

study of association rule algorithms for course

recommender system in e-learning,” Inter- national

Journal of Computer Applications, vol. 39, no. 1, pp. 48–

52, February 2012, published by Foundation of

Computer Science, New York, USA.

[10] R. Agrawal and R. Srikant, “Fast algorithms for mining

association rules,” in Proc. of 20th Intl. Conf. on VLDB,

1994, pp. 487–499.

IJCATM : www.ijcaonline.org

