
International Journal of Computer Applications (0975 – 8887)

Volume 76 – No.13, August 2013

14

 Discovering Maximal Frequent Item set using

Association Array and Depth First Search Procedure

with Effective Pruning Mechanisms

K.Sumathi

Assistant Professor,
Department of Computer

Applications,
K.L.N.C.I.T, Madurai

S.Kannan, PhD.

Associate Professor,
Department of Computer

Science,, MKU,
Madurai.

K.Nagarajan

Chief Architect of Business
Intelligence,

Tata Consultancy Services,
Chennai.

ABSTRACT

The first step of association rule mining is finding out all

frequent itemsets. Generation of reliable association rules are

based on all frequent itemsets found in the first step.

Obtaining all frequent itemsets in a large database leads the

overall performance in the association rule mining. In this

paper, an efficient method for discovering the maximal

frequent itemsets is proposed. This method employs

Association array technique and depth first search technique

to mine Maximal Frequent Itemset. The proposed algorithm

GenMFI takes vertical tidset representation of the database

and removes all the non-maximal frequent item-sets to get

exact set of MFI directly. Pruning is done for both search

space reduction and minimizing the number of frequency

computations and number of maximal frequent candidate sets.

The algorithm gives better results for the sparse dataset even

though number of the Maximal Frequent Itemset is huge. The

proposed approach has been compared with Pincer search

algorithm for T10I4D100K dataset and the results shows that

the proposed algorithm performs better and generates

maximal frequent patterns faster. In order to understand the

algorithm easily, an example is provided in detail.

Keywords

Mining Maximal Frequent Itemsets –Association Array,

Depth First Search, Pincer search algorithm.

1. INTRODUCTION

The association rule mining task is a two step process. In the

first step all frequent itemsets are obtained. This is both

computation and I/O intensive. Given m items there can be

potentially 2
m

frequent item sets. It constitutes an area where

significant research findings have been reported. In the second

step confident rules are generated – Rules of the form X/Y ⇒

Y where Y ⊂ X are generated for all frequent itemsets

obtained in step I provided they satisfy the minimum

confidence. Our focus is on the generation of frequent

itemsets. the problem of association rule mining is defined as:

Let I = { i1,i2,i3,…..in} be a set of binary attributes called

items. Let D={t1,t2,t3…tm}be a set of transactions called the

database. Each transaction in D has a unique transaction ID

and contains a subset of the items in . A rule is defined as

an implication of the form x =>ywhere X,Y C I and X ∩Y=

¢. The sets of items and are called antecedent and

consequent of the rule respectively. In a transactional

database, set of items is I={milk, bread, butter, beer}. An

example rule for the supermarket could be {butter, bread}=>

{milk} meaning that if butter and bread are bought, customers

also buy milk. A frequent itemset is one that occurs in at least

a user-specific percentage of the database. That percentage is

called support. An itemset is closed if none of its immediate

supersets has the same support as the itemset. An itemset is

maximal frequent if none of its immediate supersets is

frequent. Downward Closure Property (Basis for Top-down

Search): states that “If an itemset is frequent then all its

subsets must be frequent.”Upward Closure Property (Basis for

Bottom-up Search): states that “If an itemset is infrequent

then all its supersets must be infrequent.”

A major challenge in mining frequent patterns from a large

data set is the fact that such mining often generates a huge

number of patterns satisfying the min_sup threshold,

especially when min_sup is set low. This is because if a

pattern is frequent, each of its subpatterns is frequent as well.

when a transaction database contains large number of large

frequent itemsets, mining all frequent itemsets might not be a

good idea. As an example, if there is a frequent itemset with

size l, then all 2l nonempty subsets of the itemset have to be

generated. Thus, a lot of work is focused on discovering only

all the maximal frequent itemsets (MFI’s). Unfortunately,

mining only MFI’s has the following deficiency. From an

MFI and its support s, we know that all its subsets are

frequent and the support of any of its subset is not less than s,

but we do not know the exact value of the support. To solve

this problem, another type of a frequent itemset, the Closed

Frequent Itemset (CFI), has been proposed. In most cases,

though, the number of CFI’s is greater than the number of

MFI’s, but still far less than the number of FI’s.

A large pattern will contain an exponential number of smaller,

frequent sub-patterns. To overcome this problem, closed

frequent pattern mining and maximal frequent pattern mining

were proposed. A pattern α is a closed frequent pattern in a

data set D if α is frequent in D and there exists no proper

super-pattern β such that β has the same support as α in D. A

pattern α is a maximal frequent pattern (or max-pattern) in

setD if α is frequent, and there exists no super-pattern β such

that α ⊂ β and β is frequent in D.

The First step of frequent mining process is to compute the

support count of each and every item in the database to extract

frequent items. This process requires accessing the database.

The database representation is also an important factor in the

efficiency of generating and counting itemsets. In general

International Journal of Computer Applications (0975 – 8887)

Volume 76 – No.13, August 2013

15

Items in the database can be stored in memory in the

following ways. Dataset organizations are typically horizontal

or vertical. The main difference between these two approaches

is, in case of horizontal representation the computation of

support count of an itemset requires complete scan of

database, whereas in vertical representation the support count

of an itemset is calculated by intersection of transaction sets

of items in itemset

2. RELATED WORKS

The Apriori algorithm [7] is a standard algorithm for finding

frequent itemsets and most of algorithms are its variants. It

uses frequent itemsets at level k to explore those at level k +

1, which needs one scan of the database. it employs the

heuristic that all nonempty subsets of a frequent itemset must

also be frequent, which prunes unpromising candidates to

narrow down the search space. Apriori is based on the

horizontal format of the database representation, in which a

transaction is represented as an item list. An alternative way is

to represent a database in vertical format, i.e., each item is

associated with a set of transaction identifiers (TIDs) that

include the item. As a representative in this group, VIPER [8]

uses a vertical bit-vector with compression to store

intermediate data during execution and performs counting

with a vertical TID-list approach.

The Pincer-Search [1] algorithm uses horizontal data format.

It constructs the candidates in a bottom-up and top-down

direction at the same time, maintaining a candidate set of

maximal patterns. This can help in reducing the number of

database scans, by eliminating non-maximal sets early. The

maximal candidate set is a superset of the maximal frequent

itemset. The Pincer-Search algorithm scans a database to

count the supports of all itemsets in MFCS and Ck in the

bottom-up and top-down directions and classifies all itemsets

in Ck into two groups, frequent and infrequent, in the bottom-

up direction. The group that contains all frequent itemsets is

Lk. The other group that contains all infrequent itemsets will

be used to split the maximal frequent candidate itemsets in

MFCS in the top-down direction. The algorithm will be

terminated when there are no itemsets in MFCS. The Pincer-

Search algorithm also uses the downward closure. The

downward closure consists of two properties. The first

property is that all supersets of the infrequent itemsets must

also be infrequent. This property is used in many typical

bottom-up algorithms of the association rule mining, such as

the Apriori algorithm. The second property is that all subsets

of a frequent itemsets must also be frequent. This property can

be used in a top-down algorithm of the association rule

mining. The Pincer-Search algorithm is very efficient when

the length of the longest frequent itemset of a database is long.

However, its disadvantage is that the initialization of the

maximal frequent candidate set is not efficient. It may spend a

lot of time on finding the set of maximal frequent itemsets.

Hash-Based Method HMFS[2] generates the maximal

frequent itemsets in the category of the combination of

bottom-up and top-down search. This method combines the

advantages of both the DHP and the Pincer-Search

algorithms. Unlike the DHP algorithm, the HMFS method

reduces the number of database scans when the length of the

longest frequent itemset is relatively long. The HMFS method

filters the infrequent itemsets with the hash technique from

the bottom-up direction and then can use the filtered itemsets

to find the maximal frequent itemsets in the top-down

direction. HMFS, combines the advantages of both the DHP

and Pincer-Search algorithms. HMFS uses the hash technique

of the DHP algorithm to filter the infrequent itemsets in the

bottom-up direction and uses a top-down technique that is

similar to the Pincer-Search algorithm to find the maximal

frequent itemsets.

MaxMiner [4] is another algorithm for mining the maximal

frequent itemsets. It uses efficient pruning techniques to

quickly narrow the search. MaxMiner employs a breadth-first

traversal of the search space; it uses a lookahead pruning

strategy to reduce the database scan. It also employs item

(re)ordering heuristic to increase the effectiveness of superset-

frequency pruning. Since MaxMiner uses the original

horizontal database format, it can perform the same number of

passes over a database.

GenMax[3] is a effective algorithm by Gouda and Zaki

employs a back track search technique for finding maximal

itemset patterns . GenMax introduced a novel concept for

finding supersets in the maximal frequent patterns called

progressive focusing. GenMax also uses diffset propagation

for fast support counting dynamic reordering of itemset to

reduce the size of search space. Genmax uses the original

vertical database format.

DepthProject[5] finds long itemsets using a depth first search

of a lexicographic tree of itemsets, and uses a counting

method called bucketing based on transaction projections

along its branches. DepthProject uses a horizontal database

layout and use some form of compression when the bitmaps

become sparse. DepthProject also uses the look-ahead pruning

method with item reordering. It returns a superset of the MFI

and would require post-pruning to eliminate non-maximal

patterns.

Mafia[6] is also an important method for mining the MFI.

Mafia uses vertical bit-vector data format, and compression

and projection of bitmaps to improve performance. Mafia

uses three pruning strategies to remove non-maximal sets. The

first is the look-ahead pruning first used in MaxMiner. The

second is to check if a new set is subsumed by an existing

maximal set. The last technique checks if t(X) ⊆ t(Y). If so X

is considered together with Y for extension. Mafia mines a

superset of the MFI, and requires a postpruning step to

eliminate non-maximal patterns.

3. DISCOVERY OF MAXIMAL

FREQUENT ITEMSET

The bottom-up approach gives better results when all maximal

frequent itemsets are short and the top-down approach gives

better results when all maximal frequent itemsets are long. In

some datasets, some of the MFI are long and some are short.

In this scenario both one-way search approaches will not be

efficient.

The proposed method is very efficient in reducing the number

of database scans and search space. This method can filter the

infrequent itemsets in the bottom up direction and use the

infrequent itemsets to find the maximal frequent itemsets in

the top-down direction. In addition, this method also provides

an efficient mechanism to construct the maximal frequent

candidate itemsets.

The proposed approach focuses on Mining Maximal Frequent

Itemset Generation. In this paper, Association Array is used to

discover the frequent2 items and Initial MFCS and effective

pruning Mechanism is used for generating Maximal frequent

sets from IMFCS. There are two main ingredients to develop

an efficient MFI algorithm. The first thing is techniques used

to reduce the size of search space, and the second is the

International Journal of Computer Applications (0975 – 8887)

Volume 76 – No.13, August 2013

16

representation used to perform fast frequency computations.

This paper describes how proposed algorithm GenMFI

achieves the same.

GenMFI algorithm generates all Maximal Frequent Itemset

from dataset in four steps. In the first step all frequent items

are generated. This approach takes vertical data format of the

database so support need not be calculated separately. Fast

frequency computation is done by intersecting transaction

Ids(tids) of itemsets. In this case, support is directly given by

the number of transactions in the tidlist of each FI. In second

step association array is created by obtaining association

between every two item. All infrequent 2 items and Initial

Maximal Frequent itemset are discovered from this

association array. In third step MFCS are generated by

removing all infrequent-2 items from IMFCS. Itemsets are

stored in MFCS in ascending order with respect to their size.

In forth step all MFIs are obtained from MFCS using

FindMFI algorithm. The algorithm is described with the

following example.

Consider our example database which includes six different

items, I = {A, B, C, D, E, F} and six transactions T= {1, 2, 3,

4, 5, 6}. The vertical data format of the database d is given

below.

Table 1 : Vertical Data format of the transactional

database D.

All Frequent items are extracted first. The support is directly

given by the number of transactions in the tidset of each item.

Let us consider the minimum support to be 3. From the above

structure, all items are frequent. The items A, B, C, D, E and

F are frequent items and will be considered to next level.

In the next step Association Array(AA) is constructed by

finding association between every two items. The Initial

MFCS(IMFCS) and Infrequent 2 items are obtained from the

association array. From the AA infrequent 2 sets are AB, AF,

BD, BF, DF . IMFCS denotes the possible extension of each

frequent items. for example frequent items A has possible

candidates C,D,E. Initial MFCS are ACDE, BCE, CDEF, DE

and EF.

AA A B C D E

F 0 0 1 0 1

E 1 1 1 1

D 1 0 1

C 1 1

B 0

Figure 1 : Association Array for database D

In the third step, MFCS are generated from IMFCS by

removing infrequent Items. if itemset in MFCS has no

infrequent itemset then it is directly added into MFCS.A

maximal candidate frequent itemset can’t be a Maximal

frequent itemset, if it includes any infrequent temsets. For

example the third IMFCS is CDEF, has an infrequent itemset

DF. So this IMFCS cannot be a MFI. When an itemset x in

IMFCS has infrequent itemset y, replace every item x by |y|

itemsets each obtained by removing y as a single element of x.

it can be split into two itemset CDE and CEF. These itemset

are not having any infrequent 2 itemsets and are added to the

MFCS. Itemsets in MFCS are stored in ascending order with

respect to the itemset size. The MFCS are DE, EF, BCE,

CDE, CEF and ACDE. Algorithm is described below.

Algorithm

Algorithm : FindMFI

Input : MFCS and Support

Output : MFI

findMFI(x, sup)

if x has superset in MFI then return;

if x is frequent

if x has no superset in MFCS then addToMFI(x);

else

for each e in superset of x in MFCS

MFCS= MFCS/{e}

 findMFI(e,sup);

 If x has no superset in MFI

addToMFI(x);

else

 if x has superset in MFCS

updateMFCS(x);

splitMFCS(x);

else

 splitMFCS(x);

Algorithm: updateMFCS

Input : Old MFCS and infrequent set X

Output: New MFCS

1. x1=x

2. For all itemset m ε superset(x) in MFCS

3. MFCS=MFCS \ {m}

4. If x and m starts with same item

5. x1=x \ {firstitem of x}

6. for all item e ε x1

7. If m/{e} has superset in MFI or m/{e} has superset

starts with first item of m in MFCS

8. Continue;

9. else

10. MFCS=MFCS U {m\{e}}

11. return MFCS

Algorithm: splitMFCS

Item Tidset

A T1, T2, T3, T4, T5

B T2, T5, T6

C T1, T2, T4, T5, T6

D T1, T3, T4, T5

E T2, T3, T4, T5, T6

F T2, T4, T6

International Journal of Computer Applications (0975 – 8887)

Volume 76 – No.13, August 2013

17

Input : Infrequentset x

Output: New MFCS

1. for all item e ε x

2. If x/{e} has superset in MFI or {x/e} has superset

starts with first item of x in MFCS

3. Continue;

4. else

5. MFCS=MFCS U {x\{e}}

6. return MFCS

In forth step all MFIs are generated from MFCS by using the

findMFI algorithm. Each MFCS is passed to the algorithm to

obtain MFIs and the algorithm will be terminated when there

are no itemsets in MFCS.

1. DE is frequent and has superset in MFCS named

CDE. Algorithm is invoked with CDE and it is an infrequent

item set and it has one superset in MFCS (ACDE). CDE is

split into CD, CE. CE has a superset in MFCS (CEF)(CEF

and CE has the first item C) and it is ignored. ACDE is also

split into ACD, ACE, and ADE. MFCS is updated by adding

the new itemsets ACD, ACE, ADE, and CD. DE has no

superset in MFI and has one superset (ADE) in MFCS. ADE

is frequent and no superset in MFI and added to MFI and now

DE has superset in MFI and no superset in MFCS and it is

ignored.

2. The next itemset in MFCS is CD, it has superset in

MFCS named ACD which is also frequent and no superset in

MFI and is added to MFI and now CD has superset in MFI

and ignored.

3. The next ietmset in MFCS is EF, it has superset in

MFCS named CEF which is also frequent and no superset in

MFI and is added to MFI and now EF has superset in MFI and

ignored.

4. BCE is frequent and has no superset in MFCS and

in MFI and it is added to MFI.

5. ACE is frequent and it has no superset in MFCS and

in MFI and it is added to MFI.

Updating the MFCS

MFCS are sorted in ascending order with respect to their size.

Infrequent itemset in MFCS require modification of MFCS.

When an itemset x is identified as infrequent all supersets of x

are removed from MFCS. Every superset y is replaced by |x|

itemsets each obtained by removing y as a single element of x,

when the infrequent itemset is not start with the first item of y

and no superset in MFI.

For example CDE is identified as infrequent itemset and it has

a superset (ACDE) in MFCS. ACDE is removed from MFCS

and new MFCS are generated from this itemset by removing a

single element of CDE. The itemsets are ADE, ACD, and

ACE. If these itemsets have no superset in MFCS and MFI

then added to MFCS.

If the itemset is infrequent and it has superset in MFCS and

both starts with the same item then the first item of infrequent

itemset is removed and this new infrequent itemset is used to

split the superset. For example ACE is infrequent and it has

one superset (ACDE) in MFCS. The infrequent itemset and

superset of ACE start with the same item A. the first item of

infrequent itemset A is removed and the new infrequent

itemset is CE. CE is used to find new MFCS from ACDE. The

itemsets are ACD, ADE. The infrequent itemset x is also split

into (n-1) itemset (where n is the size of itemset) must include

the first item of x (AC, AE). Split is done if the size of itemset

is greater than or equal to three.

Reducing number of candidates

Database representation plays major role in frequency

computation. Here we are using vertical representation (item,

tidset format) of database. When vertical database format is

used, the support of an item is calculated by counting the

number of transaction in its tidset and itemset is calculated by

counting the number of transaction after intersecting the

transactions of item in itemsets. Frequency of an itemset x is

computed if x has no superset in MFI.

Pruning is done in one direction based on the information

gathered in the search in other direction. The search starts

with smallest itemset in MFCS and continues until there is no

itemset in MFCS. if an infrequent itemset X is found in

MFCS it can be used to eliminate supersets of X by splitting

supersets into n subsets (n is number of item in x). When

maximal frequent itemset X is found in MFCS then this

itemset can be used to eliminate subsets of X from MFCS.

This approach can utilize both upward and downward

properties and thus speed up the search for mining the

maximum frequent set.

The bottom-up approach use upward closure property to

reduce the number of candidates. The top-down approach use

downward closure property to reduce the number of

candidates. In this method Association Array is constructed to

reduce the number of maximal candidate itemsets, because all

MFCS are generated only from IMFCS by removing

infrequent two itemsets. The proposed algorithm use both

downward closure and upward closure properties to prune

candidates and employ depth first search to effectively find

maximal frequent itemsets from MFCS.

4. RESULTS AND DISCUSSIONS

The algorithm finds the Maximal frequent itemsets not only in

the bottom-up direction but also in the top-down direction.

The execution time is improved since the reduction of the

number of candidates can significantly decrease both I/O time

and CPU time.

The GenMFI algorithm has better performance than the

Pincer-Search. There are two reasons. First, proposed method

use Association Array to filter the huge infrequent 2-itemsets

instead of actually counting the supports of all 2-itemsets

Second, MFCS are generated from IMFCS and updated by

genMFI algorithm instead of the combination of all distinct 1-

itemsets in a database. The approach reduces the search space

substantially. The disadvantage of pincer search algorithm is

initialization of the maximal frequent candidate set is not

efficient. It may spend a lot of time on finding the set of

maximal frequent itemsets. Association array is used to

generate MFCS which in turns reduce the search space.

The testing of the proposed algorithm has been carried out on

the dataset T10I4D100K, it is measured that, the number of

candidate itemsets and frequency computation taken by the

proposed algorithm to find MFIs and it is compared to Pincer

Search algorithm for various values of minimum support. The

support percentage is varied from 2 to 0.8. The results show

that the proposed algorithm generates MFIs very quickly than

our implementation of Pincer Search Algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 76 – No.13, August 2013

18

Figure 2. Execution time comparison of GenMFI

algorithm and PincerSearch on T15I6D100K dataset.

5. CONCLUSION

In this paper, a new algorithm for discovering the maximal

frequent itemsets is proposed. Association array is used to

find the association between every two item and generate the

IMFCS. Advantage of this method, is reduce the number of

database scans by constructing MFCS from IMFCS. This

method can filter the infrequent itemsets and can use the

filtered itemsets to find the Maximal frequent itemsets. In

addition, an efficient depth first search mechanism generates

the maximal frequent itemsets from MFCS is provided. The

experimental results show that our method has better

performance than the Pincer-Search algorithms.

6. REFERENCES

[1] D. Lin and Z. M. Kedem, "Pincer-Search: A New

Algorithm for Discovering the Maximum Frequent Set",

In Proceedings of VI Intl. Conference on Extending

Database Technology, 1998.

[2] Don-Lin Yang, Ching-Ting Pan and Yeh-Ching Chung

An Efficient Hash-Based Method for Discovering the

Maximal Frequent Set

[3] K. Gouda and M.J.Zaki, “Efficiently Mining Maximal

Frequent Itemsets”, in Proc. of the IEEE

[4] Roberto Bayardo, “Efficiently mining long patterns from

databases”, in ACM SIGMOD Conference 1998.

[5] Agrawal, R., Aggarwal, C., and Prasad, V. 2000. Depth

first generation of long patterns. In 7th Int’l Conference

on Knowledge Discovery and Data Mining, pp. 108–118.

[6] Burdick, D., M. Calimlim and J. Gehrke, “MAFIA: A

maximal frequent itemset algorithm for transactional

databases”, In International Conference on Data

Engineering, pp: 443 – 452, April 2001, doi =

10.1.1.100.6805

[7] R. Agrawal, T. Imielienski and A. Swami, “Mining

association rules between sets of items in largedatabases.

In P. Bunemann and S. Jajodia, editors, Proceedings of

the 1993 ACM SIGMOD Conference on Management of

Data, Pages 207-216, Newyork, 1993, ACM Press.

[8] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.

I. Verkamo, “Fast discovery of association rules”,

Advances in Knowledge Discovery and Data Mining,

pages 307-328, MIT Press, 1996.

IJCATM : www.ijcaonline.org

