
International Journal of Computer Applications (0975 – 8887) 

Volume 76– No.15, August 2013 

1 

Improved Approximate Multiple Pattern String 

Matching using Consecutive Q Grams of Pattern 

Syed Danish Ali 
Department of Computer Science 

& Engineering 
All Saints’ College of Technology 

 
 

  Zuber Farooqui 
Department of Computer Science & 

Engineering 
All Saints’ College of Technology 

 
 

ABSTRACT  

String matching is to find all the occurrences of a given 

pattern in a large text both being sequence of characters 

drawn from finite alphabet set. This problem is 

fundamental in computer Science and is the basic need of 

many applications such as text retrieval, symbol 

manipulation, computational biology, data mining, and 

network security. Bit parallelism method is used for 

increasing the processing speed of String matching 

algorithm. Standard Shift OR algorithm is used to 

perform approximate string matching. The algorithm is a 

filter which finds out false matches besides detecting 

correct matches. To improve the efficiency of basic Shift 

OR algorithm by reducing the number of false matches 

that is detected along with the correct matches by the 

algorithm, proposed Shift OR with consecutive q grams 

has been implemented. In the algorithm instead of 

reading a single character at a time, it read q characters at 

once. Extensive experiments have been done with the 

algorithm and the results are compared with basic version 

of shift OR algorithms. The number of false matches also 

reduced considerably. The gain is due to the improved 

filtering efficiency caused by q-grams. 

 Keywords: Approximate String matching, Bit 

parallelism, Shift OR String Matching, q Grams. 

1.  INTRODUCTION 

  Q grams of word or a pattern where N can be substituted 

by a small integer value can be overlapping or 

consecutive. For example consider a word “Patter” , the 

overlapping 2grams of word are “pa”, “at”, “tt” and  “er” 

. If consecutive 2grams are considered then they would 

be “pa”, “tt” and “er”[1].The proposed algorithm works 

on considering the consecutive q grams of the patterns. In 

the previous Shift OR method of approximate string 

matching if there are two patterns say “hello” and 

“world” then words like “herld”, “ wello” etc will also get 

detected by the algorithm. The words recognized are 

termed as the false candidates. The potential matches 

generated needs to be verified. The filtering efficiency of 

the of the shift OR filter is improved by considering q 

grams of the pattern which results in the reduction of 

false candidates. [1][9].     

 In the recent years bit parallelism plays an important role 

in string matching, because „w‟ length of the pattern can 

be processed in parallel [5][6]. This is done by creating  

 

bit vectors of the pattern characters, and then the 

matching takes place with the help of bit operations in 

parallel. Transformation into bits results in faster results 

as they can be performed in parallel. Bit parallelism 

although performs better as compared to other non bit 

parallel algorithms, but it imposes a limitation on the 

pattern size. Traditional algorithms solved using bit 

parallelism has a pattern size which is equal to the word 

length of the computer system[13][14]. Therefore 

increasing the word size of the system , will make string 

matching algorithm work for patterns of larger size. 

Recent architecture makes use of 64 bit word size.  

String Matching using bit parallelism can be  viewed as 

being solved for single Pattern and multiple pattern. In 

single pattern string matching problem , there is a single 

pattern whose occurrence is to be reported in the text. In 

multiple pattern string matching problems, a set of 

patterns are given whose occurrence‟s are to be reported 

in the text. The multiple pattern string matching problems 

are having more practical applications in real life.       

2. MULTIPLE PATTERN MATCHING 

USING   BIT PARALLELISM 
The Bit parallel approach can be extended to search for 

multiple patterns inside the text. The method also  works 

for larger pattern sets.  For large pattern sets , the bit 

parallel approach can be beneficial  in terms of execution 

speed and memory requirement. The bit parallel approach 

for multipattern sets uses the Shift OR Algorithm for 

locating the patterns inside the text.  

 The method uses a bit vector B[c] which is initialised in 

a way such that the ith   bit is 0 if the character appears in 

any of the patterns in position i [9]. The automaton has a 

transition from state i to state i + 1 on character c if ith bit 

in B[c] is 0. Another vector D is used which is initialized 

to all 1‟s. When the character c is read from the text D is 

updated as D = (D<<1) | B[c] . After the update, ith bit in 

D is 0 if i − 1th bit was 0 (the previous state i − 1 was 

active) and ith bit is 0 in B[c] (there is a transition from 

state i − 1 to i on c)[9][13][14].  

  The assumption in this method is that all the patterns 

p1p2…..pr have equal size m and m<=w, where w is word 

size of the computer.  

Algorithm Shift OR(text=t1…tn, 

patterns=p1,..,pk)[9][13][14] 

1. Initialization 
m= pattern length, s=1, count=0, 

position=0,    



International Journal of Computer Applications (0975 – 8887) 

Volume 76– No.15, August 2013 

2 

2. Preprocessing 
      [text[i]] <- 1m 

for j= 0…k  do            

for  i= 0… m-1 do         B[ptn[j][i]] <- 

B[ptn[j][i] & ~ (s<<1)  

 end for        

         end for           

3. While pos< n do 

                     D = D <<1 & 1m        

       D=D | B[text[pos]]    

if D> 1m-1 do pos<- pos + 1      

                     Else do count <- count +1     

Report occurrence at position  pos<- pos-m +1 

          D <- 1m           

       pos<- pos +1         

       end else 

          end while. 

Example:  

Text= “hhello” 

Pattern = { “hello”, “world”} 

The Bit Vectors are set in the following manner [13][14. 

 

B[h]=11110, B[e]=11101,B[l]=10011,B[o]=01101 , 

B[w]=11110, B[r]=11011, B[d]=01111 

The Automaton recognizing the set of patterns is shown 

in figure 2 

 
Figure 1 : NFA finding occurrence of character class 

pattern. 

The character class pattern is “[h,w],[e,o],[l/r],[l],[o/d]” 

Table 1 shows bit parallel simulation of above automata. 

 
1 Text = hhello 

D      11110   

B[h]  11110  OR 

D      11110 
D[0]=0  , so shift  

To next state 

3. Text = hhello 
D     11100 

B[e] 11101    OR 

D     11101 
D[1]=0, so shift to next 

State 
2. Text = hhello 

D     11100 

B[h] 11110  OR 

D     11110 
D[1]=1 , so it 

remains  

in the same state 
 

4. Text = hhello 
D     11010 

B[l]  10011    OR 

D     11011 
D[2]=0, so shift to next 

State 

5. Text = hhello 

D     10110 
B[l]  10011    OR 

D     10110 

D[3]=0, so shift to 
next 

State 

6. Text = hhello 

D     01100 
B[o] 01101    OR 

D     01101 

D[4]=0, so shift to next 
State, which is the final 

state  

And the pattern is 
recognized. 

Table 1 : Multiple pattern search example 

The method used for multiple pattern searches is based on 

filtering approach. The filter method works in three 

phases. In the first phase, the pattern is preprocessed. In 

the second phase, matching takes place and in the third 

phase the matches generated by the method needs to be 

verified for more accurate results [14]. 

ANALYSIS OF Shift OR ALGORITHM[13][14] 

 If the Text Length is assumed to be n , then the patterns 

are processed in O( n ) time complexity. 

 All the patterns are assumed to be of uniform length and 

less than or equal to the word size of the system. 

 The method is a filter where the potential matches needs 

to be verified.  

 Number of False Matches for Shift OR Method 

It is assume that there is a pattern set P=(p1,p2……pk) of  

K patterns.  All the patterns are assumed to be having 

equal length m. False matches are calculated for the worst 

case, where all the patterns are assumed to be having 

distinct characters in all pattern positions. In this case:  

(i) Total Number of correct Matches(CM) = K, as 

recognized by the Automaton.  

(ii) Total number of matches recognized by the automaton 

(TM)=  Km 

(iii) Total Number of false matches(FM1) = Total 

Matches-  Total number of Correct matches. 

           FM= Km – K 

(iv) In addition to these there are other false  matches 

detected . Considering the following text and the 

pattern 

Text : “heabcdello” and the pattern “hello” .  
The Shift OR method will detect one pattern match in 

the above text. Counting the false matches for such 

case. 

FM2= m(∑*-k) where ∑ denotes the size of the input 

alphabet . 

(v)Total False Matches(FM)= FM1 + FM2 

FM= Km – K + m(∑*-k) 

            = Km – K + m∑* - mk 

           = K{ Km-1 –m-1} + m∑* 

3. SHIFT OR CONSECUTIVE  2 

GRAMS (SOC2G ) PATTERN 

MATCHING 
Let the Text and the pattern be denoted as  t1.....tn and 

p1......pm respectively. All the patterns are assumed to 

have the same length. The size of the automaton is 

reduced to └m/2┘ + 1 states as compared to m+1 states 

in previous shift OR method. This reduction in the size of 

the automaton is the main cause of improvement  in the 

matching efficiency.  

Considering two patterns “aabbcc” and “ccaabb” where 

the pattern length is 6 , the SOC2G method will result in 

the creation of a two dimensional array of size 256*256 

bytes in memory. The increased efficiency is at the cost 

of increasing the memory requirement. The consecutive  

2 grams of the first pattern are “aa”, “bb” and “cc” and 

that of the second pattern are “cc” , “aa” and “bb”. If the 

pattern length is m, then the number of bits in the bit 

vector will be └m/2┘. The 2 grams of the pattern are 

treated as a single character and the bit vectors are set 

accordingly. The ith bit is set to 0 if there is an occurrence 

of 2gram in the ith position of the pattern and non 

occurrence denotes 1. For the example above the bit 

vectors of the 2 grams of the pattern are set in the 

following manner:  



International Journal of Computer Applications (0975 – 8887) 

Volume 76– No.15, August 2013 

3 

B[aa] = 100, B[bb]=001 and B[cc]=010 

The automaton recognizing the set of the patterns is 

shown in figure 1 

 

Figure 2 Automaton recognizing patterns “aabbcc” 

and “ccaabb” 

As clear from the diagram the number of states would 

reduce to 4 as compared to 7 in the standard shift OR 

method. The automaton reads two characters of the text at 

a time and whenever a state is reached from where 

forward transition is not possible, this forces the 

automaton to reach to the initial state. This change in the 

automaton would reduce the generation of false 

candidates. For example the automaton would not read 

the group of characters “aaffgggggbbcc” in the text. 

3.1  SHIFT OR CONSECUTIVE 2 GRAM     

      ALGORITHM(SOC2G) 
The algorithm works in three phases . The first is the 

initialization phase which consists of initialization of the 

variables used in the algorithm. The second is the pre-

processing phase  which consists of setting the bit 

vectors. The third is the filtering phase which consists of 

matching the set of patterns against the text. 

3.1(a) Initialization Phase 

In initialization phase different variables have been 

initialized which is used in the algorithm. The variable m 

is initialized with the length of patterns (assuming that all 

the patterns have same length). Another variable count is 

used which denotes the number of matches. The variable 

count is initially set to zero before the filtering process 

begins. The variable S is used to maintain the state 

condition and S is initialized with 1 . 

3.1(b) Pre-Processing Phase 

In pre-processing phase bit vectors are made for each 2 

gram of the given patterns. This phase itself consists of 

number of steps as follow: 

1. In the first step all possible combination of alphabets, in 

given text file, of length two (as implementing 2grams) 

are initialized with all ones as presence of denotes non 

occurrence. For this array of size 256*256 is used. 

2. In this step, for each of the patterns consecutive two 

characters are read and the bit vector is set in the 

manner that occurrence at ith position inserts a 0 at ith 

position of the bit vector. In case of odd length pattern  

the last alphabet of each pattern is stored in an array 

called odd[] and then same procedure is applied on the 

rest even length pattern. 

3. Now for each two gram of each pattern initializing a 

variable „t‟ as follows t = ~(s<<h) & int (pow(2,z) - 1), 

where h is initially zero for each pattern and is 

increased by one for each 2 gram of a pattern.    Bit 

vector of the 2gram = Previous Bit vector of the 2gram 

& t. 

 In this way bit vector is created of each two gram. 

3.1(c) Filtering Phase 

In filtration phase making the use of the bit vectors 

formed in previous phase to check the presence of the 

patterns in the given text. Each pattern is not searched 

separately rather than that search for all the patterns is 

done simultaneously. This is done by making the 2 grams 

of patterns equivalent. For example, 1st 2 gram of all the 

patterns are considered equivalent, 2nd 2gram of all the 

patterns are considered equivalent and so on. 

Further, different stages have been made equal to the 

number of 2grams in case of even length pattern and 

number of 2grams plus one in case of odd length pattern, 

with last state as final state in each case.  

A integer array D[] is initialized with the bit vector of the 

2gram encountering during the scanning of the text file 

form the starting(position equal to zero). The bit of D, at 

position equal to the present state i.e. D[present state 

number], is checked. If that bit is zero, then  move to next 

state and check the bit vector of next 2gram(position in 

text file is increased by two), else position in text file is 

decreased by the state and then go back to initial state. A 

match is encountered when final state has been reached. 

At final state the values of count is increased and go back 

to initial state. This is repeated till the end of file. 
1. Text= “sdaabbccfd” Reading 2 characters “sd” 

                                  D    1 1 0 
                            B[sd]    1 1 1  OR 

                                  D    1 1 1 

As D[0]=1 ,so it remains in the same state and the text is 
shifted one character to read the next 2 characters. 

2.  Text = “sdaabbccfd” Reading next two characters “da” 

D   1 1 0 

                                        B[da]   1 1 1  OR 
D   1 1 1 

As D[0]=1 ,so it remains in the same state and the text is 

shifted one character to read the next 2 characters. 

3. Text = “sdaabbccfd” Reading next two characters “aa” 

D   1 1 0 

                                         B[aa]   1 0 0  OR 
D   1 1 0 

As D[0]=0 , the automaton moves to the next and the text 

is also shifted two characters to read next two characters. 

4. Text = “sdaabbccfd” Reading next two characters “bb” 

D   1 0 0 

                                         B[bb]  0 0 1  OR 
D   1 0 1 

As D[1]=0 , the automaton moves to the next and the text 

is also shifted two characters to read next two characters. 

5. Text = “sdaabbccfd” Reading next two characters “bb” 
D   0 1 0 

                                        B[cc]   0 1 0  OR 

D   0 1 0 
As D[2]=0 , the pattern is recognized , State Vector D gets 

reinitialized to 1 1 1. The text is shifted two characters. 

Table 2 Shift OR with 2 Grams 



International Journal of Computer Applications (0975 – 8887) 

Volume 76– No.15, August 2013 

4 

4.  RESULT AND ANALYSIS 

The algorithm „standard shift or‟ and our algorithm „shift 

or with 2grams‟ have been tested with different pattern 

length, number of patterns and different text file of 

different sizes. On the basis of this, the following test 

cases have been made. The result produced in each test 

case is shown below in tabular form, graphical form, and 

graphs comparing these two algorithms. 

The experiment has been performed using the following 

experimental conditions: 

Processor: Intel(R) Xeon (R) CPU E3-1240 V2 @ 3.40 

GHz 

RAM                        : 8.00 GB  

System Type: 64 Bit Operating System 

OS: Windows 7 Professional 

Table 3 Comparison of Shift OR and Shift OR 2 

Grams 

4.1 Different text files of variable size: 

In this case four random text files of size 40MB, 80MB, 

120MB, and 160MB have been taken. And pattern set of 

5 patterns of length 5 character have been taken. 

The following table is showing the result for the input set 

For Shift OR algorithm and Shift OR with 2 grams. 

Figure 2: Comparing Number of matches  

Here different text sizes are taken for same pattern set, 

and observed that if the size of the text is increased, the 

possibility of false matches is gradually reduced by 

upto10% using shift or (with 2 grams) when comparing it 

with standard shift or. 

 

Figure 3: Comparing Time  

4.2 Different patterns set consisting different 

number of patterns of same length: 

Table 4 Comparison of Shift OR and Shift OR 2 

Grams 

 

In this case four pattern set files consisting 5, 10, 15, and 

20 patterns are taken of 5 characters each and a text file 

of 120MB is taken. 

The following table is showing the result for the input set 

for Standard Shift or algorithm and Shift 

OR with 2 Grams: 

 

Figure 4: Comparing Number of Matches  

For a same size text, here pattern set containing different 

number of patterns are taken, where each pattern set 

having same pattern length, It is found that as the number 

of patterns increases, the reduction of false matches 

obtained by shift or (with 2 grams) is gradually increased 

upto 20% as comparing it with the shift or method.  

No. of 

PATTE

RNS OF 

SAME 

LENGT

H 

No. of 

EXACT 

MATCHES 

No. of 

MATCHES 

FOUND 

(in shift or) 

No. OF 

MATCHES 

FOUND 

(in shift or 

with 2grams) 

TIME 

(in Sec) 

(in shift 

or) 

TIME 

(in Sec) 

(in shift or 

with 

2grams) 

5 
2030155

2 
21316602 20591553 0.250 0.297 

10 
2057306

1 
21896644 20591553 0.234 0.281 

15 
2088457

0 
23201734 23028276 0.234 0.67 

20 
3054111

1 
38656846 34348418 0.234 0.577 

SIZE 

OF 

TEXT  

(in 

MB) 

No. of 

EXACT 

COUNT 

No. OF 

MATCHES 

FOUND 

(in shift or 

with 2grams) 

No. OF 

MATCHES 

FOUND 

(in shift or) 

TIME 

(in Sec) 

(in shift 

or with 

2grams) 

TIME 

(in 

Sec) 

(in 

shift 

or) 

40 7243484 7343484 7602054 0.109 0.094 

80 13262149 13282149 13749829 0.203 0.141 

120 20571552 20591553 21316602 0.312 0.234 

160 26961000 26980000 27930000 0.406 0.312 



International Journal of Computer Applications (0975 – 8887) 

Volume 76– No.15, August 2013 

5 

 

Figure 5: Comparing Time  

4.3 Different patterns sets consisting patterns of 

different length and same number of patterns:  

In this case 4 pattern set files are taken consisting 5, 10 

15 and 20 characters in the pattern, consisting of 5 

patterns each. And a text file of 120MB is taken. 

The following table is showing the result for the input set 

for Standard Shift or algorithm: 

 

 

Figure 6: Comparing Time  

 

Figure 7:  Comparing Number of Matches 

 

 

For the same text file, here same number of patterns in 

different pattern sets is taken each of which containing 

different number of characters as pattern size, and 

analyzed that as the number of characters increases in 

pattern size, the possibility of reducing false matches in 

shift or (with 2 grams) is obtained upto 5% when it 

compares with standard shift or method.  

Table 5 Comparison of Shift OR and Shift OR 2 

Grams 

5.  CONCLUSION & FUTURE WORK 

An efficient solutions has been presented for Shift or for 

multiple string matching algorithm using q-grams and bit-

parallelism. Our algorithm work in three phases: pre-

processing, filtering and verifying. The algorithm works 

well even for very large pattern sets by using larger q-

grams. It has been demonstrated that by using our 

algorithm the number of false matches has reduced 

considerably. The reduction in false matches is about 

10% to 20% and as far as the time complexity is 

concerned, it may increase due to excessive hashing 

mechanism. It is also obvious that as the number of q 

grams will increase the memory and time will also 

increase. In certain texts where the probability of patterns 

matching with the text is high, the speed is enormously 

increased as two characters are read at a time. 

In future the the filtering efficiency by constructing 3 

grams of the pattern can be further improved. The 

efficiency is improved at the cost of having a memory 

capacity of 256*256*256 for constructing 3 grams of the 

pattern.  

6. ACKNOWLEDGMENT 
I would like to thanks to my guide Prof Zuber Farooqui 

who has give his precious time and guideline in order to 

complete this paper. This paper will never complete 

without the help of Department of Computer Science & 

Engineering, ASCT Bhopal. 

 

7. REFERENCES 
[1] Leena  Salmela,  J. Tarhio  and  J. Kytojoki, “Multiple 

Pattern String Matching with Q grams”, ACM 

Journal Name, Vol. V, No. N, Month 20YY 

[2] Rajesh Prasad, Suneeta Agarwal, Ishadutta Yadav, 

Bharat Singh “Efficient Bit-Parallel Multi-Patterns 

String Matching Algorithms for Limited 

Expression”, Compute  2010 ACM 

 

 

PATT

ERNS 

OF 

LENG

TH 

No. of 

EXACT 

MATCHES 

No. of 

MATCHES 

FOUND 

(in shift or) 

No. OF 

MATCHES 

FOUND 

(in shift or 

with 2grams) 

TIME (in 

Sec) 

(in shift or) 

TIME 

(in -Sec) 

(in shift or 

with 

2grams) 

5 20591552 21316602 20591553 0.249 0.297 

10 9721487 10585796 10005754 0.202 0.249 

15 6051423 7105534 6525492 0.219 0.234 

20 5026369 5365403 5220394 0.187 0.281 



International Journal of Computer Applications (0975 – 8887) 

Volume 76– No.15, August 2013 

6 

[3]   Heikki Hyyr¨o, Kimmo Fredriksson Gonzalo 

Navarro , “Increased Bit-Parallelism for 

Approximate and Multiple String Matching”, ACM 

Journal of Experimental Algorithmics Vol 10 2006. 

[4]   Gonzalo  Navarro  and  Mathieu  Raffinot. A  Bit   

Parallel approach  to  Suffix  Automata :  Fast        

Extended String Matching. In M. Farach (editor),   

Proc. CPM'98, LNCS 1448. Pages 14-33, 1998.  

[5]    G. Navarro,M. Raffinot, Fast and flexible string 

matching by combining bit-parallelism and suffix 

automata,ACM J. Experimental Algorithmics (JEA) 

5 (4) (2000). 

[6]   M. Crochemore et al., A bit-parallel suffix 

automaton        approach for (δ, γ )-matching in 

music retrieval, in: Proc. 10th Internat. Symp. on 

String Processing and Information Retrieval 

(SPIRE‟03), in: Lecture Notes in Computer. Sci., 

vol. 2857, 2003, pp. 211–223 

[7]   R. Baeza-Yates, G. Gonnet, A new approach to text 

searching, Comm. ACM 35 (10) (1992) 74–82. 

[8]   Hannu Peltola and Jorma Tarhio , Alternative 

Algorithms for Bit-Parallel String Matching, String 

Processing and Information Retrieval, 2003 - 

Springer 

[9]    Leena  Salmela,  J. Tarhio  and  J. Kytojoki 

“MultiPattern   String Matching with Very Large 

Pattern Sets”, ACM Journal of Experimental 

Algorithmics, Volume 11, 2006. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[10]  AHO, A. AND CORASICK, M. 1975. Efficient 

string matching: n aid to bibliographic search. 

Communications of the ACM 18, 6, 333–340. 

[11]  HYYR¨O, H. AND NAVARRO, G. 2002. Faster bit-

parallel   approximate string matching. In Proc. 13th 

Combinatorial Pattern Matching (CPM ‟02). LNCS 

2373. Berlin, Germany, Springer, New York.203–

224. 

[12]  NAVARRO, G. AND RAFFINOT, M. 2000. Fast 

and flexible string matching by combining bit 

parallelism and suffix automata. ACM Journal of 

Experimental Algorithmics (JEA). 5, 4. 

[13]  Vidya Saikrishna, Akhtar Rasool and Nilay Khare. 

Article: Spam Filtering through Multiple Pattern Bit 

Parallel String Matching Combining Shift AND & 

OR. International Journal of Computer Applications 

61(5):40-45, January 2013. Published by Foundation 

of Computer Science, New York, USA.  

[14]  .Vidya Saikrishna, Akhtar Rasool and Nilay Khare 

Time Efficient String Matching Solution for Single 

and Multiple Pattern using Bit Parallelism. 

International Journal of Computer Applications 

46(6):15-20, May 2012. Published by Foundation of 

Computer Science, New York, USA 

IJCATM : www.ijcaonline.org 


