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ABSTRACT
In this paper we introduce the notions of (λ, µ)-anti-fuzzy sub-
rings, studied some properties of them and discussed the product
of them.
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1. INTRODUCTION
Fuzzy sets was first introduced by Zadeh [11] and then the fuzzy
sets have been used in the reconsideration of classical mathe-
matics. W. Liu [5] defined fuzzy set and fuzzy ideals of a ring.
Bhakat and Das introduced the concepts of (∈,∈ ∨q)-fuzzy
groups [1, 2] and (∈,∈ ∨q)-fuzzy subring [3]. B. Yao introduced
the concepts of (λ, µ)-fuzzy groups [8] and (λ, µ)-fuzzy subring
[9]. Shen [7] researched anti-fuzzy subgroups and Dong [4] stud-
ied the product of anti-fuzzy subgroups. We introduce the notion
of (λ, µ)-anti fuzzy subring, (λ, µ)-anti fuzzy ideals and product
of (λ, µ)-anti fuzzy subrings.

2. PRELIMINARIES
DEFINITION 2.1. A mapping A : X → [0, 1] is called a

fuzzy subset of a non empty set X. If A is a fuzzy subset of X,
then we denote A(α) = {x ∈ X|A(x) < α} for all α ∈ [0, 1].

DEFINITION 2.2. [3] A fuzzy subset A of a group G is said
to be a fuzzy subgroup of G if for all x, y ∈ G,
(i) A(xy) ≥ min{A(x), A(y)}
(ii) A(x−1) ≥ A(x).

DEFINITION 2.3. [10] A fuzzy set A of a group G is called
a (λ, µ)-anti-fuzzy subgroup of G if ∀a, b, c ∈ G,
(i) A(ab) ∧ µ ≤ (A(a) ∨A(b)) ∨ λ
(ii) A(c−1) ∧ µ ≤ A(c) ∨ λ.

DEFINITION 2.4. [5] A fuzzy subset A of a ring R is said to
be a fuzzy subring of R if ∀a, b ∈ R,
(i) A(a− b) ≥ A(a) ∧A(b)
(ii) A(ab) ≥ A(a) ∧A(b)

DEFINITION 2.5. [5] A fuzzy subset A of a ring R is said to
be a fuzzy ideal of R if ∀a, b ∈ R,
(i) A(a− b) ≥ A(a) ∧A(b)
(ii) A(ab) ≥ A(a) ∨A(b)

3. (λ, µ)-ANTI-FUZZY SUBRING
DEFINITION 3.1. A fuzzy set A of a ring R is called a

(λ, µ)-anti-fuzzy subring of R if ∀a, b, c ∈ R.

A(a+ b) ∧ µ ≤ (A(a) ∨A(b)) ∨ λ
A(−x) ∧ µ ≤ A(x) ∨ λ

and A(ab) ∧ µ ≤ (A(a) ∨A(b)) ∨ λ.

PROPOSITION 3.2. If A is a (λ, µ)-anti-fuzzy subring of a
ringR, thenA(0)∧µ ≤ A(x)∨λ, for all x ∈ R, where 0 is the
identity of R.

Proof: ∀x ∈ R and let (−x) be the inverse element of x. Then
A(0) ∧ µ = A(x− x) ∧ µ

= (A(x− x) ∧ µ) ∧ µ ≤ {(A(x) ∨A(−x)) ∨ λ} ∧ µ
= (A(x)∧µ)∨ (A(−x)∧µ)∨ (λ∧µ) ≤ A(x)∨ (A(x)∨

λ) ∨ λ
= A(x) ∨ λ.

THEOREM 3.3. Let A be fuzzy subset of a ring R. Then A
is a (λ, µ)-anti fuzzy subring of R iff. A(x− y) ∧ µ ≤ (A(x) ∨
A(y)) ∨ λ and A(xy) ∧ µ ≤ (A(x) ∨ (A(y))) ∨ λ.

Proof: Let A be a (λ, µ)-anti fuzzy subring of R, then
A(x− y)∧ µ = A(x− y)∧ µ∧ µ ≤ ((A(x)∨A(y))∨ λ)∧ µ

= (A(x) ∧ µ) ∨ (A(−y) ∧ µ) ∨ (λ ∧ µ) ≤
A(x) ∨ (A(y) ∨ λ) ∨ λ.

= A(x) ∨A(y) ∨ λ
A(xy)∧ µ ≤ (A(x)∨A(y))∨ λ (∵ A is (λ, µ)-anti fuzzy

subring)
Conversely, suppose
(i) A(x− y) ∧ µ ≤ (A(x) ∨A(y)) ∨ λ and
(ii) A(xy) ∧ µ ≤ (A(x) ∨A(y)) ∨ λ.
then A(0) ∧ µ ≤ A(x− x) ∧ µ ≤ A(x) ∨A(x) ∨ λ (by (i))

= A(x) ∨ λ.
So
A(−x) ∧ µ = A(0− x) ∧ µ
= A(0− x) ∧ µ ∧ µ ≤ [A(0) ∨A(x) ∨ λ] ∧ µ
= (A(0)∧ µ)∨ [(A(x)∨ λ)∧ µ] ≤ (A(x)∨ λ)∨ (A(x)∨ λ)
= A(x) ∨ λ.

A(x+ y) ∧ µ = [A(x− (−y)) ∧ µ] ∧ µ ≤ [A(x) ∨A(−y) ∨ λ] ∧ µ
= {(A(x) ∧ µ) ∨ (A(−y) ∧ µ) ∨ (λ ∧ µ)}
≤ (A(x)) ∨ (A(y) ∨ λ) ∨ λ

= A(x) ∨A(y) ∨ λ

Clearly A(xy) ∧ µ ≤ (A(x) ∨A(y)) ∨ λ.
Therefore A is a (λ, µ)- anti-fuzzy subring of R.

THEOREM 3.4. Let A be a fuzzy subset of a ring R. Then
the following are equivalent:
(1) A is a (λ, µ)-anti-fuzzy subring of R.
(2) Aα is a subring of R, for any α ∈ (λ, µ).
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Proof: (1)⇒ (2)
Let A be a (λ, µ)-anti-fuzzy subring of R. For any α ∈ (λ, µ]
such that Aα 6= φ, we need to show that (i) x− y ∈ Aα and (ii)
xy ∈ Aα for all x, y ∈ Aα. Since A(x) < α and A(y) < α,
then A(x− y)∧µ ≤ A(x)∨A(y)∨λ < α∨α∨λ = α∨λ =
α, (∵ α > λ). A(x − y) ∧ µ < α ⇒ A(x − y) ≤ α(∵ α ≤
µ). ∴ (x−y) ∈ Aα. ConsiderA(xy)∧µ ≤ A(x)∨A(y)∨λ <
α∨α∨λ = α∨λ = α. A(xy)∧µ < α⇒ A(xy) < α(∵ α ≤
µ). ∴ xy ∈ Aα. Therefore Aα is a subring of R.
(2)⇒ (1)
Conversely, letAα is a subring ofR for any α ∈ (λ, µ].We have
to proveA(x−y)∧µ ≤ A(x)∨A(y)∨λ andA(xy)∧µ ≤ A(x)∨
A(y)∨λ, ∀x ∈ R. SupposeA(x−y)∧µ > A(x)∨A(y)∨λ = α
thenA(x−y) > α (since α ≤ µ)⇒ x−y /∈ Aα for x, y ∈ Aα,
which is a contradiction to that Aα is a subring of R. Hence
A(x− y) ∧ µ ≤ A(x) ∨A(y) ∨ λ.
SupposeA(xy)∧µ > A(x)∨A(y)∨λ = α that isA(xy)∧µ >
α⇒ A(xy) > α (since α ≤ µ).⇒ xy /∈ Aα for all x, y ∈ Aα,
which is a contradiction. So A(xy) ∧ µ ≤ A(x) ∨A(y) ∨ λ.
Therefore A is a (λ, µ)-anti-fuzzy subring.

DEFINITION 3.5. Let A be a fuzzy subset of R. Then A is
called a (λ, µ)-anti-fuzzy ideal of R if for all x, y ∈ R,
(i) A(x− y) ∧ µ ≤ A(x) ∨A(y) ∨ λ.
(ii) A(xy) ∧ µ ≤ (A(x) ∧A(y)) ∨ λ.

THEOREM 3.6. Let A be a fuzzy subset of a ring R. Then
the following are equivalent.
(i) A is a (λ, µ)-anti-fuzzy ideal of R.
(ii) Aα is an ideal of R, for any α ∈ (λ, µ].

Proof: (i)⇒ (ii)
Let A be a (λ, µ)-anti-fuzzy ideal of R. We have to prove Aα is
an ideal of R. Let x, y ∈ Aα. Then A(x) < α and A(y) < α.
Consider A(x− y) ∧ µ ≤ A(x) ∨A(y) ∨ λ < α ∨ α ∨ λ = α.
(Since λ < α). i.e. A(x− y) ∧ µ < α⇒ A(x− y) < α (since
α ≤ µ).∴ x− y ∈ Aα.
Let x ∈ Aα, r ∈ R. Then A(xr) ∧ µ ≤ (A(x) ∧ A(r)) ∨ λ <
(α ∧A(r)) ∨ λ < α. (Since λ < α)
i.e. A(xr) ∧ µ < r ⇒ A(xr) < r (Since α ≤ µ).
Similarly rx ∈ Aα. Hence Aα is n ideal of R.
(ii)⇒ (i)
Conversely, let Aα be an ideal of R for any α ∈ (λ, µ].
Suppose let us consider A(x− y) ∧ µ > A(x) ∨A(y) ∨ λ = α
then
A(x− y) > α (since α ≤ µ)⇒ x− y /∈ Aα, for all x, y ∈ Aα
which is a contradiction to thatAα is an ideal ofR.HenceA(x−
y)∧µ ≤ A(x)∨A(y)∨λ, for all x, y ∈ R. SupposeA(xy)∧µ >
(A(x) ∧A(y)) ∨ λ = α, that is A(xy) ∧ µ > α⇒ A(xy) > α
(since α ≤ µ)
⇒ xy /∈ Aα for all x, y ∈ Aα, which is a contradiction to that
Aα is an ideal. Hence A is a (λ, µ)-anti fuzzy ideal of R. Hence
the theorem.

THEOREM 3.7. Let f : R1 → R2 be a homomorphism and
letA be a (λ, µ)-anti fuzzy subring ofR1. Then f(A) is a (λ, µ)-
anti-fuzzy subring of R2. If A is a (λ, µ)-anti-fuzzy ideal of R1

and f is onto, then f(A) is a (λ, µ)-anti-fuzzy ideal ofR2,where
f(A)(y) = inf

x∈R1

{A(x)|f(x) = y}, for all y ∈ R2.

Proof:

(1) LetA be a (λ, µ)-anti-fuzzy subring ofR1. To prove f(A) is
a (λ, µ)-anti-fuzzy subring of R2. For this we have to show
first
(i) for all y1, y2 ∈ R2, we have
f(A)(y1 − y2) ∧ µ = inf{A(x1 − x2)|f(x1 − x2) = y1 −
y2} ∧ µ
= inf{A(x1 − x2) ∧ µ|f(x1 − x2) = y1 − y2}
≤ inf{A(x1)∨A(x2)∨λ|f(x1) = y1, f(x2) = y2} (Since
A is (λ, µ) anti-fuzzy subring) = inf{A(x1)|f(x1) = y1}∨

inf{A(x2)|f(x2) = y2} ∨ λ
= f(A)(y1) ∨ f(A)(y2) ∨ λ.
(ii) f(A)(y1y2)∧µ = inf{A(x1x2)|f(x1x2) = y1y2} ∧µ
= inf{A(x1x2) ∧ µ|f(x1).f(x2) = y1y2}
≤ inf{A(x1) ∨A(x2) ∨ λ|f(x1) = y1, f(x2) = y2}
= inf{A(x1)|f(x1) = y1} ∨ inf{A(x2)|f(x2 = y2)} ∨ λ
= f(A)(y1) ∨ f(A)(y2) ∨ λ.

(2) Now assume that A is a (λ, µ)-anti-fuzzy ideal of R1. To
prove f(A) is a (λ, µ)-anti-fuzzy ideal of R2.
(i) By part one the proof for f(A)(y1−y2)∧µ ≤ f(A)(y1)∨
f(A)(y2) ∨ λ is obtained.
(ii) f(A)(y1y2)∧µ = inf{A(x1x2)|f(x1x2) = y1y2}∧µ.
= inf{A(x1x2) ∧ µ|f(x1x2) = y1y2}
≤ inf{(A(x1) ∧A(x2)) ∨ λ|f(x1) = y1, f(x2) = y2}
= (inf{A(x1)|f(x1) = y1)} ∧ inf{A(x2)|f(x2) = y2})∨
λ
= (f(A)(y1) ∧ f(A)(y2)) ∨ λ.
Hence f(A) is a (λ, µ)-anti-fuzzy ideal of R2.

THEOREM 3.8. Let f : R1 → R2 be a homomorphism and
let B be a (λ, µ)-anti fuzzy subring ((λ, µ)-anti-fuzzy ideal) of
R2. Then f−1(B) is a (λ, µ)-anti-fuzzy subring ((λ, µ)-anti-
fuzzy ideal) of R1 where
f−1(B)(x) = B(f(x));∀x ∈ R1.

Proof:

(1) To prove f−1(B) is a (λ, µ)-anti-fuzzy subring. For
x1, x2 ∈ R1, we have
(i) f−1(B)(x1−x2)∧µ≤ B(f(x1−x2))∧µ = B(f(x1)−
f(x2)) ∧ µ.
≤ B(f(x1))∨B(f(x2))∨λ = f−1(B)(x1)∨f−1(B)(x2)∨
λ.
(ii) Consider f−1(B)(x1x2) ∧ µ = B(f(x1x2)) ∧ µ =
B(f(x1)f(x2)) ∧ µ
≤ B(f(x1)) ∨ B(f(x2)) ∨ λ. = f−1(B)(x1) ∨
f−1(B)(x2) ∨ λ.
Hence f−1(B) is a (λ, µ)-anti-fuzzy subring.

(2) To prove f−1(B) is a (λ, µ)-anti-fuzzy ideal.
(i) By part one we have proof for
f−1(B)(x1 − x2) ∧ µ ≤ f−1(B)(x1) ∨ f−1(B)(x2) ∨ λ.
(ii) Consider f−1(B)(x1x2) ∧ µ = B(f(x1x2)) ∧ µ.
= B(f(x1).f(x2)) ∧ µ ≤ (B(f(x1)) ∧B(f(x2))) ∨ λ.
= (f−1(B)(x1) ∧ f−1(B)(x2)) ∨ λ.
Hence f−1(B) is a (λ, µ)-anti-fuzzy ideal.
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Let R1 be a ring with the identity 0 and R2 be a ring with
the identity 0′, then R1 × R2 is a ring with the identity
(0, 0′) if we define (x1, y1)(x2, y2) = (x1x2, y1y2) for all
(x1, y1), (x2, y2) ∈ R1 × R2. Moreover, the inverse element
of any (x, y) ∈ R1 ×R2 is (a, b) ∈ R1 ×R2 if and only if a is
the inverse of x in R1 and b is the inverse element of y in R2.

THEOREM 3.9. Let A,B be two (λ, µ)-anti-fuzzy subrings
R1 and R2 respectively. The product of A and B denoted by
A×B, is a (λ, µ)-anti-fuzzy subring of the ring R1×R2 where
(A×B)(x, y) = A(x) ∨B(y),∀(x, y) ∈ R1 ×R2.

Proof: Let (x1, y1), (x2, y2) ∈ R1 ×R2. Now,
(A×B)((x1, y1)−(x2, y2))∧µ = (A×B)(x1−x2, y1−y2)∧µ.

= (A(x1 − x2) ∨B(y1 − y2)) ∧ µ
= (A(x1 − x2) ∧ µ) ∨ (B(y1 − y2) ∧ µ)
≤ (A(x1)∨A(x2)∨λ)∨ (B(y1)∨B(y2)∨λ)
= (A(x1) ∨B(y1)) ∨ (A(x2) ∨B(y2)) ∨ λ
= ((A×B)(x1, y1)) ∨ (A×B)(y1, y2) ∨ λ.

Also
(A×B)((x1, y1)(x2, y2)) ∧ µ = (A×B)(x1x2, y1y2) ∧ µ

= (A(x1x2) ∨B(y1y2)) ∧ µ
= (A(x1x2) ∧ µ) ∨ (B(y1y2) ∧ µ)
≤ (A(x1)∨A(x2)∨λ)∨ (B(y1)∨B(y2)∨λ)
= (A(x1) ∨B(y1)) ∨ (A(x2) ∨B(y2)) ∨ λ
= ((A×B)(x1, y1))∨ ((A×B)(x2, y2))∨ λ.

Hence (A×B) is a (λ, µ)-fuzzy subring of R1 ×R2.

THEOREM 3.10. Let A and B be two fuzzy subsets of rings
R1 and R2 respectively. If A×B is a (λ, µ)-anti-fuzzy subring
of R1 × R2 then at least one of the following statements must
hold.
A(0)∧µ ≤ B(a)∨λ, ∀a ∈ R2 andB(0′)∧µ ≤ A(x)∨λ, ∀x ∈
R1.

Proof: LetA×B be a (λ, µ)-anti-fuzzy subring of the ringR1×
R2.
By contraposition, suppose that none of the statements hold.
Then we can find x ∈ R1 and a ∈ R2 such that A(x) ∨ λ <
B(0′) ∧ µ and B(a) ∨ λ < A(0) ∧ µ.
Now

(A×B)(x, a) ∨ λ = (A(x) ∨B(a)) ∨ λ
= (A(x) ∨ λ) ∨ (B(a) ∨ λ)
< (B(0′) ∧ µ) ∨ (A(0) ∧ µ)
= (A×B)(0, 0′) ∧ µ.

This is a contradiction with that (0, 0′) is the identity ofR1×R2.

THEOREM 3.11. Let A and B be fuzzy subsets of R1 and
R2 respectively, such thatB(0′)∧µ ≤ A(x)∨λ for all x ∈ R1.
If A×B is a (λ, µ)-anti-fuzzy subring of R1 ×R2, then A is a
(λ, µ)-anti-fuzzy subring of R1.

Proof: FromB(0′)∧µ ≤ A(x)∨λwe obtained that µ ≤ A(x)∨
λ or B(0′) ≤ A(x) ∨ λ, for all x ∈ R1. Let x, y ∈ R1, then
(x, 0′), (y, 0′) ∈ R1 ×R2.
Two cases are possible:

(1) If µ ≤ A(x) ∨ λ for all x ∈ R1. Then
A(x− y) ∧ µ ≤ µ ≤ A(x) ∨ λ ≤ (A(x) ∨A(y)) ∨ λ and
A(xy) ∧ µ ≤ µ ≤ A(x) ∨ λ ≤ (A(x) ∨A(y)) ∨ λ.

(2) If B(0′) ≤ A(x) ∨ λ for all x ∈ R1. Then

A(x− y) ∧ µ ≤ (A(x− y) ∨B(0′ − 0′)) ∧ µ
= ((A×B)(x− y, 0′ − 0′)) ∧ µ
= ((A×B)((x, 0′)− (y, 0′)) ∧ µ)
≤ ((A×B)(x, 0′) ∨ (A×B)(y, 0′)) ∨ λ
= A(x) ∨B(0′) ∨A(y) ∨B(0′) ∨ λ
= A(x) ∨A(y) ∨ λ.

A(xy) ∧ µ ≤ (A(xy) ∨B(0′0′)) ∧ µ
= ((A×B)(xy, 0′0′)) ∧ µ
= ((A×B)((x, 0′)(y, 0′)) ∧ µ)
≤ ((A×B)(x, 0′) ∨ (A×B)(y, 0′)) ∨ λ
= A(x) ∨B(0′) ∨A(y) ∨B(0′) ∨ λ
= A(x) ∨A(y) ∨ λ.

Hence A is a (λ, µ)-anti-fuzzy subring of R1.

THEOREM 3.12. Let A and B be fuzzy subsets of rings R1

and R2 respectively, such that A(0) ∧ µ ≤ B(a) ∨ λ for all
a ∈ R2. IfA×B is a (λ, µ)-anti-fuzzy subring ofR1×R2, then
B is a (λ, µ)-anti-fuzzy subring of R2.

From the previous theorems, we have the following Corollary.

COROLLARY 3.13. Let A and B be fuzzy subsets of rings
R1 and R2 respectively. If A×B is a (λ, µ)-anti-fuzzy subring
of R1 × R2, then either A is a (λ, µ)-anti-fuzzy subring of R1

or B is a (λ, µ)-anti-fuzzy subring of R2.
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