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ABSTRACT 

The first step of association rule mining is finding out all 

frequent itemsets.   Generation of reliable association rules are 

based on all frequent itemsets found in the first step. 

Obtaining all frequent itemsets in a large database leads the 

overall performance in the association rule mining. In this 

paper, an efficient method for discovering the maximal 

frequent itemsets is proposed. This method employs 

Association array technique and depth first search technique 

to mine Maximal Frequent Itemset. The proposed algorithm 

GenMFI takes vertical tidset representation of the database 

and removes all the non-maximal frequent item-sets to get 

exact set of MFI directly. Pruning is done for both search 

space reduction and minimizing the number of frequency 

computations and number of maximal frequent candidate sets.  

The algorithm gives better results for the sparse dataset even 

though number of the Maximal Frequent Itemset is huge. The 

proposed approach has been compared with Pincer search 

algorithm for T10I4D100K dataset and the results shows that 

the proposed algorithm performs better and generates 

maximal frequent patterns faster. In order to understand the 

algorithm easily, an example is provided in detail. 
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1. INTRODUCTION 

The association rule mining task is a two step process. In the 

first step all frequent itemsets are obtained. This is both 

computation and I/O intensive. Given m items there can be 

potentially 2
m 

frequent item sets. It constitutes an area where 

significant research findings have been reported. In the second 

step confident rules are generated – Rules of the form X/Y ⇒ 

Y where Y ⊂ X are generated for all frequent itemsets 

obtained in step I provided they satisfy the minimum 

confidence.  Our focus is on the generation of frequent 

itemsets. the problem of association rule mining is defined as: 

Let  I = { i1,i2,i3,…..in} be a set of  binary attributes called 

items. Let D={t1,t2,t3…tm}be a set of transactions called the 

database. Each transaction in D has a unique transaction ID 

and contains a subset of the items in . A rule is defined as 

an implication of the form x =>ywhere  X,Y C I and  X ∩Y= 

¢. The sets of items and  are called antecedent and 

consequent  of the rule respectively. In a transactional 

database, set of items is  I={milk, bread, butter, beer}. An 

example rule for the supermarket could be {butter, bread}=> 

{milk} meaning that if butter and bread are bought, customers 

also buy milk. A frequent itemset is one that occurs in at least 

a user-specific percentage of the database. That percentage is 

called support. An itemset is closed if none of its immediate 

supersets has the same support as the itemset. An itemset is 

maximal frequent if none of its immediate supersets is 

frequent. Downward Closure Property (Basis for Top-down 

Search): states that “If an itemset is frequent then all its 

subsets must be frequent.”Upward Closure Property (Basis for 

Bottom-up Search): states that “If an itemset is infrequent 

then all its supersets must be infrequent.” 

A major challenge in mining frequent patterns from a large 

data set is the fact that such mining often generates a huge 

number of patterns satisfying the min_sup threshold, 

especially when min_sup is set low. This is because if a 

pattern is frequent, each of its subpatterns is frequent as well. 

when a transaction database contains large number of large 

frequent itemsets, mining all frequent itemsets might not be a 

good idea. As an example, if there is a frequent itemset with 

size l, then all 2l nonempty subsets of the itemset have to be 

generated. Thus, a lot of work is focused on discovering only 

all the maximal frequent itemsets (MFI’s). Unfortunately, 

mining only MFI’s has the following deficiency. From an 

MFI and its support s, we know that all its subsets are 

frequent and the support of any of its subset is not less than s, 

but we do not know the exact value of the support. To solve 

this problem, another type of a frequent itemset, the Closed 

Frequent Itemset (CFI), has been proposed. In most cases, 

though, the number of CFI’s is greater than the number of 

MFI’s, but still far less than the number of FI’s. 

A large pattern will contain an exponential number of smaller, 

frequent sub-patterns. To overcome this problem, closed 

frequent pattern mining and maximal frequent pattern mining 

were proposed. A pattern α is a closed frequent pattern in a 

data set D if α is frequent in D and there exists no proper 

super-pattern β such that β has the same support as α in D. A 

pattern α is a maximal frequent pattern (or max-pattern) in 

setD if α is frequent, and there exists no super-pattern β such 

that α ⊂ β and β is frequent in D. 

The First step of frequent mining process is to compute the 

support count of each and every item in the database to extract 

frequent items.  This process requires accessing the database. 

The database representation is also an important factor in the 

efficiency of generating and counting itemsets. In general 
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Items in the database can be stored in memory in the 

following ways. Dataset organizations are typically horizontal 

or vertical. The main difference between these two approaches 

is, in case of horizontal representation the computation of 

support count of an itemset requires complete scan of 

database, whereas in vertical representation the support count 

of an itemset is calculated by intersection of transaction sets 

of items in itemset 

2. RELATED WORKS 

The Apriori algorithm [7] is a standard algorithm for finding 

frequent itemsets and most of algorithms are its variants. It 

uses frequent itemsets at level k to explore those at level k + 

1, which needs one scan of the database. it employs the 

heuristic that all nonempty subsets of a frequent itemset must 

also be frequent, which prunes  unpromising candidates to 

narrow down the search space. Apriori is based on the 

horizontal format of the database representation, in which a 

transaction is represented as an item list. An alternative way is 

to represent a database in vertical format, i.e., each item is 

associated with a set of transaction identifiers (TIDs) that 

include the item. As a representative in this group, VIPER [8] 

uses a vertical bit-vector with compression to store 

intermediate data during execution and performs counting 

with a vertical TID-list approach.  

The Pincer-Search [1] algorithm uses horizontal data format. 

It constructs the candidates in a bottom-up and top-down 

direction at the same time, maintaining a candidate set of 

maximal patterns. This can help in reducing the number of 

database scans, by eliminating non-maximal sets early. The 

maximal candidate set is a superset of the maximal frequent 

itemset. The Pincer-Search algorithm scans a database to 

count the supports of all itemsets in MFCS and Ck in the 

bottom-up and top-down directions and classifies all itemsets 

in Ck into two groups, frequent and infrequent, in the bottom-

up direction. The group that contains all frequent itemsets is 

Lk. The other group that contains all infrequent itemsets will 

be used to split the maximal frequent candidate itemsets in 

MFCS in the top-down direction. The algorithm will be 

terminated when there are no itemsets in MFCS. The Pincer-

Search algorithm also uses the downward closure. The 

downward closure consists of two properties. The first 

property is that all supersets of the infrequent itemsets must 

also be infrequent. This property is used in many typical 

bottom-up algorithms of the association rule mining, such as 

the Apriori algorithm. The second property is that all subsets 

of a frequent itemsets must also be frequent. This property can 

be used in a top-down algorithm of the association rule 

mining. The Pincer-Search algorithm is very efficient when 

the length of the longest frequent itemset of a database is long. 

However, its disadvantage is that the initialization of the 

maximal frequent candidate set is not efficient. It may spend a 

lot of time on finding the set of maximal frequent itemsets. 

Hash-Based Method HMFS[2] generates the maximal 

frequent itemsets in the category of the combination of 

bottom-up and top-down search. This method combines the 

advantages of both the DHP and the Pincer-Search 

algorithms. Unlike the DHP algorithm, the HMFS method 

reduces the number of database scans when the length of the 

longest frequent itemset is relatively long. The HMFS method 

filters the infrequent itemsets with the hash technique from 

the bottom-up direction and then can use the filtered itemsets 

to find the maximal frequent itemsets in the top-down 

direction. HMFS, combines the advantages of both the DHP 

and Pincer-Search algorithms. HMFS  uses the hash technique 

of the DHP algorithm to filter the infrequent itemsets in the 

bottom-up direction and  uses a top-down technique that is 

similar to the Pincer-Search algorithm to find the maximal 

frequent itemsets.  

MaxMiner [4] is another algorithm for mining the maximal 

frequent itemsets. It uses efficient pruning techniques to 

quickly narrow the search. MaxMiner employs a breadth-first 

traversal of the search space; it uses a lookahead pruning 

strategy to reduce the database scan. It also employs item 

(re)ordering heuristic to increase the effectiveness of superset-

frequency pruning. Since MaxMiner uses the original 

horizontal database format, it can perform the same number of 

passes over a database. 

GenMax[3] is a effective algorithm by Gouda and Zaki 

employs a back track search technique  for finding maximal 

itemset patterns . GenMax introduced a novel concept for 

finding supersets in the maximal frequent patterns called 

progressive focusing. GenMax also uses diffset propagation 

for fast support counting dynamic reordering of itemset to 

reduce the size of search space. Genmax uses the original 

vertical database format. 

DepthProject[5] finds long itemsets using a depth first search 

of a lexicographic tree of itemsets, and uses a counting 

method  called bucketing based on transaction projections 

along its branches. DepthProject uses a horizontal database 

layout and use some form of compression when the bitmaps 

become sparse. DepthProject also uses the look-ahead pruning 

method with item reordering. It returns a superset of the MFI 

and would require post-pruning to eliminate non-maximal 

patterns.  

Mafia[6] is also an important method for mining the MFI. 

Mafia uses vertical bit-vector data format, and compression 

and projection of bitmaps to improve performance.  Mafia 

uses three pruning strategies to remove non-maximal sets. The 

first is the look-ahead pruning first used in MaxMiner. The 

second is to check if a new set is subsumed by an existing 

maximal set. The last technique checks if t(X) ⊆ t(Y ). If so X 

is considered together with Y for extension. Mafia mines a 

superset of the MFI, and requires a postpruning step to 

eliminate non-maximal patterns.  

3. DISCOVERY OF MAXIMAL 

FREQUENT ITEMSET 

The bottom-up approach gives better results when all maximal 

frequent itemsets are short and the top-down approach gives 

better results when all maximal frequent itemsets are long. In 

some datasets, some of the MFI are long and some are short. 

In this scenario both one-way search approaches will not be 

efficient.  

The proposed method is very efficient in reducing the number 

of database scans and search space. This method can filter the 

infrequent itemsets in the bottom up direction and use the 

infrequent itemsets to find the maximal frequent itemsets in 

the top-down direction. In addition, this method also provides 

an efficient mechanism to construct the maximal frequent 

candidate itemsets.  

The proposed approach focuses on Mining Maximal Frequent 

Itemset Generation. In this paper, Association Array is used to 

discover the frequent2 items and Initial MFCS and effective 

pruning Mechanism is used for generating Maximal frequent 

sets from IMFCS. There are two main ingredients to develop 

an efficient MFI algorithm. The first thing is techniques used 

to reduce the size of search space, and the second is the 
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representation used to perform fast frequency computations. 

This paper describes how proposed algorithm GenMFI 

achieves the same. 

GenMFI algorithm generates all Maximal Frequent Itemset 

from dataset in four steps. In the first step all frequent items 

are generated. This approach takes vertical data format of the 

database so support need not be calculated separately. Fast 

frequency computation is done by intersecting transaction 

Ids(tids) of itemsets. In this case, support is directly given by 

the number of transactions in the tidlist of each FI.  In second 

step association array is created by obtaining association 

between every two item. All infrequent 2 items and Initial 

Maximal Frequent itemset are discovered from this 

association array. In third step MFCS are generated by 

removing all infrequent-2 items from IMFCS. Itemsets are 

stored in MFCS in ascending order with respect to their size. 

In forth step all MFIs are obtained from MFCS using 

FindMFI algorithm. The algorithm is described with the 

following example. 

Consider our example database which includes six different 

items, I = {A, B, C, D, E, F} and six transactions T= {1, 2, 3, 

4, 5, 6}. The vertical data format of the database d is given 

below. 

 

 

 

 

 

 

 

Table 1 :   Vertical Data format of the transactional 

database D. 

All Frequent items are extracted first. The support is directly 

given by the number of transactions in the tidset of each item.  

Let us consider the minimum support to be 3. From the above 

structure, all items are frequent. The items A, B, C, D, E and 

F are frequent items and will be considered to next level. 

In the next step Association Array(AA) is constructed by 

finding association between every two items. The Initial 

MFCS(IMFCS) and Infrequent 2 items are obtained from the 

association array. From the AA infrequent 2  sets are AB, AF, 

BD, BF, DF . IMFCS denotes the possible extension of each 

frequent items. for example frequent items A has possible 

candidates C,D,E. Initial MFCS are ACDE, BCE, CDEF,  DE 

and EF. 

AA A B C D E 

F 0 0 1 0 1 

E 1 1 1 1  

D 1 0 1   

C 1 1    

B 0     

 

Figure 1 : Association Array for database D 

In the third step, MFCS are generated from IMFCS by 

removing infrequent Items. if itemset in MFCS has no 

infrequent itemset then it is directly added into MFCS.A 

maximal candidate frequent itemset  can’t be a Maximal 

frequent itemset, if it includes any infrequent temsets. For 

example the third IMFCS is CDEF, has an infrequent itemset 

DF. So this IMFCS cannot be a MFI. When an itemset x  in 

IMFCS has  infrequent itemset y,   replace every item x by |y| 

itemsets each obtained by removing y as a single element of x. 

it can be split into two itemset CDE and CEF.  These itemset 

are not having any infrequent 2 itemsets and are added to the 

MFCS. Itemsets in MFCS are stored in ascending order with 

respect to the itemset size. The MFCS are DE, EF, BCE, 

CDE, CEF and ACDE. Algorithm is described below. 

Algorithm 

Algorithm : FindMFI 

Input : MFCS and Support 

Output : MFI 

findMFI(x, sup) 

if x has superset in MFI then return; 

if x is frequent   

if x  has no superset in MFCS then  addToMFI(x);  

else 

for each e in superset of x in MFCS 

MFCS= MFCS/{e} 

 findMFI(e,sup); 

 If x has no superset in MFI 

addToMFI(x); 

else 

 if  x has superset in MFCS 

updateMFCS(x); 

splitMFCS(x); 

else 

 splitMFCS(x); 

Algorithm: updateMFCS 

Input : Old MFCS and infrequent set X 

Output: New MFCS 

1. x1=x 

2. For all itemset m ε superset(x) in MFCS 

3.     MFCS=MFCS \ {m} 

4.     If x and m starts with same item 

5.        x1=x \ {firstitem of  x} 

6.     for all item e   ε  x1 

7. If m/{e} has superset in MFI or  m/{e} has superset 

starts with first item of m in MFCS 

8. Continue; 

9.  else 

10.    MFCS=MFCS U {m\{e}} 

11.   return MFCS 

Algorithm: splitMFCS 

Item Tidset 

A T1, T2, T3, T4, T5 

B T2, T5, T6 

C T1, T2, T4, T5, T6 

D T1, T3, T4, T5 

E T2, T3, T4, T5, T6 

F T2, T4, T6 
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Input : Infrequentset x 

Output: New MFCS 

1.       for all item e   ε  x 

2. If x/{e} has superset in MFI or {x/e} has superset 

starts with first item of x in MFCS 

3. Continue; 

4.  else 

5.    MFCS=MFCS U {x\{e}} 

6.   return MFCS 

In forth step all MFIs are generated from MFCS by using the 

findMFI algorithm. Each MFCS is passed to the algorithm to 

obtain MFIs and the algorithm will be terminated when there 

are no itemsets in MFCS. 

1. DE is frequent and has superset in MFCS named 

CDE.  Algorithm is invoked with CDE   and it is an infrequent 

item set and it has one superset in MFCS (ACDE). CDE is 

split into CD, CE. CE has a superset in MFCS (CEF)(CEF 

and CE has the first item C) and it is ignored. ACDE is also 

split into ACD, ACE, and ADE.  MFCS is updated by adding 

the new itemsets ACD, ACE, ADE, and CD. DE has no 

superset in MFI and has one superset (ADE) in MFCS. ADE 

is frequent and no superset in MFI and added to MFI and now 

DE has superset in MFI and no superset in MFCS and it is 

ignored. 

2. The next itemset in MFCS is CD, it has superset in 

MFCS named ACD which is also frequent and no superset in 

MFI and is added to MFI and now CD has superset in MFI 

and ignored. 

3. The next ietmset in MFCS is EF, it has superset in 

MFCS named CEF which is also frequent and no superset in 

MFI and is added to MFI and now EF has superset in MFI and 

ignored. 

4. BCE is frequent and has no superset in MFCS and 

in MFI and it is added to MFI. 

5. ACE is frequent and it has no superset in MFCS and 

in MFI and it is added to MFI. 

Updating the MFCS  

MFCS are sorted in ascending order with respect to their size. 

Infrequent itemset in MFCS require modification of MFCS. 

When an itemset x is identified as infrequent all supersets of x 

are removed from MFCS. Every superset y is replaced by |x| 

itemsets each obtained by removing y as a single element of x, 

when the infrequent itemset is not start with the first item of y 

and no superset in MFI. 

For example CDE is identified as infrequent itemset and it has 

a superset (ACDE) in MFCS. ACDE is removed from MFCS 

and new MFCS are generated from this itemset by removing a 

single element of CDE. The itemsets are ADE, ACD, and 

ACE. If these itemsets have no superset in MFCS and MFI 

then added to MFCS.  

If the itemset is infrequent and it has superset in MFCS and 

both starts with the same item then the first item of infrequent 

itemset is removed and this new infrequent itemset is used to 

split the superset. For example ACE is infrequent and it has 

one superset (ACDE) in MFCS. The infrequent itemset and 

superset of ACE start with the same item A. the first item of 

infrequent itemset A is removed and the new infrequent 

itemset is CE. CE is used to find new MFCS from ACDE. The 

itemsets are ACD, ADE. The infrequent itemset x is also split 

into (n-1) itemset (where n is the size of itemset) must include 

the first item of x (AC, AE). Split is done if the size of itemset 

is greater than or equal to three. 

Reducing number of candidates 

Database representation plays major role in frequency 

computation. Here we are using vertical representation (item, 

tidset format) of database. When vertical database format is 

used, the support of an item is calculated by counting the 

number of transaction in its tidset and itemset is calculated by 

counting the number of transaction after intersecting the 

transactions of item in itemsets. Frequency of an itemset x is 

computed if x has no superset in MFI.  

Pruning is done in one direction based on the information 

gathered in the search in other direction. The search starts 

with smallest itemset in MFCS and continues until there is no 

itemset in MFCS. if an infrequent itemset  X is found in 

MFCS it can be used to eliminate supersets of  X by splitting 

supersets into n subsets (n is number of item in x). When 

maximal frequent itemset X is found in MFCS then this 

itemset can be used to eliminate subsets of X from MFCS. 

This approach can utilize both upward and downward 

properties and thus speed up the search for mining the 

maximum frequent set.  

The bottom-up approach use upward closure property to 

reduce the number of candidates. The top-down approach use 

downward closure property to reduce the number of 

candidates. In this method Association Array is constructed to 

reduce the number of maximal candidate itemsets, because all 

MFCS are generated only from IMFCS by removing 

infrequent two itemsets.  The proposed algorithm use both 

downward closure and upward closure properties to prune 

candidates and employ depth first search to effectively find 

maximal frequent itemsets from MFCS.  

4. RESULTS AND DISCUSSIONS 

The algorithm finds the Maximal frequent itemsets not only in 

the bottom-up direction but also in the top-down direction. 

The execution time is improved since the reduction of the 

number of candidates can significantly decrease both I/O time 

and CPU time. 

The GenMFI algorithm has better performance than the 

Pincer-Search. There are two reasons. First, proposed method 

use Association Array to filter the huge infrequent 2-itemsets 

instead of actually counting the supports of all 2-itemsets 

Second, MFCS are generated from IMFCS and updated by 

genMFI algorithm instead of the combination of all distinct 1-

itemsets in a database. The approach reduces the search space 

substantially. The disadvantage of pincer search algorithm is 

initialization of the maximal frequent candidate set is not 

efficient. It may spend a lot of time on finding the set of 

maximal frequent itemsets. Association array is used to 

generate MFCS which in turns reduce the search space. 

The testing of the proposed algorithm has been carried out on 

the dataset T10I4D100K, it is measured that, the number of 

candidate itemsets and frequency computation taken by the 

proposed algorithm to find MFIs and it is compared to Pincer 

Search algorithm for various values of minimum support.  The 

support percentage is varied from 2 to 0.8. The results show 

that the proposed algorithm generates MFIs very quickly than 

our implementation of Pincer Search Algorithm.  
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Figure 2. Execution time comparison of GenMFI 

algorithm and PincerSearch on T15I6D100K dataset. 

5. CONCLUSION 

In this paper, a new algorithm for discovering the maximal 

frequent itemsets is proposed. Association array is used to 

find the association between every two item and generate the 

IMFCS. Advantage of this method, is reduce the number of 

database scans by constructing MFCS from IMFCS. This 

method can filter the infrequent itemsets and can use the 

filtered itemsets to find the Maximal frequent itemsets. In 

addition, an efficient depth first search mechanism generates 

the maximal frequent itemsets from MFCS is provided. The 

experimental results show that our method has better 

performance than the Pincer-Search algorithms.  
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