
International Journal of Computer Applications (0975 – 8887)

Volume 75– No.6, August 2013

39

Simulators for Wireless Sensor Networks: A Review

Rakesh Sharma
Research Scolar

PTU Jalandhar

V. A. Athavale,Ph.D

Department of Computer Science & Engineering,
Devraj Group of Institutions Ferozpur, Punjab,India

Pinki Sharma
Department of Computer Science & Engineering,
HCTM Technical Campus Kaithal, Haryana, India

Sunil Kaushik
Department of Computer Science & Engineering,
HCTM Technical Campus Kaithal, Haryana, India

ABSTRACT
Wireless Sensor Networks (WSN) is made by an oversized

variety of networked sensing nodes. It’s rather advanced, or

perhaps unworkable, to model analytically a WSN and it

always results in simple analysis with restricted confidence.

Besides, deploying test-beds supposes a large effort.

Therefore, simulation is important to check WSN. However, it

needs acceptable model supported solid assumptions and an

appropriate framework to ease implementation. Additionally,

simulation results admit the actual state of affairs below study

(environment), hardware and physical layer assumptions, that

aren't typically correct enough to capture the behavior of a

WSN, thus, make vulnerable the quality of results. However,

a careful model yields to measurability and performance

problems, attributable to the massive variety of nodes, that

betting on application, got to be simulated. Therefore, the

exchange between measurability and accuracy becomes a

serious issue once simulating WSN. During this survey an

acceptable model for WSN simulation is introduced, at the

side of tips for choosing an acceptable framework.

Additionally, a comparative description of obtainable tools is

provided

Keywords
wireless sensor networks, simulators, ns2, omnet, j-sim

1. INTRODUCTION
Wireless sensing element Networks (WSN) is thought of a

selected kind of Mobile Ad-hoc NETwork (MANET), shaped

by lots of or thousands of sensing devices communication by

suggests that of wireless transmission. Analysis on WSNs and

MANETs share the similar technical issues. However in

WSNs, two specific factors arise:

• The pictured applications and also the operation of the

protocol layers are typically driven by the physical variables

measured by the sensors. Therefore, the dynamics of the

physical parameters perceived by the network govern the

network traffic, and even the topology.

• The energy could be a primary concern in WSN. Usually,

nodes run on non-rechargeable batteries. Therefore, the

expected node period of time could be a basic component that

has got to be taken into consideration. On the contrary, in

MANETs, energy is a vital issue that ought to be optimized,

though it's usually assumed that a node will recharge or

replace its battery.

These constraints create impossible to analytically model a

WSN and predict the particular performance of high-level

protocols and network operation, which regularly ends up in

simplistic analysis with restricted confidence. Currently, the

primary real WSN applications are being explored and a few

of them are nevertheless to come back. Meanwhile, deploying

and operational a test-bed to check the particular behavior of

protocols and network performance supposes a good effort

[1], [2]. Consequently, simulation is crucial to check WSN,

being the common thanks to take a look at new applications

and protocols within the field. This truth has brought a recent

boom of simulation tools out there to model WSN. However,

getting reliable conclusions from analysis supported

simulation is not a trivial task. There are two key aspects that

ought to be evaluated before conducting experiments: (1) The

correctness of the model and (2) the suitableness of a selected

tool to implement the model. On one hand, there exists

associate in nursing increasing concern regarding the

methodology and assumptions of simulations [3], [4]: perfect

hardware, protocols and non-realistic radio models will cause

mistaken results. A “good” model supported solid

assumptions is necessary to derive unsuspecting results. But,

as well as the specified degree of detail adds sturdy machine

needs. Large numbers of nodes in WSN, which will

impersonate the additional stress on the matter. The elemental

exchange is: accuracy and necessity of detail versus

performance and measurability.

On the opposite hand, implementing an entire model needs a

substantial effort. A tool that helps to make a model is

required, and also the user faces the task of choosing the

suitable one. Simulation software package normally provides

a framework to model and reproduce the behavior of real

systems. However, actual implementation and “secondary

goals” of every tool disagree significantly, that is, some is also

designed to attain smart performance et al to produce a

straightforward and friendly graphical interface or emulation

capabilities. The aim of this paper is to produce some insight

on the building blocks of a general simulation model for

WSN, introducing its specific problems.

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.6, August 2013

40

2. A MODEL FOR WSN SIMULATION
Together with the event of simulation tools for WSN, their

corresponding models are introduced. The models embrace

new elements, not gift in classical network simulators, as

elaborated power and energy consumption models or

atmosphere models. This section describes a general part

model, derived from [5], [6], for WSN simulation tools. This

model is appropriate for many of the analysis tools utilized in

on-going analysis on WSN.

2.1 Network model
Figure one depicts the overall model at a network-wide scale.

The subsequent elements are considered:

Figure 1 network model

1) Nodes: every node could be a physical device observance a

collection of physical variables. Nodes communicate with one

another via a typical radio channel. Internally, a protocol stack

controls communications. In contrast to classical network

models, detector modes embrace a second cluster of

components: The physical node tier that is connected to the

atmosphere. Nodes are sometimes positioned in a very two or

three dimensional world. An extra “topology” part, not

showed in figure one might management node coordinates.

2) Environment: the most distinction between classical and a

WSN model is that the extra “environment” part. This part

models the generation and propagation of events that are

perceived by the nodes, and trigger detector actions, i.e.

communication among nodes within the network. The events

of interest are usually a physical magnitude as sound or

seismic waves or temperature.

3) Radio channel: It characterizes the propagation of radio

signals among the nodes within the network. Terribly

elaborated models use a “terrain” part, connected to the

atmosphere and radio channel elements. The tract part is taken

into thought to reckon the propagation as a part of the radio

channel, and conjointly influences the physical magnitude.

4) Sink nodes: These are special nodes that, if present, receive

knowledge from information superhighway, and method it.

They will interrogate sensors regarding an incident of interest.

The utilization of sinks depends on the applying and also the

tests performed by the machine.

5) Agents: A generator of events of interest for the nodes. The

agent might cause a variation in a very physical magnitude,

which propagates through the atmosphere and stimulates the

detector. This part is helpful once its behavior is enforced

severally from the atmosphere, e.g., a mobile vehicle.

Otherwise, the atmosphere itself will generate events.

2.2 Node model
Node behavior depends on interacting factors that cause cross-

layer interdependencies. Convenient thanks to describe it have

to divide a node into abstract tiers, as diagrammatical in

Figure two.

• The Protocol-tier includes all the communication protocols.

Typically, three layers are at this tier: A mackintosh layer, a

routing layer and a particular application layer. Note that the

operation of the protocol tier sometimes depends on the state

of the physical tier delineate below, e.g. a routing layer will

take into account battery constraints to come to a decision on

packet route. Hence, associate degree economical technique to

interchange tier info should be developed.

Figure 2 Tier based node model

• The physical-node tier represents the hardware platform and

its effects on the performance of the instrumentality. Actual

composition of this tier might modification counting on the

precise application. The common parts of this tier are the set

of physical sensors, the energy module and also the quality

module. Physical Sensors describe the behavior of the

observance hardware. Energy module simulates power

consumption within the part hardware, a crucial issue in WSN

analysis. Quality module controls detector position.

 The media-tier is that the link of the node with the “real

world”. A node is connected with the atmosphere through: (1)

A radio channel, and (2) through one or additional physical

channels. Physical channels receive environmental events as

delineate in section two.

3. FRAMEWORK CHOICE
Widespread researches on WSN have raised a race involving

several simulation tools and frameworks. The election of a

simulation framework for any sort of network could be a task

S
IN

K
 N

O
D

E

R
A

D
IO

 C
H

A
N

N
E

L

NODE 1

1

NODE 2

NODE N

E
N

V
IR

O
N

M
E

N
T

AGEN
T

PROTOCOL
STACK

APPLICATION

LAYER ENERGY

MOBILITY

PHYSICAL SENSOR 1

PHYSICAL SENSOR

N

Protocol tier

Physical node tier

RADIO
CHAN

NEL

PHYSICAL PARAMETER
CHANNEL 1

PHYSICAL PARAMETER

CHANNEL N

Media tier

NODE

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.6, August 2013

41

that's value to pay enough time. Indeed, this is often notably

true for wireless sensors networks, due to the variety and

quality of the simulation situations, protocols, and parts

concerned. In such a heterogeneous scope, totally different

analysis tools reach different goals. This section identifies and

discusses the most options to be thought-about within the

choice of a WSN simulation framework. A comparative

description of representative simulators follows in section

four. In a very opening, existing WNS frameworks is

classified in: (a) Specific add-ons to general purpose

communication networks (section 4.1) and (b) WSN

frameworks designed from scratch (section 4.2).

3.1 The long-way road to simulation
Simulation style starts with an appropriate description of the

important system. Such description constitutes the simulation

model, designed up with the help of common-simulation ideas

like entities, attributes, events, channels, etc. Therefore, the

modeler declares the structure of the simulation in terms of

entities and their relations and implements the behavior of

these entities and their response to events. Common

simulation packages clearly separate implementation from

model description and instantiation:

• The simulation engine and also the basic model objects are

provided as a collection of software package libraries in a

very high level artificial language, sometimes Java or C++.

This is often the simulation API.

• Some reasonably scripting (Tcl, e.g.) or mark-up language

(XML, e.g.) is often utilized to support model description, that

is, to determine (declare) relations between entities. Scripts

enable a standardized and economical approach to model

description and configuration, model mental representation of

simulation runs and runtime review.

• Additionally, different utility libraries are usually enclosed

like graphical illustration support or applied mathematics

knowledge gathering and analysis. Therefore, a simulation

framework sometimes consists of a basic simulation library, a

utility library, and a few scripting support. The particular kind

the package is deployed depends on the implementation.

Some packages give tools that translate model scripts into

objects within the implementation language to be compiled

afterward. Different packages bind library and scripting so

simulation objects is instantiated from a script. Others give a

visible interface.

3.2 What might we have a tendency to

expect from an honest WSN simulator?
Usually, the key properties to pick out appropriate simulation

atmosphere are:

1) Reusability and availableness.

2) Performance and measurability.

3) Support for rich-semantics scripting languages to outline

experiments and method results.

4) Graphical, correct and trace support.

In this section, we have a tendency to specialize in the impact

of every feature within the context of the WSN.

3.3 Reusability and availableness

Simulation is employed to check novel techniques in realistic

and controlled situations. Researchers are sometimes

inquisitive about comparison the performance of a brand new

technique against existing proposals. Therefore, two key

aspects are: will the simulation tool embrace implementations

of common models? However simple is to switch or integrate

a brand new model with the prevailing ones? The primary

question primarily depends on however long a framework has

been used for, and the way many of us use it. Early and wide

adopted frameworks have several offered models and it is

terribly seemingly that the new flourishing proposals are

going to be another to next releases. The second facet is

closely associated with the look of the package. A careful

structure with clean interfaces and high modularity permits

the user to simply add or modification practicality. Ready-to-

use models enable users to quickly build a practical

simulation situation and specialize in modeling additional

specific details of WSN. All the overall purpose packages

embrace an additional or less complete TCP/IP suite, which

may be thought-about the minimum customary support.

Additionally, typical necessities for WSN simulators are:

Ad-hoc routing support and wireless mackintosh protocols,

and propagation and quality models to synthesize the physical

node distribution. For instance, these entities are

unremarkably implemented: The AODV [7] for routing, the

IEEE 802.11 [8] wireless mackintosh protocol, a path loss

model [9] for propagation, and also the random-waypoint-

based quality. For specific tools the question is subtlety

different: All the precise frameworks are ready to execute

native detector code. Hence, each application, protocol or part

developed for the particular detector platform is simulated or

emulated. Just some specific elements are strictly simulated,

e.g. the radio channel or the physical media atmosphere.

Summing up, during this case protocols availableness depends

on the important availableness of them for the target platform,

and vice versa.

3.4 Performance and measurability
Performance and measurability could be a major concern once

facing WSN simulation. The previous is sometimes finite to

the artificial language effectiveness. The latter is strained to

the memory, processor and logs storage size necessities. To

boot, the sort of simulation implies some limits: Emulation

mode and time-driven simulations operate in real time in

order that they can't be indiscriminately long. Wireless

simulations stress performance and measurability problems as

a result of the enhanced quality another by the interaction with

the atmosphere, radio propagation, quality and power

consumption. Simulation of many hundreds of thousands of

nodes remains a difficult downside.

3.5 Support for rich-semantics scripting

languages to outline experiments and

method results
The configuration of a WSN typical trial needs to answer (at

least) queries like: what number nodes are there within the

test? wherever is every node placed?, do nodes move?, all of

them?, how?, that energy model is used?, what number

physical environments are?, however they generate events?,

that physical magnitudes ought to live every node?, that

statistics should be measured within the experiment?, that are

the parameters of the radio model? The immense quantity of

variables concerned within the definition of a WSN

experiment needs the utilization of specific input scripting

languages, with high-level linguistics. To boot, it's seemingly

that enormous quantities of output knowledge will be

generated through several replicas of the experiments.

Therefore, an appropriate output scripting language that helps

to get the results from the experiments quickly and exactly is

fascinating.

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.6, August 2013

42

3.6 Graphical, correct and trace support
Graphical support for simulations is attention-grabbing in

three aspects: (1) as a debugging aid. The first and additional

sensible thanks to quickly discover a nasty behavior is to

“watch” and follow the execution of a simulation. The key

options that a graphical interface ought to support are:

Capability of review of modules, variables and event queues

at real time, beside “step-by-step” and “run-until” execution

potentialities. These options create graphical interfaces

terribly powerful debugging tools. Note that the secret is the

flexibility to move with the simulation. (2) As a visible

modeling and composition tool. This feature sometimes

facilitates and speeds the look of little experiments or the

composition of basic modules. However, for big scale

simulations, it is not terribly sensible. (3) Finally, as result

plotters, this enables fast visualization of results while not a

post-processing application.

4. WSN SIMULATION software package
In this section the foremost relevant simulation environments

won’t to study WSN are introduced, and their main options

and implementation problems delineate and mentioned. We

have a tendency to essentially specialize in free, ASCII text

file, simulation tools.

4.1 General simulation packages
• NS-2 [10]. Distinct event machine developed in C++. NS-2

is one in all the foremost standard non-specific network

simulators, and supports a large vary of protocols altogether

layers. It uses OTcl [11] as configuration and script interface.

NS-2 is that the paradigm of reusability. It provides the

foremost complete support of communication protocol

models, among non-commercial packages. Relating to WSN,

NS-2 includes ad-hoc and WSN specific protocols like

directed diffusion [12] or SMAC [13]. Also, many comes will

give WSN support to NS-2 like SensorSim [5] and office [14].

Each is extensions of NS- two to support WSN modeling.

However, SensorSim appears to be now not offered at [15].

NS-2 will well model wired network topologies up to 1000

nodes or higher than with some optimizations. This

experiment size is unbroken for wireless topologies

mistreatment some new optimizations [16]. A drawback of

NS-2 is that it provides meager graphical support, via Nam.

This application simply reproduces a NS-2 trace. NS-2 has

been an important testing tool for network analysis and, so,

one may expect that the new standard protocols are going to

be another to future releases. However, new proposals for

WSN are progressively being tested in specific tools, e.g.

TOSSIM or EmTOS (see section 4.2 for an outline of both),

due to the advantage of native detector code simulation and

also the specific style of those tools for WSN. Therefore, it is

undecided the provision of latest WSN proposals for next

releases of NS-2. This downside is also even worse for fewer

used frameworks.

• OMNET++ [17] standard distinct event machine enforced in

C++. Obtaining started with it's quite easy, as a result of its

clean style. OMNET++ conjointly provides a strong GUI

library for animation and tracing and debugging support. Its

major disadvantage is that the lack of obtainable protocols in

its library, compared to different simulators. However,

OMNET++ is turning into a preferred tool and its lack of

models is being prevented by recent contributions. As an

example, a quality framework has recently been discharged

for OMNET++ [18], and it is used as a place to begin for

WSN modeling. To boot, many new proposals for localization

and mackintosh protocols for WSN are developed with

OMNET++, underneath the agreement project [19], and also

the software package is publicly offered. Notwithstanding,

most of the offered models are developed by freelance

analysis teams and don't share a typical interface, what makes

troublesome to mix them. As associate degree example, not

even the localization and mackintosh protocols developed

within the agreement project are compatible.

• J-Sim [20]. A component-based simulation atmosphere

developed entirely in Java. It provides period of time method

based mostly simulation. The most advantage of J-sim is its

goodly list of supported protocols, together with a WSN

simulation framework with a really elaborated model of

WSNs, and an implementation of localization, routing and

knowledge diffusion WSN algorithms [6]. J-sim models are

simply reusable and interchangeable providing the utmost

flexibility. To boot, it provides a GUI library for animation,

tracing and debugging support and a script interface, named

Jacl [21]. J-Sim claims to scale to an analogous variety of

wireless nodes than NS-2 (around 500) with 2 orders of

magnitude higher memory consumption however a forty first

worse execution time [6].

• NCTUns2.0 [22]. Distinct event machine whose engines are

embedded within the kernel of a UNIX system machine. The

particular network layer packets are tunneled through virtual

interfaces that simulate lower layers and physical devices.

This notable feature permits simulations to be fed with real

program knowledge sources. A helpful GUI is out there

additionally to a high variety of protocols and network

devices, together with wireless local area network. Sadly, no

specific styles for WSN are enclosed. On one hand, the shut

relationship between the simulation engine of NCTUns2.0 and

also the Linux kernel machine appears a problem (adding

WSN simulation modules to the present design isn't a simple

task). But, on the opposite hand, real detector knowledge is

simply blocked into simulated devices, protocols and actual

applications, simply by putting in these sensors within the

machine. NCTUns2.0 conjointly has worthy graphical edition

capabilities.

• JiST/SWANS [23]. Distinct event simulation frameworks

that are embed the simulation engine within the Java

bytecode. Models are enforced in Java and compiled. Then,

bytecodes are rewritten to introduce simulation linguistics.

Afterwards, they're dead on a customary JVM. This

implementation permits the utilization of un-adapted existing

Java software package within the simulation, as happens with

NCTUns2.0 and UNIX system programs. The most

disadvantage of JiST tool is that the lack of enough protocol

models. At the instant it solely provides associate degree ad-

hoc network machine referred to as SWANS, designed atop

JiST engine, and with a reduced protocol support. The sole

graphical aid is an incident lumberjack. Jython [24] is

employed as a scripting engine. JiST claims to scale to

networks of 106 wireless nodes with 2 and one order of

magnitude higher performance (execution time) than NS-2

and GloMoSim severally [23]. It’s been conjointly shown that

it outperforms Glo- MoSim and NS-2 in event out turn and

memory consumption, despite being designed with Java.

• GloMoSim [25]. Simulation atmosphere for wireless

networks designed with secpar. Secpar [26] could be a

simulation language derived from C that adds linguistics for

making simulation entities and message communication on a

spread of parallel architectures. Taking advantage of

parallelization, it's been shown to scale to 10000 nodes [27].

Many proposals for WSN protocols are tested with it.

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.6, August 2013

43

Recently, a development kit for WSN has been discharged,

sQualnet [28].

• SSFNet [29]. Set of Java network models designed over the

ascendible Simulation Framework (SSF). SSF could be a

specification of a typical API for simulation that assures

immovability between compliant simulators. There are

multiple Java and C++ implementations of SSF.

DartmouthSSF (DaSSF) [30], as an example, could be a C++

implementation of SSF familiarized to (parallel) simulation of

terribly giant scale communication networks. Besides, specific

extensions familiarized towards ad-hoc networking exists,

e.g., SWAN2. SWAN is being extended to be ready to

execute TinyOS code (see section four.2), in a very new

framework referred to as TOSSF [31].

• Ptolemy II [32]. Java packages that support totally different

models of simulation paradigms (e.g. continues time, Data

flow, discrete-event). It conjointly addresses the modeling,

simulation and style of coinciding, real-time, embedded

systems. Ptolemy models are made in associate degree actor

oriented method, terribly kind of like the component-based

style of J-Sim. VisualSense [33] could be a modeling and

simulations framework for WSN designed on Ptolemy II.

Models are developed by sub-classing base categories of the

framework or by combining existing Ptolemy models.

Ptolemy visual edition assures a straightforward and intuitive

graphical composition of models and result plotting.

4.2 Specific WSN frameworks
This section describes the foremost relevant tools specifically

aimed to emulate and simulate the WSN hardware and

software package (unlike the WSN extensions of the overall

network simulators delineate within the previous section).

WSN situations are sometimes extremely application-

dependent, and subjected to laborious constraints that cause,

in turn, a decent coupling between layers. Therefore,

dedicated tools might facilitate to higher capture these

dependencies. This approach conjointly permits simulating

“real” application code, dashing up the migration from

simulation to implementation, and facilitates testing and

debugging of real applications. Emulation makes attainable

real time correct and analysis of knowledge. The sole

disadvantage is that the user is tied to one platform either

software package or hardware (typically transparent substance

Motes [34]), and to one artificial language (typically

TinyOS/NesC [35]). However, TinyOS and transparent

substance motes have become the de facto platform for WSN,

reassuring somehow the “utility” of these tools.

4.2.1 Following environments are specifically

designed for WSN research:
• TOSSIM [36]. Bit-level distinct event machine and person

of TinyOS, i.e. for every transmitted or received bit an event

is generated rather than one per packet. This is often

attainable due to the reduced rate (around forty kbps) of the

wireless interface. TOSSIM simulates the execution of nesC

code on a TinyOS/MICA, permitting emulation of actual

hardware by mapping hardware interruptions to distinct

events. A simulated radio model is additionally provided.

Emulated hardware elements are compiled beside real TinyOS

elements mistreatment the nesC compiler. Thus, associate

degree possible with real TinyOS applications over a

simulated physical layer is obtained. To boot, there are many

communication services that give how to feed knowledge

from external sources. The result's a hi-fi machine and person

of a network of TinyOS/MICA nodes. The goal of TOSSIM is

to review the behavior of TinyOS and its applications instead

of performance metrics of some new protocol. Hence, it's

some limitations, as an example, it doesn't capture energy

consumption. Another disadvantage of this framework is that

each node should run an equivalent code. Therefore, TOSSIM

cannot be wont to appraise some kinds of heterogeneous

applications. TOSSIM will handle simulations around

thousand of Motes. It’s restricted by its bit-level granularity:

Performance degrades as traffic will increase. Channel

sampling is additionally simulated at bit level and

consequently the utilization of a CSMA protocol causes

additional overhead than would do a TDMA one.

• EmStar/EmSim/EmTOS [37] [38]. EmStar could be a

software package framework to develop WSN applications on

special platforms referred to as micro servers: Ad-hoc systems

with higher hardware than a traditional detector. The EmStar

atmosphere contains a Linux microkernel extension, libraries,

services and tools. The foremost necessary tools are:

– EmSim: A machine of the micro-servers atmosphere. In

EmSim each simulated node runs associate degree Em- Star

stack, and is connected through a simulated radio channel

model. It’s not a distinct event however a time-driven

machine, that is, there is no virtual clock.

– EmCee: associate degree interface to real low-power radios,

rather than a simulated radio model, getting radio emulation.

EmStar ASCII text file (note that this code is in any language)

is employed within the simulations. To boot, the UCLA

employees have developed EmTOS: associate degree

extension of EmStar that permits nesC/TinyOS applications to

run in associate degree EmStar framework. Thus, it opens the

thanks to heterogeneous systems of detector and micro

servers. Simulation of micro server and detector networks is

additionally supported. Additionally, EmTOS provides 3

modes of emulation: Pure emulation, wherever all the motes

are emulated by software package, “real mode”, wherever all

the motes are real, and “hybrid mode”, wherever some motes

are real et al are emulated. EmTOS reaches up to two hundred

modes and it's claimed that for over five hundred nodes it'd be

necessary to distribute the simulation on many processors. •

ATEMU [39]. Associate degree person of the AVR processor

(this processor is employed within the transparent substance

platform). Whereas the operation of the speck is emulated

instruction by instruction, the radio model is simulated.

ATEMU conjointly provides a library of different hardware

devices, e.g., timers or transceivers. Therefore, a whole

hardware platform is emulated, getting two advantages: (1)

the aptitude of testing OS and applications aside from TinyOS

and (2) the aptitude of simulating heterogeneous networks

with totally different sensors. They’re achieved at the price of

high process necessities and poor measurability.

• SENS [40]. Distinct event machine are enforced in C++.

SENS utilizes a simplified detector model with three layers

(application, network and physical) and an extra combined

atmosphere and radio layer. NesC code is used directly

thereon.

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.6, August 2013

44

Simulator

or

Emulator

Discrete-

Event

Simulations

or Trace-

Driven

Simulation

GUI Open sources

and Online

documents

General simulator or

Specific simulator

Detail

NS-2 Simulator

Discrete-

Event

Simulation

No Yes general simulator

1.Can not simulate more than 100

nodes,

2 Cannot simulate problems of the

bandwidth or the power

consumption in WSNs

TOSSIM Emulator

Discrete-

Event

Simulation

Yes Yes
specifically designed

for WSNs

1.Can support thousands of nodes

simulation

 2.Can emulate radio models and

code executions 3.only emulate

homogeneous applications

4.Have to use PowerTOSSIM to

simulate power consumption

EmStar Emulator
Trace-Driven

Simulation
Yes Yes

specifically designed

for WSNs

1.Can not support large number of

sensors simulation 2.Only run in

real time simulation and only apply

to iPAQ-class sensor nodes and

MICA2 motes

OMNeT++ Simulator

Discrete-

Event

Simulation

Yes

Noncommercial

license,

commercial

license

general simulator

1. Can support MAC protocols and

some localized protocols in WSN

2.Simulate power consumptions

and channel controls

3. Limited available protocols

J-Sim Simulator

Discrete-

Event

Simulation

Yes Yes general simulator

1. Can simulate large number of

sensor nodes, around 500

2. Can simulate radio channels and

power consumptions

 3. Its execution time is much

longer

ATEMU Emulator

Discrete-

Event

Simulation

Yes Yes
specifically designed

for WSNs

1. Can emulate different sensor

nodes in homogeneous networks or

heterogeneous networks

 2.Can emulate power

consumptions or radio channels

 3. The simulation time is much

longer

Avrora Simulator

Discrete-

Event

Simulation

No Yes
specifically designed

for WSNs

1. Can support thousands of nodes

simulation 2.Can save much more

execution time

• Prowler/JProwler [41]. A distinct event machine running

underneath MATLAB meant to optimize network parameters.

JProwler could be a version of interloper developed in Java.

• SNAP [42]. Totally different approach is used. SNAP is

outlined as associate degree integrated hardware simulation-

and preparation platform. It’s a chip which will be utilized in

two ways: (1) because the core of a deployed detector or (2)

as a part of associate degree array of processors that performs

parallel simulation. Again, “real” code for sensors is

simulated. By combining arrays of SNAPs (called Network on

a Chip), it's claimed to be ready to simulate networks on the

order of 100,000 nodes.

5. CONCLUSIONS
Simulation is an important tool to review Wireless Sensor

Networks as a result of the impracticableness of research and

also the difficulties of putting in real experiments. This survey

provides tips to assist choosing an appropriate simulation

model for a WSN and a comprehensive description of the

Table1 Comparison of Seven Main-Stream Simulation Tools

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.6, August 2013

45

foremost used offered tools. relating to availableness of

models, OMNET++, JiST and SSFNet lack of obtainable

protocol models compared to different simulators (specially,

NS-2), that will increase development time. Reaching to the

flexibility to compose models from basic items, the part or

actor based mostly packages J-Sim or Ptolemy II supply the

utmost flexibility. Tools like NCTUns2.0 or JiST enable any,

Linux or Java severally, application to be utilized in a

simulation. This feature greatly will increase their

potentialities. Specific tools like TOSSIM, EMTOS or

ATEMU are ready to simulate real detector code. Relating to

performance, one will expect higher performance from C/C++

engines than from their Java counterparts. However, recent

simulators like JiST/SWAN claim to perform higher than NS-

2 and GloMoSim (in its serial version). Obviously, parallel

simulations ought to perform and scale higher than serial

ones. The exchange could be a larger quality of programming.

Parallel simulators as GloMoSim (whose goal is performance

instead of scalability) will simulate up to around 10000

wireless nodes. DaSSF parallel tool, whose main goal is

measurability, supports network topologies as giant as 100000

wired parts. All the packages give graphical support.

OMNET++, NCTUns2.0, J-Sim and Ptolemy give powerful

GUI libraries for animation, tracing and debugging. All they

embrace the said options like review, modification of

parameters at execution time, etc. OMNET++ and Ptolemy

stand gently up among them. On the contrary, JiST don't

embrace different graphical interface than an incident

lumberjack and viewer. Current support in NS-2 is that the in

elaborate and easy trace copy Nam tool. Specific tools

conjointly give amazingly wealthy GUIs. TinyViz is that the

TOSSIM visualization tool, associate degree protrusive Java

application that gives helpful correct info. Besides, it will

management and drive the simulation parts.

6. REFERENCES
[1] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J.

Anderson, “Wireless Sensor Network for Habitat

Monitoring.” In Proc. 1st ACM Int. Workshop on

Wireless Sensor Networks and Applications, Atlanta,

GE, pp. 88– 97, September 2002.

[2] D. Ganesan, D. Estrin, A. Woo, D. Culler, “Complex

Behavior at Scale: An Experimental Study of Low-power

Wireless Sensor Networks.” Technical Report

UCLA/CSD-TR 02-0013, Center for Embedded

Networked Sensing, University of California, Berkeley,

February 2002.

[3] K. Pawlikowski, H. D. Joshua Jeong, J. S. Ruth Lee. “On

Credibility of Simulation Studies of Telecommunication

Networks.” IEEE Communications Magazine, vol. 40,

no.1, pp. 132–139, January 2002.

[4] D. Kotz, C. Newport, B. Gray, J. Liu, Y. Yuan, C. Elliot.

"Experimental Evaluation of Wireless Simulation

Assumptions.” In Proc. of the 7th ACM/IEEE Int.

Symposium on Modeling, Analysis and Simulation of

Wireless and Mobile Systems (MSWiM’04), Venice,

Italy, pp. 78–82, October 2004.

[5] S. Park, A. Savvides, M. B. Srivastava. “SensorSim: A

Simulation Framework for Sensor Networks.” In Proc.

ACM Modeling, Analysis and Simulation of Wireles and

Mobile Systems (MSWiM 2000), Boston, MA, pp. 104–

111, August 2000

[6] A. Sobeih, W. Chen, J. C. Hou, L. Kung, N. Li, H. Lim, H.

Tyan, H. Zhang, “J-Sim: A simulation and emulation

environment for wireless sensor networks.” In Proc.

Annual Simulation Symposium (ANSS 2005), San

Diego, CA, pp. 175–187, April 2005.

[7] C Perkins, EM Royer, S Das, Ad-Hoc On Demand

Distance Vector Routing (AODV), IETF draft, 2000. [8]

Part 11: Wireless LAN medium access control (MAC)

and physical layer (PHY) specifications, ANSI/IEEE Std.

802.11, 1999.

[9] T. S. Rappaport, Wireless Communications, principles and

practice, Second Edition, Prentice Hall, 2002.

[10] The Network Simulator, NS–2 [Online]. Available:

http://www.isi.edu/nsnam/ns/ [11] MIT Object Tcl.

[Online].

Available:http://bmrc.berkeley.edu/research/cmt/

cmtdoc/otcl

[12] C. Intanagonwiwat, R. Govidan, D. Estrin, J. Heidemann,

F. Silva, “Directed diffusion for wireless sensor

networking.” IEEE/ACM Transactions on Networking,

vol. 11, issue 1, pp. 2–16, February 2003.

[13] W. Ye, J. Heidemann, D. Estrin, “Medium Access

Control with Coordinated, Adaptive Sleeping for

Wireless Sensor Networks.” ACM/IEEE Transactions on

Networking, vol. 12, pp. 493–506, 2004.

[14] NRL’s Sensor Network Extension to NS-2 [Online].

Available: http://nrlsensorsim.pf.itd.nrl.navy.mil/

[15] SensorSim: A simulation framework for sensor networks.

[Online]. Available: http://nesl.ee.ucla.edu/projects

/sensorsim/

[16] V. Naoumov, T. Gross, “Simulation of Large Ad Hoc

Networks.” In Proc. ACM Modeling, Analysis and

Simulation of Wireles and Mobile Systems (MSWiM

2003), San Diego, CA, pp. 50–57, 2003.

[17] OMNET++ discrete event simulator. [Online]. Available:

http://www.omnetpp.org

[18] Mobility Framework for OMNET++. [Online].

Available: http://mobility-fw.sourceforge.net

[19] Consensus: Collaborative Sensor Networks [Online].

Available: http://www.consensus.tudelft.nl [20] J-Sim

[Online]. Available: http://www.j-sim.org

[21] Jacl, Java implementation of Tcl8.x. [Online]. Available:

http://www.tcl.tk/software/java

[22] NCTUns 2.0 Network Simulator and Emulator. [Online].

Available: http://nsl.csie.nctu.edu.tw/nctuns.html

[23] R. Barr, Z. J. Haas, R. van Renesse, “JiST: Embedding

Simulation Time into a Virtual Machine.” In Proc. 5th

EUROSIM Congress on Modeling and Simulation, Paris,

France, September 2004

[24] Jython. [Online]. Available: http://www.jython.org

[25] Global Mobile Information Systems Simulation Library

(GloMoSim). [Online]. Available: http://pcl.cs.ucla

.edu/projects/glomosim/

[26] PARSEC: Parallel Simulation Environment for Complex

Systems. [Online]. Available: http://pcl.cs.ucla.edu/

projects/parsec/

[27] M. Takai, R. Bagrodia, K. Tang, M. Gerla, “Efficient

Wireless Networks Simulations with Detailed

http://www.isi.edu/nsnam/ns/
http://nrlsensorsim.pf.itd.nrl.navy.mil/
http://mobility-fw.sourceforge.net/
http://www.consensus.tudelft.nl/
http://www.tcl.tk/software/java
http://nsl.csie.nctu.edu.tw/nctuns.html

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.6, August 2013

46

Propagations Models.” Kluwer Wireless Networks, 7, pp.

297–305, 2001.

[28] sQualnet: A Scalable Simulation Framework for Sensor

Networks. [Online]. Available: htpp://nesl.ee.ucla.edu/

projects/squalnet/

[29] Scalable Simulation Framework (SSF). [Online].

Available: http://www.ssfnet.org

[30] Dartmouth SSF (SSF). [Online]. Available:

http://www.crhc.uiuc.edu/ jasonliu/projects/ssf/

[31] L. F. Perrone, D. M. Nicol, “A Scalable Simulator for

TinyOS Applications.” In Proc. ACM 2002 Winter

Simulation Conference, San Diego, CA, pp. 679–687,

2002.

[32] Ptolemy II. Heterogeneous model and design. [Online].

Available: http://ptolemy.eecs.berkeley.edu/ptolemyII

[33] P. Baldwin, S. Kohli, E. A. Lee, X. Liu, Y. Zhao.

“Modeling of Sensor Nets in Ptolemy II.” In Proc.

Information Processing in Sensor Networks (IPSN),

Berkeley, pp.359–368, April 2004

[34] MICA Motes. [Online]. Available:

http://www.xbow.com

[35] TinyOS: Open-source operating system for wireless

embedded sensor networks. [Online]. Available:

http://www.tinyos.net

[36] P. Levis, N. Lee, M. Welsg, D. Culler, “TOSSIM:

Accurate and Scalable Simulation of Entire TinyOS

Applications.” In Proc. 1st ACM Int. Conf. Embedded

Networked Sensor Systems (SenSys), Los Angeles, CA,

pp. 126–137, 2003.

[37] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N.

Ramanathan, D. Estrin, “EmStar: A software

Environment for Developing and Deploying Wireless

Sensor Networks.” In Proc. USENIX 2004, Boston, MA,

pp. 283–296, 2004.

[38] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D.

Estrin, E. Osterweil, T. Schoellhammer, “A System for

Simulation, Emulation and Deployment of

Heterogeneous Sensor Networks.” In Proc. 2nd ACM

Int. Conf. Embedded Networked Sensor Systems

(SenSys), Baltimore, MD, pp. 201–213, 2004.

[39] J. Polley, D. Blazakis, J. McGee, D. Rusk, J. S. Baras, M.

Karir, “ATEMU: A Fine-grained Sensor Network

Simulator.” In Proc. 1st IEEE Int. Conf. Sensor and

Adhoc Communication Networks (SECON’04), Santa

Clara, CA, October 2004.

[40] S. Sundresh, W. Kim, G. Agha, “SENS: A Sensor,

Environment and Network Simulator.” In Proc. 37th

ACM Annual Symposium on Simulation, Washington,

DC, pp.221, 2004.

[41] PROWLER: Probabilistic Wireless Network Simulator.

[Online]. Available:

http://www.isis.vanderbilt.edu/projects/nest/prowler

[42] C. Kelly, V. Ekanayake, R. Manohar, “SNAP: A Sensor-

Network Asynchronous Processor.” In Proc. 9th ACM

Int. Symposium on Asynchronous Circuits and

Systems,Washington, DC, pp. 24, 2003.

IJCATM : www.ijcaonline.org

http://ptolemy.eecs.berkeley.edu/ptolemyII
http://www.isis.vanderbilt.edu/projects/nest/prowler

