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ABSTRACT 

Unique Mapped Real Transform (UMRT) is a transform 

which helps in frequency domain analysis of signals in the 

real domain. Different algorithms are developed  for the 

computation of  the unique MRT coefficients  for N a power 

of 2 and for N an even number. They identify and place the 

UMRT coefficients in the form of an NN UMRT matrix. 

The basis matrices of this transform are observed to be  

sparse in nature. In this paper a new technique is proposed  to 

reduce the computational overhead in UMRT, the size N 

being a power of two, exploiting the sparse nature of the 

basis matrices.  
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1. INTRODUCTION 

Transform theory plays a fundamental role in signal and 

image processing.  A transform maps data into a different 

mathematical space via a transformation equation [1]. 

Analysis of the properties of the signal is easier with the 

transform of that signal. Discrete Fourier Transform (DFT) is 

an important tool in signal processing applications to map 

data from time domain to frequency domain [2]. FFT is the 

most popular algorithm to implement DFT which is highly 

efficient for 1-D signals. In most of the algorithms for DFT 

implementation, the input data will generally be real valued 

which is converted to complex form and the computations are 

done in complex domain. 2_D Mapped Real Transform (2-D 

MRT), evolved from 2-D Discrete Fourier Transform (2-D 

DFT), maps 2-D data into frequency domain without any 

complex operations but in terms of real additions alone [3]. 

Originally, the transform mapped a NN data matrix into 

M redundant matrices of size NN , M=N/2. Algorithms 

were developed to identify and place, the unique MRT 

coefficients present in the M matrices for N a power of 2 or 

for N an even number, in the form of an NN UMRT 

matrix. In [3], all the MRT coefficients are computed, the 

unique coefficients are identified and arranged in an NN
matrix whereas in [4] the basic DFT coefficients are 

identified and the corresponding MRT coefficients are 

computed and placed them in an NN   UMRT matrix. 

These algorithms are effectively utilized for image 

compression applications [5] and for texture studies [6]. The 

algorithm in [7] computes and places the UMRT coefficients 

directly from the data, without computing MRT. 

 The Haar transform is another signal transform that converts 

real input to real output, and  has been used extensively in 

signal and image processing.  MRT is a recently developed 

transform which also uses the real-to-real conversion 

property of the Haar transform. Relationships between these 

two transforms are studied in [8]. MRT is shown to have 

directional properties which is utilised for orientation 

estimation. A subset of global patterns of a 16x16 MRT is 

used to estimate the orientation field of fingerprint images[9].  

Discrete transforms are performed based on specific 

functions, called the basis functions [2]. The discrete version 

of 2-D basis function is called basis matrices (or basis 

images). The process of transforming the image data into 

another domain involves projecting the image onto the basis 

images. The mathematical term for this projection process is 

called an inner product. A new technique is proposed in this 

paper to reduce the computational overhead in UMRT 

exploiting the sparse nature of the basis matrices.  

2. 2-D Unique Mapped Real Transform (2-

D UMRT) 

Let xn1,n2 , 1210  N,nn  be the elements of

NN data matrix. The 2-D MRT coefficients   
p

,kkY 21 , are 

expressed as [3]    
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where 12,10  Nkk , 10  Mp  

The MRT maps a NN data matrix into M matrices of 

size NN using real additions. The visual representation 

of MRT coefficients [10] show similarities that can be 

exploited in different ways for reducing computational 

requirement. The redundant coefficients present in MRT are 

removed to derive UMRT. The algorithm in [7] computes the 

UMRT coefficients directly from the data, without going 

through the MRT as in [3] or the basic DFT coefficients as in 

[4]. The placement scheme suggested in [7] places the 

UMRT coefficients in positions where redundancy occurs, 

obtained by finding out the   m number of co_prime integers 

of N/dm , defined as )(_ mprimeCo . Thus MRT 

coefficients  corresponding to the frequency index ),k(k 21
 

was computed selecting the data based on the condition 
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pz   or Mpz  and placed in the position 
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3. COMPUTATIONAL OVERHEAD IN 

2-D UMRT 
In most of the existing transforms like Walsh-Hadamard, 

Haar, DFT etc., all the input data contribute to each transform 

coefficient. The visual representation of MRT coefficients [8] 

shows that the actual computation of a UMRT coefficient 

involves selected set of data only. The actual number of input 

data participating in the computation of a particular UMRT 

coefficient Yu1,u2  in terms of addition/subtraction is given by 

2.N.dm where  ).2,1g c d ( Mkkdm  , divisor of M. 

There are N2 UMRT coefficients and hence a total of 2N3.dm 

addition/subtraction of data elements are involved in a 

UMRT computation. But the position of the data, to be added 

or subtracted, is identified by computing the parameter 

N))knk((nz 2211  and verifying whether its value 

is p or p+M. Thus z is to be calculated N2 times to compute a 

particular UMRT coefficient even though only 2.N.dm data 

are involved. This causes an overhead in UMRT 

computation. Computational overhead can be reduced by 

exploiting the properties present in visual pattern of UMRT 

coefficients.  

3.1 Interpretation using basis matrix 
The UMRT computation can be represented as  

 

The mapping between data and UMRT is many to many. The 

basis matrices for mapping the data to UMRT coefficients 

show sparse nature. Since the UMRT computation involves 

computational overhead due to the parameter z, the concept 

of basis matrix is introduced here to reduce the overhead. 
 

Basis matrix(UB), given below in matrix form, transforms 

the 2-D input data matrix to the transform domain.  

UB =
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1 1 1 1 1 0 -1 0 1 -1 1 -1 0 1 0 -1 

1 1 1 1 1 0 - 1 0 1 -1 1 -1 0 1 0 -1 

1 1 1 1 1 0 -1 0 1 -1 1 -1 0 1 0 -1 

1 1 1 1 1 0 -1 0 1 -1 1 -1 0 1 0 -1 

1 1 1 1 1 0 -1 0 1 -1 1 -1 0 1 0 -1 

0 0 0 0 0 -1 0 1 0 0 0 0 -1 0 1 0 

-1 -1 -1 -1 -1 0 1 0 -1 1 -1 1 0 -1 0 1 

0 0 0 0 0 1 0 -1 0 0 0 0 1 0 -1 0 

1 1 1 1 1 0 -1 0 1 -1 1 -1 0 1 0 -1 

-1 -1 - 1 - 1 -1 0 1 0 -1 1 -1 1 0 -1 0 1 

1 1 1 1 1 0 -1 0 1 -1 1 -1 0 1 0 -1 

-1 -1 -1 -1 -1 0 1 0 -1 1 -1 1 0 -1 0 1 

0 0 0 0 1 0 -1 0 0 0 0 0 0 1 0 -1 

1 1 1 1 0 1 0 -1 1 -1 1 -1 1 0 -1 0 

0 0 0 0 -1 0 1 0 0 0 0 0 0 -1 0 1 

-1 -1 -1 -1 0 -1 0 1 -1 1 -1 1 -1 0 1 0 

 

Figure 1: Basis matrices of 4-point 2-D UMRT 

 

Each element Bu1,u2 in UB is a basis matrix of size NxN 

corresponding to the UMRT coefficient Yu1,u2.  The 

elements bn1,n2 of the basis matrix Bu1,u2  is given by 

𝑏𝑛1,𝑛2 =  
1, 𝑖𝑓 𝑧 = 𝑝

−1, 𝑖𝑓 𝑧 = 𝑝 + 𝑀
0, 𝑒𝑙𝑠𝑒

  

3.2 Number of non-zero elements in the 

Basis matrix Bu1,u2. 

The 2-D MRT coefficient 
p

,kkY 21 maps the N x N data 

matrix onto p twiddle factor axes in the frequency 

domain[2]. The number of p values depends on the 

frequency index (k1,k2) and is given by N/2dm or M/dm. 

The total number of elements in basis matrix  
2

2,1 NB uu   . The number of p values =M/dm. 

The total number of non-zero elements in basis matrix  

Bu1, u2 = N2 ÷ M /dm= 2.N.dm                            
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When  N = 8    and   k1=0, k2=0, dm=gcd(0,0,4)=4    

and  M/dm=1. Thus p has only one value, that is p=0. 

Since p has only one value that is zero, all the 64 

inputsamples are mapped onto p=0 axis and hence 

elements of basis matrix B0,0 are all 1.  

When  N = 8    and   k1=0, k2=1, dm=gcd(0,1,4)=1    

and  M/dm=4 ,  p has 4 values, ie p=0,1,2,3. Since p has 

four values, 64 input samples of xn1,n2  are divided in 4 

groups of 16 each. Correspondingly the basis matrix B 0, 1 

and three other associated basis matrices will have 

sixteen non-zero elements each. 

4. Modified algorithm for UMRT 

computation exploiting sparse basis 

matrix.  

The algorithm is developed based on the observation of 

the patterns present in the visual representation of MRT 

coefficients and basis matrices of UMRT coefficients. 

Initially, the row and column indices )2,1( nn of non-

zero basis elements are identified for computing a 

particular UMRT coefficient. Data elements xn1,n2 in 

those positions are added together without computing z. 

The sign of xn1,n2 can be found from  

−1(   𝑛1𝑘1+𝑛2𝑘2 −𝑝 ) 𝑁 .  Although the sparse nature of 

basis matrix is exploited, there is no need to create a basis 

matrix in the present implementation. The transform 

coefficients are categorized into three as 

02,01  kk  and others. 

When 01k ,all the rows of the basis matrix has  

elements. Since there are dmN.2 non-zero elements 

in a basis matrix, each row has dmNdmN 2/.2   

elements. The row index is incremented by dm2   from 

0 to N. Thus dmN.2  row indices are formed. 

Column index occurs in an increment of dmN 2/  in 

the interval 0 to N and is repeated N times for N rows. 

Thus dmNN 2/  is repeated N times which is 

equal to dmN.2  column indices. It is seen from 

inspection that when p increases column index is 

incremented once. For different p’s, each column index is 

incremented by p/dm times. Row index is retained as 

such. 

When 02 k , all the columns of the basis matrix has 

elements. The column index is incremented by dm2  

from 0 to N. Thus dmN.2  column index is formed. 

Row index is incremented from 0 to N in steps of 

dmN 2/ and is repeated N times. That is dmNN 2/ is 

repeated N times which is equal to dmN.2 column 

indices. For different p’s,  each row index is incremented 

by dmp / times. Column index is retained as such. 

 

 

 

 

 

When 2&1 kk not equal to zero, the row index is 

incremented from 0 to N , dm2  times. Thus 

dmN.2 row indices are formed. Column index is 

incremented from 0 to N in steps of 22/ dmkN , 

where dmk2 is )2,gcd( kM   and is repeated 

2/. dmkdmN  times. Thus 

22/2/. dmkNdmkdmN   is repeated N times 

which is equal to dmN.2 column indices.  From the 

visual representation of basis matrices it is seen that, with 

each increment in p, the row and column indices are 

incremented in a special pattern. For different p’s, each 

row index is incremented by dmrp /.  times, each 

column index is decremented by p.c/dm times. Constant r 

and c depends on the coefficients k1,k2 and satisfies the 

equations,  ((𝑘1. 𝑟))𝑘2 = 𝑑𝑚   and       𝑘1. 𝑟 = 𝑑𝑚 +
𝑘2. 𝑐. 

Various steps involved in the algorithm are depicted 

using a Flow Chart in figure 3. The sub processes of 

finding out the row and column indices of sparse basis 

matrices for various (k1,k2) (Block A and block B ) are 

shown separately in figure 4. 
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A                 
Find row and 

column index 

Identify the index basic DFT 

coefficients ,D 

    start  

N,  M=N/2, YN,N 

div_M={0,divisors ofM} 
w=1, D (3N-2),2 =0 

 

D(w)=(k1,k2)  , w=w+1 

 

 
dm=gcd(k1,k2,M)  , 

m=0 

Co_prime(m)=2m+1 

P=m*dm   ,  k=0 

 

 (k1  , k2) 

w>3N-2 

𝑚 ≥ 𝑀/𝑑𝑚 

𝑌 𝑢1, 𝑢2 = 𝑌(𝑘1. 𝑐𝑜_𝑝𝑟𝑖𝑚𝑒  
𝑝

𝑑𝑚
 , 𝑘2. 𝑐𝑜_𝑝𝑟𝑖𝑚𝑒  

𝑝

𝑑𝑚
 ) 

𝑌 𝑘1,𝑘2
𝑝

=  −1(   𝑛1.𝑘1+𝑛2.𝑘2 −𝑝 ) 𝑁

𝑛1,𝑛2

  𝑥 𝑛1,𝑛2 

                m=m+1 

         stop  

B                 
Find row and 

column index 

 

K1=0/k2 =0 K1,k2 =others 

=0 

No

   

Yes 

No 

Yes 

Figure 2: Flowchart for finding UMRT in sparse basis matrix method 
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Figure 3: Flowchart of the sub processes A and B 

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 75– No.8, August 2013 

37 

The Algorithm  

1. Initialize 
 

 𝑁, 𝑀 = 𝑁/2,   𝑌𝑁,𝑁 = 0 find divisors  

of M, mdiv _ ={0 and divisors of M}. 

2. Identify frequency indices  )2,1( kk  of basic 

DFT coefficients. 

3. Find   p’s  for
 
 each )2,1( kk  

4. For each ),2,1( pkk , find row and column 

indices (n1 and n2) of   xn1,n2  
added to find 𝑌𝑢1,𝑢2       

5. The transform coefficients  

𝑌 𝑘1,𝑘2
𝑝

=  −1    𝑛1.𝑘1+𝑛2.𝑘2 −𝑝   𝑁

𝑛1,𝑛2

  𝑥 𝑛1,𝑛2 

6. UMRT coefficients  

𝑌 𝑢1, 𝑢2 = 𝑌  𝑘1. 𝑐𝑜
𝑝𝑟𝑖𝑚𝑒  

𝑝

𝑑𝑚
 
, 𝑘2. 𝑐𝑜

𝑝𝑟𝑖𝑚𝑒  
𝑝

𝑑𝑚
 
                  

   

5. RESULTS AND ANALYSIS  

The proposed algorithm for the UMRT computation is 

implemented on Intel core i5 machine with clock speed 2.4 

GHz and 4GB RAM. Lena image is used to compare the 

performance of the present algorithm with the previous 

algorithm[7]. The table I shows the results of comparison 

performed.  A  sharp increase of computational time saving 

is attained for different values N. Fig 4 gives a graphical 

representation of the comparison made, time being in 

logarithmic scale.                             

Figure 4: Graph showing comparison of time taken 

in log scale as a function of N.

 

TABLE I:TIME TAKEN FOR UMRT COMPUTATION 
 

 

Size N 

Computation time (sec) 

UMRT   UMRT(sparse)   

4 0.0014 0.0035 

8 0.0019 0.0070 

16 0.0073 0.0163 

32 0.2112 0.0480 

64 2.5972 0.1745 

128 14.32 1.02 

256 193.21 7.44 

512 3123.11 62.22 

1024 _ 642.70 
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6. CONCLUSION 
The result shows a considerable amount of saving in time 

especially when the size of the data matrix increases. The 

proposed algorithm is faster compared to the earlier 

algorithms.  Although the computation time is comparable 

or slightly higher for small values of N, as N increases the 

sparse matrix method of implementation performs 

exceedingly faster. 

Thus if the UMRT computation exploiting the sparsity of 

basis matrices proposed in this paper is used in frequency 

domain analysis of 2-D signals, especially for applications 

like video processing and image enhancement where size of 

the image taken is large,  the computation time will be 

drastically reduced. An alternate placement approach for 

arranging the unique MRT coefficients in the order of 

sequencies is proposed in [11] named as SMRT. Since the 

basis matrices are the same, the proposed algorithm can be 

used to reduce the computational complexity of SMRT 

computation also. 
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