
International Journal of Computer Applications (0975 – 8887)

Volume 76– No.1, August 2013

24

Comparing Action as Input and Action as Output in a

Reinforcement Learning Task

Evans Miriti
School of Computing and

Informatics
University of Nairobi

Peter Waiganjo
School of Computing and

Informatics
University of Nairobi

Andrew Mwaura
School of Computing and

Informatics
University of Nairobi

ABSTRACT

Generalization techniques are useful for enabling an agent to

be able to approximate the value of states it has not

encountered so far in reinforcement learning. They are also

useful as memory use minimization mechanisms in situations

where the state space is too large such that is infeasible to

represent every state in the state space in the computer

memory. Artificial Neural Networks are one generalization

technique that is usually employed. Various network

structures have been proposed in literature. In this study, two

of the structures that have been proposed were implemented

in a robot navigation task and their performance compared.

The results indicate that having a network structure where

there is an output node for each of the possible actions, is

superior to the structure in which the selected action is fed as

an input to the network and its value output by the single

network output node.

General Terms

Reinforcement Learning, Artificial Neural Networks, obstacle

avoidance.

1. INTRODUCTION

A Reinforcement Learning (RL) agent learns by interacting

with the environment and based on the outcome of the

interaction, learns to select the actions that lead to the most

desirable outcomes. Thus by sensing and acting in its

environment an RL agent can learn to choose optimal actions

to achieve its goals. Every time an agent performs an action in

the environment, it receives a reward or a penalty to indicate

the desirability of the resulting state. Since the agent does not

know beforehand which are the optimal actions, it must learn

via a trial and error process (Kaelbling et al., 1996). For

example a game playing agent may receive a positive reward

for a winning state, a negative reward for a losing state, and a

zero reward for all other states. The task of the agent is to

learn from this indirect delayed reward to choose sequences of

actions that produce the greatest cumulative reward (Mitchel,

1997).

The outcome of the agent learning is a control policy (). The

policy can be defined as a function : SA that outputs an

appropriate action a, given a state s, where S is the set of

states and A is the set of actions (Mitchel, 1997).

For tasks with small state spaces and action sets, the value of

each state or state-action pair can be stored in a table with one

entry for each state or state-action pair (Sutton & Barto,

1998). As the number of states/ state-action pairs increases,

several problems will arise

i. The table will become too large hence there may not be

enough memory to store it, or too much memory will be

required.

ii. During exploration, some of the states/ state-action pairs

will not be experienced hence their values will not be set or

too much time will be required to perform enough exploration

to fill all the table entries with reasonable value estimates.

Function approximation is the technique used to deal with this

problem. Function approximators are used to generalize from

previously experienced states to ones that have never been

seen (Sutton & Barto, 1998). Artificial neural networks using

a modified form of the back-propagation training algorithm

are one technique that has been used for function

approximation (Tesauro, 1995). Several alternative setups are

proposed in (Mitchel, 1997). One option is to have a network

with the state and action being inputs, and the value function

being the output. A second option is to have a separate

network for each action where the state as an input is fed to

each of the networks and using the -greedy strategy, the

action associated with the network that produces the greatest

output value would be selected. A third option is to have one

network with an output for each action. If a neural network is

used as the function approximator, the TDBackpropagation

algorithm can be used for training (McClelland, 2013),

(Sutton S Richard , 1998). (Mitchel, 1997) Notes that using

one network for each of the outputs has been found to be more

successful.

In his study, the performance of two of the network structures

described above were compared. First, the structure where we

have the action as an input and second, the structure where we

have the action as an output. These were compared in a robot

control task.

2. ACTION AS INPUT ARTIFICIAL

NEURAL NETWORK

In this structure, the output of the network is the state-action

value. The input layer consists of an input node for each state

variable, and an input node for each of the available actions

(McClelland, 2013). The structure for a 2 variables state and

2 actions is shown below:

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.1, August 2013

25

0 1 2 3

...

...

Figure 1: An Action as input Multilayer Artificial Neural

Network for a two variable state, and 2 possible actions.

In figure 1, if we have actions A and B, input node 2 can be

associated with action A and input node 3 with action B. To

get the value for action A in state s, the state variable values

are input in node 0 and 1, and node 2 is set to 1 (action A

selected) while node 3 is set to zero (action B not selected).

To get the value of action B in the same state, the inputs for

node 0 and 1 remain the same, while node 2 is set to zero

(action A not selected) and node 3 to 1 (action B selected).

Consequently, the action value is calculated twice (or as many

times as there are actions).

3. ACTION AS OUTPUT NETWORK

STRUCTURE

In this structure, the output is the state-action value of each

action, but the network has several outputs, one for each of

the actions. After computing the values of the outputs, the

action corresponding to the output node with the greatest

value is the currently best action.

0 1

...

Figure 2: An Action as out Multilayer Artificial Neural

Network for a two variable state, and 2 possible actions.

4. EXPERIMENTAL TASK

Robot obstacle avoidance deals with the local observable

aspect (within the robots perception horizon), where the robot

may detect some unknown obstacles (real-time obstacles) on

its path to an observable point (goal) (Kane Usher, 2006).

This problem can be simplified so that there are no obstacles

in the environment, and the task of the control agent is to

move the robot towards the goal once the goal is sighted.

A two wheel differential drive robot enables the setting of the

speed of each of the wheels independently. Thus each wheel

can be set to have a different speed from the other to enable

the robot to turn either to the left or right. If the two wheels

are set to the same speed at the same speed, then the robot

moves in a straight line.

The robot is rewarded for reaching the goal and so it needs to

be able to select the action(s) which lead it to the goal. Since

there are no obstacles in the environment, once the goal is

sighted, the best policy is to choose the action that generates a

straight path to the goal if this is one of the available actions.

Rewarding the robot only when it reaches the goal results in a

sparse reward function which makes it very hard for the robot

to learn the desired steering function because it hardly ever

reaches the goal. Note however that it is very easy to solve

this problem using structured programming. The robot is just

programmed to turn until the goal is sighted. Once the goal is

sighted, the robot selects the action which results in a straight

line movement towards the goal. The objective of this work

was to determine the performance of the two different

network structures in learning to perform this task.

5. Experimental Setup

The reward function was set up such that the agent got a

reward of 1 when the goal was reached and 0 otherwise. Since

it is possible for the robot to go on forever without reaching

the goal, the number of steps (corresponding to actions) per

episode is bounded (Sherstov & Stone, 2005). If the agent

executes the maximum number of actions without reaching

the goal, then the episode is terminated and a reward of -1 is

awarded. Various values for the discount rate can be tried but

since the episodes have a finite number of steps, then a

discount rate of 1 was used.

To make the learning problem easier, the number of actions

was reduced to 2. An action for turning left, and an action for

moving straight ahead. These correspond to the following

values for the left and right wheel powers (0, 0.1), (0.1, 0.1).

These are low speeds but they do serve to illustrate the

problem.

To ensure that the robot has a higher chance of reaching the

goal, the distance to the goal was reduced so that it was as

short as feasibly possible. This was done after the observation

that the further the robot is from the goal, the lower the

chance of its ever accidentally reaching the goal (which is

necessary for initial learning). This is a form of learning from

easy missions (Asada et al., 1994), (Taylor & Stone, 2005).

The robot was also set so that the initial direction at the

beginning of an episode was random relative to the goal. This

meant that sometimes, in the initial position, the robot would

be facing the goal, while at other times it would be facing

away from the goal.

Each training trial lasted was limited to 100 episodes.

TDBackpropagation (McClelland, 2013) as used as the

training algorithm. The discount rate was set to 1 and the

trace-decay parameter was set to 0.8. 5 hidden nodes were

used for the action as input structure and 3 hidden nodes for

the network as output structure. The learning rate was set to

0.1. The -greedy action selection strategy was used with the 

initially set to 0.3 and being reduce by 0.01 after every 10

episodes.

 A webcam was used to get an image of the environment

which is processed to determine if the goal was in the image

or not (i.e. there is one state variable with a value of 1 if the

goal is in the image, and -1 if the goal is not in the image) .

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.1, August 2013

26

A simulation environment Microsoft Robotics Developer

Studio version 4(RDS) was used to create the above setup.

The robot used was the P3DXMotorBase which is a simulated

version of Adept MobileRobots’ Pioneer P3-DX mobile robot

(Microsoft, 2011).

6. RESULTS

Figure 3: The percentage number of times the goal was reached in five trials using the action as input network structure.

In each trial in figure 3, the first bar represents the percentage

number of times the goal was reached in the first 10 episodes,

the second bar the percentage number of times the goal was

reached in the next 10 episodes and so on. In trial 1 episodes

31-40, the goal was not reached hence the zero height bar.

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.1, August 2013

27

Figure 4: The percentage number of times the goal was reached in five trials using the action as output network structure

7. DISCUSSION

The performance in the first set of trials indicate that the

action as input network structure is not a good choice for this

learning task. The table below shows the expected inputs

Table 1: Inputs to the action as Input ANN.

Input No State A B

1 -1 1 0

2 -1 0 1

3 1 1 0

4 1 0 1

Table 1 represents the inputs for the action as Input ANN.

Columns A and B represent the action. When A is on, the

network is calculating the value of action A for the current

state, and When B is on, the network is calculating the value if

action B for the current state. We have only one state variable.

Action A makes the robot move in a straight line, while B

makes the robot turn

When the goal is invisible, the network output values for input

1 and 2 are compared. If the output for 1 is greater, then

action A (move straight) is executed. If the output for 2 is

greater, then action B (turn) is executed. For the right

behaviour, the output for 2 should always be greater so that

the robot can turn until the goal becomes visible.

International Journal of Computer Applications (0975 – 8887)

Volume 76– No.1, August 2013

28

When the goal is visible, the network output values for input 3

and 4 are compared. If the output for 3 is greater, then action

A (move straight) is executed. If the output for 4 is greater,

then action B (turn) is executed. For the right behaviour, the

output for 3 should always be greater so that the robot can

move straight towards the goal.

In all the training episodes for the action as input network,

outputs corresponding to 2 and 3 did not become greater at the

same time hence showing that the network was not learning

the right behaviour.

At any one time, either 1 and 3 were always greater or 2 and

4. This implies that the same action as the greater value both

when the goal is visible, and when the goal is not visible. The

agent either learns to move straight if the goal is visible or

not, or to turn if the goal is visible or not. For our future

experiments, this network structure was thus abandoned.

Table 2: Inputs to the action as output ANN.

Input No State

1 -1

2 1

When the actions correspond to output nodes, then we have 2

output nodes where the first node (A), corresponds to the

action move straight, and the second output node (B)

corresponds to the turn action. Input number 1 corresponds to

the state when the goal is invisible, and input number 2

corresponds to the state when the goal is visible.

For the right behaviour, when the input is 1 (invisible), the

output for the second node (turn) should be greater, and when

the input is state 2 (visible), the output for the first node

(straight) should be greater. We found that the network learns

this behaviour in most of the trials as shown in figure 4. Trial

4 in figure 4 looks like an exceptions, but in the limit, the

network does eventually learn. Hence for any future

experiments, we choose to use the action as output structure.

In the action as input setup, the robot does reach the goal

sometimes, but this can be attributed to the stochastic nature

of the policy, hence the robot is able to reach the goal by luck

sometimes.

8. CONCLUSION

This study provide evidence that the action as output structure

is superior to the action as input structure for a neural

network. This will be useful for persons wishing to use ANNs

as the function approximation technique in reinforcement

learning.

9. FURTHER WORK

The number of state variables in this work is limited to just

one. Further experiments can be done with more state

variables.

An additional network structure involves having a separate

network for each action. We intend to try this out in our future

experiments.

10. REFERENCES

[1] Asada, M., Noda, S., Tawaratsumida, S. & Hosoda, K.,

1994. Vision-Based Behavior Acquisition for a Shooting

robot by Using a Reinforcement Learning. In IAPR/IEEE

Workshop on Visual Behaviours., 1994.

[2] Kaelbling, L.P., Littman, M.L. & Moore, A.W., 1996.

Reinforcement Learning: A Survey. Journal of Artificial

Intelligence,4 , pp.237-285. Available Through: CiteSeer

[Accessed 7 August 2013].

[3] McClelland, J.L., 2013. Explorations in Parallel and

Distributed Processing: A Handbook of Models,

Programs and Exercises.

[4] Microsoft, 2011. Robotics Developer Studio: Getting

Started.

[5] Mitchel, T., 1997. Machine Learning. Singapore:

McGraw-Hill.

[6] Sherstov, A.A. & Stone, P., 2005. Improving Action

Selection in MDPs via Knowledge Transfer. In 20th

National Conference on Artificial Intelligence.

Pittsburgh, USA, 2005. last accessed online on:

http://www.cs.utexas.edu/~pstone/Papers/bib2html/b2hd-

AAAI05-actions.html.

[7] Sutton S Richard, 1998. Implementation Details of the

TD(gamma) Procedure for the Case of Vector

Predictions and Backpropagation.

[8] Sutton, S.R. & Barto, G.A., 1998. Reinforcement

Learning: An Introduction. London: MIT Press.

[9] Taylor, M.E. & Stone, P., July 2005. Behavior Transfer

for Value-Function-Based Reinforcement Learning. In

Fourth International Joint Conference on Autonomous

Agents and Multiagent Systems. Utrecht, The

Netherlands, July 2005.

[10] Tesauro, G., 1995. Temporal Difference Learning and

TD-Gammon. Communications of the ACM, 38(3).

[11] Usher, K., 2006. Obstacle avoidance for a non-

holonomic vehicle using occupancy grids. In

MacDonald, B., ed. Conference on Robotics and

Automation. Auckland, Newzealand, 2006.

IJCATM : www.ijcaonline.org

