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ABSTRACT 

Generalization techniques are useful for enabling an agent to 

be able to approximate the value of states it has not 

encountered so far in reinforcement learning. They are also 

useful as memory use minimization mechanisms in situations 

where the state space is too large such that is infeasible to 

represent every state in the state space in the computer 

memory. Artificial Neural Networks are one generalization 

technique that is usually employed. Various network 

structures have been proposed in literature. In this study, two 

of the structures that have been proposed were implemented 

in a robot navigation task and their performance compared. 

The results indicate that having a network structure where 

there is an output node for each of the possible actions, is 

superior to the structure in which the selected action is fed as 

an input to the network and its value output by the single 

network output node. 

General Terms 

Reinforcement Learning, Artificial Neural Networks, obstacle 

avoidance. 

1. INTRODUCTION 

A Reinforcement Learning (RL) agent learns by interacting 

with the environment and based on the outcome of the 

interaction, learns to select the actions that lead to the most 

desirable outcomes. Thus by sensing and acting in its 

environment an RL agent can learn to choose optimal actions 

to achieve its goals. Every time an agent performs an action in 

the environment, it receives a reward or a penalty to indicate 

the desirability of the resulting state. Since the agent does not 

know beforehand which are the optimal actions, it must learn 

via a trial and error process (Kaelbling et al., 1996). For 

example a game playing agent may receive a positive reward 

for a winning state, a negative reward for a losing state, and a 

zero reward for all other states. The task of the agent is to 

learn from this indirect delayed reward to choose sequences of 

actions that produce the greatest cumulative reward (Mitchel, 

1997).  

The outcome of the agent learning is a control policy (). The 

policy can be defined as a function : SA that outputs an 

appropriate action a, given a state s, where S is the set of 

states and A is the set of actions (Mitchel, 1997).  

 

 

For tasks with small state spaces and action sets, the value of 

each state or state-action pair can be stored in a table with one 

entry for each state or state-action pair (Sutton & Barto, 

1998). As the number of states/ state-action pairs increases, 

several problems will arise 

i. The table will become too large hence there may not be 

enough memory to store it, or too much memory will be 

required. 

ii. During exploration, some of the states/ state-action pairs 

will not be experienced hence their values will not be set or 

too much time will be required to perform enough exploration 

to fill all the table entries with reasonable value estimates. 

Function approximation is the technique used to deal with this 

problem.  Function approximators are used to generalize from 

previously experienced states to ones that have never been 

seen (Sutton & Barto, 1998). Artificial neural networks using 

a modified form of the back-propagation training algorithm 

are one technique that has been used for function 

approximation (Tesauro, 1995). Several alternative setups are 

proposed in (Mitchel, 1997). One option is to have a network 

with the state and action being inputs, and the value function 

being the output. A second option is to have a separate 

network for each action where the state as an input is fed to 

each of the networks and using the -greedy strategy, the 

action associated with the network that produces the greatest 

output value would be selected. A third option is to have one 

network with an output for each action. If a neural network is 

used as the function approximator, the TDBackpropagation 

algorithm can be used for training (McClelland, 2013), 

(Sutton S Richard , 1998).  (Mitchel, 1997) Notes that using 

one network for each of the outputs has been found to be more 

successful.  

In his study, the performance of two of the  network structures 

described above were compared. First, the structure where we 

have the action as an input and second, the structure where we 

have the action as an output. These were compared in a robot 

control task.  

2. ACTION AS INPUT ARTIFICIAL 

NEURAL NETWORK 

In this structure, the output of the network is the state-action 

value. The input layer consists of an input node for each state 

variable, and an input node for each of the available actions 

(McClelland, 2013).  The structure for a 2 variables state and 

2 actions is shown below: 
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Figure 1: An Action as input Multilayer Artificial Neural 

Network for a two variable state, and 2 possible actions. 

In figure 1, if we have actions A and B, input node 2 can be 

associated with action A and input node 3 with action B.  To 

get the value for action A in state s, the state variable values 

are input in node 0 and 1, and node 2 is set to 1 (action A 

selected) while node 3 is set to zero (action B not selected). 

To get the value of action B in the same state, the inputs for 

node 0 and 1 remain the same, while node 2 is set to zero 

(action A not selected) and node 3 to 1 (action B selected). 

Consequently, the action value is calculated twice (or as many 

times as there are actions). 

3. ACTION AS OUTPUT NETWORK 

STRUCTURE 

In this structure, the output is the state-action value of each 

action, but the network has several outputs, one for each of 

the actions. After computing the values of the outputs, the 

action corresponding to the output node with the greatest 

value is the currently best action. 

0 1

...

 

Figure 2: An Action as out Multilayer Artificial Neural 

Network for a two variable state, and 2 possible actions. 

4. EXPERIMENTAL TASK 

Robot obstacle avoidance deals with the local observable 

aspect (within the robots perception horizon), where the robot 

may detect some unknown obstacles (real-time obstacles) on 

its path to an observable point (goal) (Kane Usher, 2006). 

This problem can be simplified so that there are no obstacles 

in the environment, and the task of the control agent is to 

move the robot towards the goal once the goal is sighted. 

A two wheel differential drive robot enables the setting of the 

speed of each of the wheels independently. Thus each wheel 

can be set to have a different speed from the other to enable 

the robot to turn either to the left or right. If the two wheels 

are set to the same speed at the same speed, then the robot 

moves in a straight line. 

The robot is rewarded for reaching the goal and so it needs to 

be able to select the action(s) which lead it to the goal. Since 

there are no obstacles in the environment, once the goal is 

sighted, the best policy is to choose the action that generates a 

straight path to the goal if this is one of the available actions.  

Rewarding the robot only when it reaches the goal results in a 

sparse reward function which makes it very hard for the robot 

to learn the desired steering function because it hardly ever 

reaches the goal. Note however that it is very easy to solve 

this problem using structured programming. The robot is just 

programmed to turn until the goal is sighted. Once the goal is 

sighted, the robot selects the action which results in a straight 

line movement towards the goal. The objective of this work 

was to determine the performance of the two different 

network structures in learning to perform this task. 

5. Experimental Setup 

The reward function was set up such that the agent got a 

reward of 1 when the goal was reached and 0 otherwise. Since 

it is possible for the robot to go on forever without reaching 

the goal, the number of steps (corresponding to actions) per 

episode is bounded (Sherstov & Stone, 2005). If the agent 

executes the maximum number of actions without reaching 

the goal, then the episode is terminated and a reward of -1 is 

awarded. Various values for the discount rate can be tried but 

since the episodes have a finite number of steps, then a 

discount rate of 1 was used. 

To make the learning problem easier, the number of actions 

was reduced to 2. An action for turning left, and an action for 

moving straight ahead. These correspond to the following 

values for the left and right wheel powers (0, 0.1), (0.1, 0.1). 

These are low speeds but they do serve to illustrate the 

problem.  

To ensure that the robot has a higher chance of reaching the 

goal, the distance to the goal was reduced so that it was as 

short as feasibly possible. This was done after the observation 

that the further the robot is from the goal, the lower the 

chance of its ever accidentally reaching the goal (which is 

necessary for initial learning). This is a form of learning from 

easy missions (Asada et al., 1994), (Taylor & Stone,  2005).  

The robot was also set so that the initial direction at the 

beginning of an episode was random relative to the goal. This 

meant that sometimes, in the initial position, the robot would 

be facing the goal, while at other times it would be facing 

away from the goal.  

Each training trial lasted was limited to 100 episodes. 

TDBackpropagation (McClelland, 2013) as used as the 

training algorithm. The discount rate was set to 1 and the 

trace-decay parameter was set to 0.8. 5 hidden nodes were 

used for the action as input structure and 3 hidden nodes for 

the network as output structure. The learning rate was set to 

0.1. The -greedy action selection strategy was used with the  

initially set to 0.3 and being reduce by 0.01 after every 10 

episodes. 

 A webcam was used to get an image of the environment 

which is processed to determine if the goal was in the image 

or not (i.e. there is one state variable with a value of 1 if the 

goal is in the image, and -1 if the goal is not in the image) . 
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A simulation environment Microsoft Robotics Developer 

Studio version 4(RDS) was used to create the above setup.  

The robot used was the P3DXMotorBase which is a simulated 

version of Adept MobileRobots’ Pioneer P3-DX mobile robot  

(Microsoft, 2011). 

6. RESULTS 

 

Figure 3: The percentage number of times the goal was reached in five trials using the action as input network structure. 

In each trial in figure 3, the first bar represents the percentage 

number of times the goal was reached in the first 10 episodes, 

the second bar the percentage number of times the goal was 

reached in the next 10 episodes and so on. In trial 1 episodes 

31-40, the goal was not reached hence the zero height bar. 
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Figure 4: The percentage number of times the goal was reached in five trials using the action as output network structure 

7. DISCUSSION 

The performance in the first set of trials indicate that the 

action as input network structure is not a good choice for this 

learning task. The table below shows the expected inputs 

Table 1: Inputs to the action as Input ANN. 

Input No State A B 

1 -1 1 0 

2 -1 0 1 

3 1 1 0 

4 1 0 1 

 

Table 1 represents the inputs for the action as Input ANN. 

Columns A and B represent the action. When A is on, the 

network is calculating the value of action A for the current 

state, and When B is on, the network is calculating the value if 

action B for the current state. We have only one state variable. 

Action A makes the robot move in a straight line, while B 

makes the robot turn 

When the goal is invisible, the network output values for input 

1 and 2 are compared. If the output for 1 is greater, then 

action A (move straight) is executed. If the output for 2 is 

greater, then action B (turn) is executed. For the right 

behaviour, the output for 2 should always be greater so that 

the robot can turn until the goal becomes visible.  
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When the goal is visible, the network output values for input 3 

and 4 are compared. If the output for 3 is greater, then action 

A (move straight) is executed. If the output for 4 is greater, 

then action B (turn) is executed. For the right behaviour, the 

output for 3 should always be greater so that the robot can 

move straight towards the goal.  

In all the training episodes for the action as input network, 

outputs corresponding to 2 and 3 did not become greater at the 

same time hence showing that the network was not learning 

the right behaviour.  

At any one time, either 1 and 3 were always greater or 2 and 

4. This implies that the same action as the greater value both 

when the goal is visible, and when the goal is not visible. The 

agent either learns to move straight if the goal is visible or 

not, or to turn if the goal is visible or not. For our future 

experiments, this network structure was thus abandoned.  

Table 2: Inputs to the action as output ANN. 

Input No State 

1 -1 

2 1 

When the actions correspond to output nodes, then we have 2 

output nodes where the first node (A), corresponds to the 

action move straight, and the second output node (B) 

corresponds to the turn action. Input number 1 corresponds to 

the state when the goal is invisible, and input number 2 

corresponds to the state when the goal is visible. 

For the right behaviour, when the input is 1 (invisible), the 

output for the second node (turn) should be greater, and when 

the input is state 2 (visible), the output for the first node 

(straight) should be greater. We found that the network learns 

this behaviour in most of the trials as shown in figure 4. Trial 

4 in figure 4 looks like an exceptions, but in the limit, the 

network does eventually learn. Hence for any future 

experiments, we choose to use the action as output structure. 

In the action as input setup, the robot does reach the goal 

sometimes, but this can be attributed to the stochastic nature 

of the policy, hence the robot is able to reach the goal by luck 

sometimes.  

8. CONCLUSION 

This study provide evidence that the action as output structure 

is superior to the action as input structure for a neural 

network. This will be useful for persons wishing to use ANNs 

as the function approximation technique in reinforcement 

learning.  

 

9. FURTHER WORK 

The number of state variables in this work is limited to just 

one. Further experiments can be done with more state 

variables. 

An additional network structure involves having a separate 

network for each action. We intend to try this out in our future 

experiments. 
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