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ABSTRACT 

In the present  paper, the existence and  uniqueness of 

deficient discrete cubic spline interpolant by matching the 

given function and first order difference at the intermediate 

points between successive mesh points for a uniform mesh  

has been discussed and also a error estimate concerning this  

deficient discrete cubic spline interpolant is obtained 
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1. INTRODUCTION 

Discrete splines are the splines in which smoothness of the 

function at mesh points is expressed in terms of differences 

rather than continuity of derivatives. These splines have been 

introduced by Mangasarian and Schumaker [10] to find 

solution of some minimization problems involving 

differences. Existence, uniqueness and convergence properties 

of discrete cubic spline interpolant matching the given 

function at mesh points and intermediate points have been 

studied by a number of  authors                (see Lyche ( [7], [8] 

), Dikshit and Powar [ 3 ], Dikshit and Rana [ 4 ], and Rana  ( 

[ 11 ], [ 12 ] ).  Local behaviour of the first difference of a 

discrete cubic spline interpolant has been obtained by Rana 

and Dubey  [ 12 ]. To smooth histograms, estimates of 

derivatives of error functions are sometimes used (see 

Boneva,Kendall and Stefanov [ 2 ],  A unified treatment of 

asymptotic error expansion for both,  even and odd degree 

interpolatory splines given by  Dikshit, Sharma and 

Tzimbalario [5] ). To compute nonlinear splines iteratively, 

Malcom has used discrete splines [9].  In the direction of 

some constructive aspects of discrete splines,  Astor and Duris 

[1]
 
, Jia [6]

  
and  Schumaker  [13] are being refered. In order 

to define discrete cubic splines, by  using  the following 

difference operators introduced in Lyche [7 ].  

 
(0) ( ) = ( )hD f x f x  

(1) ( ) = [ ( ) ( )] / 2 ,hD f x f x h f x h h    

(2) 2( ) = [ ( ) 2 ( ) ( )] / .hD f x f x h f x f x h h     

Cconsider a mesh P on the interval [0,1]  defined by P: 

0 10 := < < ... < = 1nx x x  such that 1 =i ix x p , 

for =1,2,..., .i n  For a given > 0h , suppose a real 

continuous function s(x, h) is defined over [0,1]  and its 

restriction to 1[ , ]i ix x  is a polynomial is  of degree three or 

less, for =1,2,..., .i n  Then s(x, h) defines a discrete cubic 

spline if  

    

( ) ( )

1( , ) = ( , ) = 0,1

=1,..., 1.

j j

h i i h i iD s x h D s x h j

and i n




(1.1)

 

The present paper is organized as follows: Section 2 is about 

existence and uniqueness of discrete cubic spline interpolant .   

Section 3  deals with the discrete error bounds.  Section 4 

concludes the paper. 

2. EXISTENCE AND UNIQUENESS 

The class of all deficient discrete cubic splines is denoted by 

(3,1, , )S P h  where 1(3,1, , )S P h  denotes the class of 

all deficient discrete cubic splines which satisfy the 

periodicity condition 

( ) ( )

0( , ) = ( , ), = 0,1,2j j

h h nD s x h D s x h j
(2.1) 

 Considering the following interpolatory conditions for a 

given function f, 

1( , ) = ( ); =

=1,2,..., 1.

i i i is h f x p

i n

    


               (2.2) 

(1) (1)

1( , ) = ( ); =

=1,2,..., 1.

h i h i i iD s h D f x p

i n

    


(2.3)

 

 where 0 < <1, 0 1,    to prove the 

following theorem, 

Theorem 2.1 : Let f be 1 periodic then for any > 0h , 

there exists a unique 1 periodic deficient discrete cubic 

spline s in the class 1(3,1, , )S P h  which satisfies 

interpolatory conditions (2.2)  and (2.3) , 

 if ( ) =1/ 3i   and (0,0.84]
 

 or if ( ) = 2 / 3ii   and [0.16,1)  ,  
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or if ( ) =1/ 2iii   and (0,1)  . 

Proof: Suppose in the interval 1[ , ]i ix x  for all i, 

2

1

2

1

( ) = ( , ) = ( ) ( ) ( )

( )( )

i i i i i i i

i i i

s x s x h A B x x C x x x x

D x x x x





    

  

                                                                                            (2.4)

 

 Writing 
*  for 1   ,

*  for 1   and setting 

(1) ( , ) =h i iD s x h m  for all i, we determine Ai, Bi, Ci and Di 

using (1.2.2)  and (1.2.3)  as following  

* *2 3 * 2 3( ) =i i i i if A B p C p D p      
(2.5)

 

Taking the first difference of (2.4) , we get 

(1)

2

1

( , ) = [( ) ( )]
2

[( ) ( )
2

i
h i i

i
i i

B
D s x h x x h x x h

h

C
x x h x h x

h


    

    

 

 

2

1

2

1

( ) ( )]

[( )( )
2

i i

i
i i

x x h x h x

D
x x h x h x

h





    

    
 

2

1( )( ) ]i ix x h x h x     
 

Thus taking  

(1) ( , ) =i iD s x h m
   

 for all i, we have    

2 2 2= ( )i i i im B h C p h D   
           (2.6)

 

               
2 2 2

1 = ( )i i i im B p h C h D    
         (2.7) 

and
 

 

(1) 2 * * 2

2 * 2

( ) = [ ( 2 ) ]

[ (2 ) ]

h i i i

i

D f B p h C

p h D

   

  

   

  
(2.8)

 

 Thus from the above relations we get  

2 (1)

1

2

[ ( ) ( ) ]
= i i i i i h i

i

f p N m X m Y D f Q
A

p N

   
 

with 

* 2 2 *2 3 * 2 3

1 2 3 2= { [ ] }iX p h t p t p t p t       

* 2 2 *2 3 * 2 3

4 4 5= { (2 ) }iY p h t p p t p t      
 

and
 

2 3 * 2= [ (3 2 ) 1] 2iQ p h p      

1

2 2

2 3

2 2

4 5

= 6 (1 ), = 2(1 ),

= (3 4 1), = (1 2 3 ),

= 2 3 , = 3 4

N t

t t

t t

  

   

   

  

   

 

 

(1) 2 2 2 2 2 2

1 1 2 4

2

( )(2 ) [ ] [ 2 )]
= h i i i

i

D f h p m h t p t m p t h
B

p N

     

 

(1)

1 3 4

2

( )
= h i i i

i

D f m t m t
C

p N

  
 

(1)

1 2 5

2

( )
= i i h i

i

m t m t D f
D

p N

  
 

Now substituting the values of Ai, Bi, Ci and Di from above 

relations in (2.4) , we have 

(1)
2 2

2

2 2

1 1

( )
( , ) = ( ) [ ( )( 2 )

( ) ( ) ( )( ) ]

h i
i i i

i i i i

D f
s x h f Q x x p h

p N

x x x x x x x x




 

   

     

                

2 21
1 22

[ ( )( )i
i i

m
X h t p t x x

p N

   

                                                                                                                           
2 2

3 1 2 1( ) ( ) ( )( ) ]i i i it x x x x t x x x x      
             

2 2

42

2 2

4 1 5 1

[ ( 2 )( )

( ) ( ) ( )( ) ]

(2.9)

i
i i

i i i i

m
Y p t h x x

p N

t x x x x t x x x x



 

   

     

 

Now using the continuity of s(x, h) at = ix x  i.e. 

1( , ) = ( , )i i i is x h s x h , we have 
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(1)

1

2 2 2

( )
( ) =h i i i i i i

i

D f Q m X m Y
Nf

p p p


     

(1) 3 2

1
1 2

2 2

1 1 2

2

( )[ 2 ]
( )

[ ( ) ]

h i i
i

i i

D f Q p h p
Nf

p

m X h t p t p

p


 





 


 


 

2 2

1 1 4

2

[ 2 ]
(2.10)i im Y t p h p

p

   
  

Now collecting the coefficients of 1im  , im , 1im  , 

in (2.10)  we have 

2 3

1 1 2
1 2 2

2 3

4 1
1 2

[ ]
[ ]

[2 ]
=

i i i
i i

i
i i

X Y X h t p t p
m m

p p

h p t p Y
m F

p









  


 


(2.11)

 

where 

3 2

(1)

1 1 2

(1)

2

[ 2 ]
= [ ( ) ( )] ( )

( )

i

i i i h i

i

h i

Q p h p
F N f f D f

p

Q
D f

p

  



 

 
 



 

Equation (2.11)  can also be written in the following 

simplified form 

 

2 2
*

1 1

2 2
* 2

2(1 )(1 ) 2
[ ] [ ]

2 (1 ) 2 (1 )
[ ( 1 6 6 ) ] =

i i i i

i i i i

h h
R p m R p m

p p

h h
R R p m F

p p

  

   
 

 

 
  

 
      

for =1,2,..., 1. (2.12)i n  

where 

2= (1 ) (1 )(1 2 3 )iR        , 

* 2= (3 2 )iR     , 

1

2
(1) 2

1

2
(1)

2

= 6 (1 )[ ( ) ( )]

2
( )[ (3 2 ) ]

2(1 )
( )[

(1 (3 2 )) ]

i i i

h i

h i

F f f

h
D f p

p

h
D f

p

p

   


  




 





  

  




  

 

Also the above system of equations can be written in the form  

=AM F                                            (2.13) 

where M and F are the transpose of the single column vectors 

0 1[ , ,..., ]nm m m  and 1 1[ ,..., ]nF F   and A is the 

coefficient matrix of order n-1.  

In order to prove Theorem 2.1 , considering  all the cases of 

Theorem 2.1  separately. 

For case (i) in which 
1

=
3

  and (0,0.84] , the 

coefficient of 1im   is nonnegative for 0 < 0.5   and 

nonpositive for 0.5 < 0.84 . Further the coefficients 

of 1im   and im  are always nonnegative and nonpositive 

respectively. Thus, the excess of the positive value of 

coefficient of im  over the sum of the positive values of the 

coefficients of 1im   and 1im   is  

2 3

1

(1 8 14 4 )
( ) =

3
J

  


  
,(say) 

for  0 < 0.5   and 
1

3
 for 0.5 < 0.84  

For case (ii) in which 
2

=
3

  and [0.16,1)  , we 

observe that the coefficient of 1im   is nonpositive for 

0.16 0.5   and nonnegative for 0.5 <1 . 

However the coefficients of 1im   and im  are nonnegative 

and nonpositive respectively. Thus, the excess of the positive 

value of the coefficient of im  over the sum of the positive 

values of coefficients of 1im   and 1im   is 

2 3

2

( 1 8 10 4 )
( ) =

3
J

  


   
,(say) 
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for 0.16 0.5   and 
1

3
 for 0.5 <1 . 

Considering case (iii) in which 
1

=
2

  and (0,1)  , we 

observe that the coefficient of 1im   is nonpositive for 

0 < 0.25   and nonnegative for 0.25 <1 . 

However the coefficient of 1im   is nonnegative for 

0 < 0.75   and nonpositive for 0.75 <1  and the 

coefficient of im  is always nonpositive . Thus, the excess of 

the positive value of the coefficient of im  over the sum of the 

positive values of coefficients of 1im   and 1im   is 

2

3

(6 9 4 )
( ) =

2
J

  


 
 for 0 < 0.25   and 

4

1
( ) =

2
J





 for 0.25 0.75   and 

2 3

5

(1 3 4 )
( ) =

2
J

 


 
 for 0.75 <1 .  

It may be seen easily that 1 2 3 4( ), ( ), ( ), ( )J J J J     

and 5 ( )J   are positive for corresponding values of  . 

Thus, the coefficient matrix A of the system of equations 

(2.13)  is invertible and its row-max norm for 
1

=
3

 (or 

2

3
 or 12), that is, 

1

1A K P P
                                        (2.14)

 

 where 
1 1 1 1 1

1 1 2 3 4 5= {3, ( ), ( ), ( ), ( ), ( )}K max J J J J J         

 

Theorem 2.2 : Let f be 1 periodic then for any > 0h , 

there exists a unique 1 periodic deficient discrete cubic 

spline s in the class 1(3,1, , )S P h  which satisfies 

interpolatory conditions (2.2)  and (2.3)  if  

 ( ) =1/ 3i   and 
2

[ ,0.74]
9

   or if   

( ) = 2 / 3ii   and 
7

[0.26, )
9

  , or if 

( ) =1/ 2iii   and 
7

[0.23, ]
9

  . 

Proof: In order to prove Theorem 2.2 ,  considering  all the 

cases of Theorem 2.2  separately. 

For case (i) in which 
1

=
3

  and 
2

[ ,0.74]
9

  , the 

coefficient of 1im   is nonnegative for 
2

0.56
9

   and 

nonpositive 0.56 0.74  . The coefficient of 1im   is 

always nonnegative for 
2

0.74
9

  . Further the 

coefficient of im  is always nonpositive for 
2

0.74
9

   

. Thus the excess of the positive value of coefficient of im  

over the sum of the positive values of the coefficients of 

1im   and 1im   is 

2

1

( 27 162 162 )
( ) =

27
L

 


  
, 

for 
2

0.56
9

   and  

2

2

(13 50 90 )
( ) =

27
L

 


 
,for 0.56 0.74   

For case (ii) in which 
2

=
3

  and 
7

[0.26, ]
9

  , the 

coefficient of 1im   is always nonnegative for 

7
0.26

9
  . The coefficient of 1im   is nonpositive for 

0.26 0.44   and nonnegative for 
7

0.44
9

  . 

Further, the coefficient of im  is always nonpositive for 

7
0.26

9
   . Thus the excess of the positive value of 

coefficient of im  over the sum of the positive values of the 

coefficients of 1im   and 1im   is 

2

3

( 27 130 90 )
( ) =

27
L

 


  
,  

for 0.26 0.44 
 

 
and

2

4

( 27 162 162 )
( ) =

27
L

 


  
, 

 for 
7

0.44
9

  . 

For case (iii) in which 
1

=
2

  and 
7

[0.23, ]
9

  , the 

coefficient of 1im   is nonnegative for 0.23 0.67   

and nonpositive for 
7

0.67
9

  . The coefficient of 
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1im   is nonpositive for 0.23 0.33   and 

nonnegative for 
7

0.33
9

  . Further the coefficient of 

im  is always nonpositive for 
7

0.23
9

   . Thus the 

excess of the positive value of coefficient of im  over the sum 

of the positive values of the coefficients of 1im   and 1im   is  

2

5

( 2 11 9 )
( ) =

2
L

 


  
, for 0.23 0.33  , 

2

6 ( ) = 1 6 6L      , for 0.33 0.67   and 

7

(7 9 )
( ) =

2
L

 



, for 

7
0.67

9
  . 

It may be seen easily that 1 2 3 4( ), ( ), ( ), ( )L L L L    , 

5 ( )L  , 6 ( )L   and 7 ( )L   are positive for 

corresponding values of  . Thus, the coefficient matrix A of 

the system of equations (6.2.13)  is invertible and its row-

max norm for 
1

=
3

 (or 
2

3
 or 

1

2
 ), that is, 

                        

1

2A K P P
                                     (2.15)

 

 Where 

 

1 1 1 1

2 1 2 3 4

1 1 1

5 6 7

= { ( ), ( ), ( ), ( ),

( ), ( ), ( )}

K max L L L L

L L L

    

  

   

    

 

Let 
*

1, 2= { }K max K K
                                     (2.16) 

3. DISCRETE ERROR BOUNDS 

 For a given > 0h , we introduce the set,  

 0= { :hR x jh j  is an integer }   

and define a discrete interval [0,1] =[0,1]h hR .  

1( , )h hD f p  for the modulus of continuity of f 

defined over [0,1]h , whereas the discrete norm of a function 

f over the interval [0,1]h   

 
*

[0,1]= | ( ) |max
h

f f xP P .  

For a function f and distinct points 1 2 3, ,x x x  in its domain 

the first and second divided differences are defined as 

 
1 2

1 2

1 2

{ ( ) ( )}
[ , ] =

f x f x
x x f

x x




  

and 

 
1 2 2 3

1 2 3

1 3

[ , ] [ , ]
[ , , ] =

( )

x x f x x f
x x x f

x x




  

 respectively. Similarly, higher order divided differences can 

be defined. 

For convenience we write 
(1)f  for 

(1)

hD f , 
(1)

if  for 

(1) ( )h iD f x , Without assuming any smoothness condition 

on the data f, obtaining  the following  bounds for the error 

function 
( ) ( ) ( )( ) = ( , ) ( )k k k

he x D s x h f x  over the 

discrete interval [0,1] .h  

In order to show convergence of a discrete spline, the 

following lemma is required , given  by Lyche[7]  

Lemma 3.1: Let 
=1{ }m

j ja  and 
=1{ }n

j jb  be given sequences 

of nonnegative real numbers such that   

=1 =1

=
m n

i j

i j

a b  , then 

for any real valued function f, defined on a discrete interval 

[0,1]h , we have  

0 1 0 1

=1 =1

( )

| [ , ,..., ] | | [ , ,..., ] |

( ,|1 |)
!

m n

i i i ik j j j jk

i j

k i
h h

a x x x f b y y y f

a
D f kh

k




 

 


 

where  , [0,1]ik jk hx y  , for relevant values of i, j and k. 

Theorem 3.2 :  Suppose s(x,h) is the deficient discrete cubic 

spline interpolant of theorem 2.1  then, 

  

(1) (2)1
( ) ( ) ( , , , ) ( ,|1 2 |)

2!
i he K p h f p   P P 

   (3.1)                                                                                               

 

proof: Writing 
(1) (1)=i i im f e , from (2.13)

 

2
(1)

1 1

2 2

* 2 (1)

2
* (1)

1 1

2(1 )(1 )
[ ]( )

2 (1 ) 2 (1 )
[

( 1 6 6 ) ]( )

2
[ ]( )

i i i

i i i i

i i i

h
R p m f

p

h h

p p

R R p m f

h
R p m f

p
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2
(1)

1

2 2

* 2 (1)

2
* (1)

1

2(1 )(1 )
= [ ]

2 (1 ) 2 (1 )
[

( 1 6 6 ) ]

2
[ ]

i i i

i i i

i i

h
F R p f

p

h h

p p

R R p f

h
R p f

p

 

   

 







 
 

 
 

    

 

           (3.2)

 

 or (3.2)
 
 can be written as following 

(1) (1)( ) = ( ) =i i i iA e F A f D
                  (3.3)       

 

where ( )iD f  or iD  is 

21

2 2
(1)

1

2
2 (1)

(1) * 2

1

2 2
(1)

2
2

( ( ) ( ))
= 6 (1 ) { (3 2 )

2 2(1 )
} ( ) {

2(1 )(1 )
(3 2 ) } ( ) {

} ( ) {( 1 6 6 )

2 (1 ) 2 (1 )
} ( )

2
{ (3 2 ) }

i i
i

h i

h i

i h i i i

h i

f f
D p p

p

h h
D f p

p p

h
p D f

p

R p D f x R R p

h h
D f x

p p

h
p D

p

 
   

 


 
  

 

   


   








   


  

 
  

     

 
 

   (1)

1( )h if x 

A little computation shows that iD  may be rewritten in the 

form of divided difference as following 

11 11

0 1 2 0 1 2

=1 =1

| ( ) |=| [ , , ] | | [ , , ] |i i i i i j j j j

i j

D f u x x x f v y y y f 
  (3.4)     

 

 with  

1 = 6 ( )u p p h  ,      
2

2 = 6 ( )u p h p  , 

2 2

3 = 6u p       
2 2

4 5= = (3 2 )u u p  , 

2

6 7 4 5= = = = 2 (1 )u u v v h     

2

8 9 6 7= = = = 2u u v v h , 

2

10 11= = iu u R p      1 = 6 ( )v p h p  , 

2

2 = 6v p       
2

3 = 6 ( )v p p h  , 

2

8 9= = (1 )v v p       
* 2

10 11= = iv v R p , 

10 = ix x h       11 20 12 21 1= = = = ix x y y   , 

12 21 30 22 30= = = = = ix x x y y  , 

22 31 82 91 100 10 31

42 51 60 82 91 100

= = = = = =

= = = = = = = i

x x x x x y y

y y y y y y x h
, 

32 92 101 110 11 20 32 52

61 70 92 101 110

= = = = = = =

= = = = = = i

x x x x y y y y

y y y y y x h
, 

40 80 1= = ix x h   , 

41 50 81 90 1= = = = ix x x x h   , 

42 51 61 70 80= = = = = ix x x x y h  , 

52 60 81 90= = = = ix x y y h  , 

62 71 41 1= = = ix x y x h  , 

72 102 111 40 50 1= = = = = ix x x y y x h  , 

112 72 112 1= = = ix y y x h  , 

62 71 102 111 1= = = = iy y y y x h  . 

Observing the fact that 
*= = ( , , , )i ju v N p h     

applying  Lemma 3.1 in (3.4)  for =11m  and =11n  

and = 2k  to see that 

* (2)1
| | ( ) ( , , , ) ( ,|1 2 |)

2!
i hD N p h f p   

(3.6)
 

Now using the equations (2.16 ) and (3.6) in (3.3)
  
,  

(1) (2)1
( ) ( ) ( , , , ) ( ,|1 2 |)

2!
he x K p h f p   P P

(3.7)     

 

 where 
* *( , , , ) ( , , , )K p h K N p h     is some 

positive functions of , , , .p h 
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4. CONCLUSION 

In this paper it is proved that there exist a deficient discrete 

cubic spline interpolant by matching the given function and its 

first order difference at the intermediate points between 

successive mesh points for a uniform mesh and studied its 

error bounds. This concept can be applied for higher 

dimensional splines as a future work. 
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