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ABSTRACT 

This paper presents a non-binary Turbo Trellis Coded 

Modulation (TTCM) decoder-based multidimensional 3-D 

(Maximum A Posteriori) MAP algorithm. The proposed 

system deals with Non-binary error control coding of the 

TTCM scheme for transmissions over the AWGN channel. 

The idea of Non-binary codes has been extended for symbols 

defined over rings of integers, which outperform binary codes 

with only a small increase in decoding complexity. This paper 

employs chaos technique at the decoding stage of the Non-

binary TTCM decoder, since the turbo decoding algorithm 

can be viewed as a high-dimensional dynamical nonlinear 

system. A simple technique to control transient chaos of turbo 

decoding algorithm is devised. The analysis of non-linear 

discrete deterministic Non-binary TTCM decoder used the 

Binary (0-1) test for chaos to distinguish between regular and 

chaotic dynamics. The most powerful aspect of the method is 

that it is independent of the nature of the vector field (or data) 

under consideration. The simulation results show that the 

performance of the non-binary TTCM decoding algorithm-

based chaos technique outperforms the binary and non-binary 

decoding methods. 

 

General Terms 

Non-binary error correcting codes, Groups, Rings of integers, 

MAP algorithm, chaos communications.  

Keywords 
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1. INTRODUCTION 
The design of signal processing algorithms for digital data 

seems much easier than designing analog signal processing 

algorithms. The abundance of such digital algorithms, 

including error control and correction techniques, combined 

with their ease of implementation in very large-scale 

integrated (VLSI) circuits, has led to many successful 

applications of error control coding in practice. 

Advances in coding, such as turbo [1] and low density parity 

check codes [2], made it feasible to approach the Shannon 

capacity limit [3] in systems with a single antenna link. 

Significant further advances in spectral efficiency are 

available through increasing the number of antennas at both 

the transmitter and the receiver [4, 5, 6].  

Further performance gains can be achieved by using non-

binary codes in the coded modulation scheme, but with an 

increase in the decoding complexity [7]. Non-binary codes are 

the most commonly used error-correcting codes and can be 

found in optical and magnetic storage, high-speed modems 

and wireless communications. Most digital communication 

today is carried out using electronic devices that are 

essentially “linear”, and linear system theory has been used to 

continually refine their performance. In many cases, 

inherently nonlinear devices are linearized in order to achieve 

a certain level of linear system performance. 

The potential advantages of operation of nonlinear devices for 

generation of digital communication signals include improved 

efficiency, lower dc power, lower probability of intercept, and 

lower probability of detection. 

Nonlinear techniques can also be potentially applied to 

channel encoding/decoding functions, where there may be 

some benefit to chaotic channel coding techniques for greater 

immunity to channel fading problems [8]. The turbo decoding 

algorithm is a high-dimensional dynamical system 

parameterized by a large number of parameters (for a practical 

realization the turbo decoding algorithm has more than 103 

variables and is parameterized by more than103  parameters). 

In this thesis, the turbo decoding algorithm is treated as a 

dynamical system parameterized by a single parameter that 

closely approximates the signal-to-noise ratio (SNR). A whole 

range of phenomena known to occur in non-linear systems, 

such as the existence of multiple fixed points, oscillatory 

behavior, bifurcations, chaos, and transient chaos are found in 

the turbo decoding algorithm. 

N. Mobini, 2011 [9] proposed a new iterative decoding 

algorithm for Low-Density Parity-Check (LDPC) codes and 

used the adaptive scaling factor α𝑒−𝛽  to speed up the 

convergence of the LDPC decoding codes. But there might be 

other non-linear scaling functions that can perform better. A 

further search for discovering other alternative scaling 

functions makes an interesting research topic. 

R. A. Carrasco et. al., 2009 [10] presents the theory of non-

binary error control coding in wireless communications and 

expected that the non-binary turbo decoding is an area of 

coding theory that has not received much attention. However, 

with non-binary LDPC codes recently becoming more 
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popular, it would expect non-binary turbo codes to perform 

just as well and this would be an interesting area of research 

for the future. 

2. BINARY TURBO CODES 
One of the most important breakthroughs in coding theory 

was the development of turbo codes. According to Shannon, 

the ultimate code would be one where a message is sent 

infinite times, each time shuffled randomly. The receiver has 

infinite versions of the message albeit corrupted randomly. 

From these copies, the decoder would be able to decode with 

near error-free probability the message sent. This is the theory 

of an ultimate code, the one that can correct all errors for a 

virtually signal. Turbo code is a step in that direction. Turbo 

codes are a parallel concatenation of recursive systematic 

convolutional (RSC) encoders separated by an interleaver 

[11]. Turbo codes provide a practical way of achieving near-

Shannon limit performance by using an iterative decoder that 

contains two soft-input–soft-output component decoders in 

series, passing reliability information between them, (see 

Figure 1). 

 

 

 

 

 

 

 

 

 

Fig 1: Iterative decoding in MAP algorithm 

 

2.1 Non-Binary Iterative Turbo Decoding 
Turbo codes are decoded using a method called the Maximum 

Likelihood Detection or MLD. Filtered signal is fed to the 

decoders, and the decoders work on the signal amplitude to 

output a soft “decision”. The form of MLD decoding used by 

turbo codes is called the Maximum a-posteriori Probability or 

MAP. The MAP algorithm is used iteratively to improve 

performance. 

The idea of the non-binary turbo decoding process is the same 

idea of the binary turbo decoding process, in which the 

extraction of extrinsic information from the output of one 

decoder and pass it on to the second decoder in order to 

improve the reliability of the second decoder‟s output and 

vice versa. But, the differences between two decoders aren't in 

the idea but in mechanisms of decoder parameters design and 

the decision type as in the following situations: 

 The de-mapping procedure of modulated signal into a set ring 

of integersℤ𝑀 .     

 Calculation the reliabilities of information bits, parity bits, and 

interleaved parity bits must be in a ring of integersℤ𝑀 . 

 Decision method that would be made on the log-likelihood 

ratios, since the symbols to be decided are defined over a ring 

of integers ℤ𝑀(i.e., 0, 1, 2, . . . M – 1) and not defined over a 

binary numbers (i.e., 0 and 1).   

A general block diagram of the non-binary turbo decoder is 

(shown in Figure 2).  

 

Where; 

 𝑟𝑡
(0)

 is the received information bit. 

 𝑟𝑡
(1)

is the received parity bit from the first RSC 

encoder. 

 𝑟𝑡
(2)

 is the received information bit from the second 

RSC encoder. 

These notations can be defined in more details below: 

𝑟𝑡
(𝑖)

= 𝑎𝑡
(𝑖)

+ 𝜂𝑡 ,            𝑖 = 0,1,2.                       (1) 

Where 𝑎𝑡
(𝑖)
ℝ, i = 0, 1, 2 is the mapping of 𝑉𝑡

(𝑖)
 to an M–ary 

modulation scheme constellation and ℝ is a set of real 

numbers, since 𝑉𝑡
(𝑖)

 ∈ {0, 1, 2, . . . M-1}, are outputs of the 

non-binary turbo encoder defined previously and, 𝜂𝑡 , is an 

additive white Gaussian noise sample at time t.  

To calculate the reliability of the systematic information bit, 

𝑟𝑡
(0)

: 

𝐿(1)  𝑟𝑡
(0)

 𝑎𝑡
(0)

 = 𝑙𝑛  
𝑝 𝑟𝑡

(0)
 𝑎𝑡

(0)
=−1 

𝑝 𝑟𝑡
(0)

 𝑎𝑡
(0)

=−3 
                     (2) 

Since, 𝑝  𝑟𝑡
(0)

 𝑎𝑡
(0)

  represents the conditional probability 

density function (PDF) for AWGN channel and is given by 

𝑝 𝑟𝑡 𝑎𝑡 =
(1 𝜎 2𝜋)  (𝑒−(𝑟𝑡−𝑎𝑡)2

2𝜎2 )

(1 𝜎 2𝜋)    (𝑒−(𝑟𝑡−𝑖𝑎𝑡)2
2𝜎2 )𝑖=±1,±3  

            (3) 

Where 𝜎2, represents the noise variance, for 4-PAM 

modulation with constellation points 

at ± 𝐸𝑠 5  , ± 3 𝐸𝑠 5  : 

𝑝  𝑟𝑡
(0)

 𝑎𝑡
(0)

= −1 =
(1 𝜎 2𝜋)  (𝑒−(𝑟𝑡

 0 
+  𝐸𝑠 5 )2

2𝜎2 )

(1 𝜎 2𝜋)    (𝑒−(𝑟𝑡
 0 

+𝑖  𝐸𝑠 5 )2
2𝜎2 )𝑖=±1,±3  

 , 

and  

𝑝  𝑟𝑡
(0)

 𝑎𝑡
(0)

= −3 =
(1 𝜎 2𝜋)  (𝑒−(𝑟𝑡

 0 
+3 𝐸𝑠 5 )2

2𝜎2 )

(1 𝜎 2𝜋)    (𝑒−(𝑟𝑡
 0 

+𝑖  𝐸𝑠 5 )2
2𝜎2 )𝑖=±1,±3  

 , 

then  

𝐿(1)  𝑟𝑡
(0)

 𝑎𝑡
(0)

 = 𝑙𝑛  𝑒
− 𝑟𝑡

 0 
+  𝐸𝑠 5  

2
+(𝑟𝑡

 0 
+3 𝐸𝑠 5 )2

2𝜎2  , Let 

2𝜎2 = 𝑁𝑜  

𝐿(1)  𝑟𝑡
(0)

 𝑎𝑡
(0)

 = (4 5)  𝐸𝑠 𝑁𝑜  𝑟𝑡
(0)

+ (8 5) 𝐸𝑠 𝑁𝑜       (4) 

Thus, each one of the systematic information bit, 𝑟𝑡
(0)

, the 

parity bit from encoder 1,𝑟𝑡
(1)

, and the interleaved parity bit 

from encoder 2,𝑟𝑡
(2)

, has three reliability values, respectively, 

as shown below in system of equations: 

     𝐿(𝑖)  𝑟𝑡
(0)

 𝑎𝑡
(0)

 = (4 5)  𝐸𝑠 𝑁𝑜  𝑟𝑡
 0 

+ (8 5) 𝐸𝑠 𝑁𝑜    , 

    𝐿(𝑖)  𝑟𝑡
(1)

 𝑎𝑡
(1)

 = (12  5)  𝐸𝑠 𝑁𝑜  𝑟𝑡
 1  ,                      (5)                                     

𝐿(𝑖)  𝑟𝑡
(2)

 𝑎𝑡
(2)

 = (8  5)  𝐸𝑠 𝑁𝑜  𝑟𝑡
(2)

+ (8 5) 𝐸𝑠 𝑁𝑜  .   

Where i = 1, 2, 3. 
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3. NONLINEAR DYNEMICAL 

SYSYTEMS 
A differentiable discrete-time dynamical system is described 

by an evolution equation of the form 

𝑥𝑛+1 = 𝑓(𝑥𝑛 )                                  (6) 

Where f is a differentiable function and the variables x vary 

over a state-space M, which can be IRm or a compact 

manifold. Computer experiments with iterative decoding 

algorithms usually exhibit transient behavior followed by 

what appears to be an asymptotic regime. 

A subset A of M is said to be invariant if f (A) = A, a compact 

invariant set A ⊂ M is topologically transitive if there exists x 

∈ A such that ω(x) = A, where ω(x) is the set of limit points of 

the orbit f n(x)n ≥ 0. 

 

3.1 The Turbo Decoding Algorithm as a 

Dynamical System 
The turbo decoder consists of two components; a decoder D1 

for the convolutional code C1 and a decoder D2 for the code 

C2. These decoders use the BCJR [12] algorithm to compute 

the a posteriori probabilities of the information bits. The 

posterior likelihood ratio of the ith information bit is given by 

 
 𝑝 𝑏 𝑖 ,𝑐  1 𝑏∈ℋ𝑖

 𝑝 𝑏 𝑖 ,𝑐  1 
𝑏∈ℋ𝑖

𝑐
=

 𝑝 𝑖  𝑏 𝑝 𝑐1  𝑏 𝑞2 𝑏 𝑏∈ℋ𝑖

 𝑝 𝑖  𝑏 𝑝 𝑐1  𝑏 𝑞2 𝑏 
𝑏∈ℋ𝑖

𝑐
                   (7)   

Where 𝑖, 𝑐1 , and 𝑐2  be the channel outputs corresponding to 

the input sequences i, c1, and c2, respectively, while, p(b|𝑖, 𝑐1 ),  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is the posterior probability density, where b ∈ H, and H be the 

set of all ordered binary strings of length n. 

Assuming that p0, p1, and p2 be the normalized densities 

equivalent to p(𝑖  |𝑏), 𝑝(𝑐 1|𝑏), and 𝑝(𝑐 2|𝑏), respectively. The 

likelihood ratios of the information bits according to q1 equal 

their extrinsic information and are given by 

𝑞1 𝑏𝑖 

𝑞1 𝑏0 
=

 𝑝 𝑏 𝑖 ,𝑐  1 𝑝 𝑏0 𝑖  𝑞2 𝑏0 𝑏∈ℋ𝑖

 𝑝 𝑏 𝑖 ,𝑐  1 𝑝 𝑏𝑖 𝑖  𝑞2 𝑏𝑖 
𝑏∈ℋ𝑖

𝑐
                       (8) 

In the logarithmic domain, equation (6) can be rewritten as 

𝑄1 𝑏𝑖 = 𝜋𝑝1 𝑃0 + 𝑄2  𝑏𝑖 −  𝑃0 + 𝑄2  𝑏𝑖          (9) 

For i =1,...,n. Recalling that q1 and q2 are initialized to induce 

the uniform probability distribution on H. Therefore;𝑄1
(𝑙+1)

=

𝜋𝑝1 𝑃0 + 𝑄2
𝑙  −  𝑃0 + 𝑄2                      (10) 

The second decoder D2 performs a similar operation and 

computes the modified prior log-density Q2: 𝑄1
(𝑙)

=

𝜋𝑝2 𝑃0 + 𝑄2
𝑙  −  𝑃0 + 𝑄1

𝑙                    (11) 

The decoding algorithm iteratively performs the operations 

indicated by (9) and (10). The equations (9) and (10) may be 

considered as a discrete-time dynamical system. 

Consequently, the turbo decoding algorithm is parameterized 

by 3n parameters. Hence, in the above formulation, the turbo 

decoding algorithm is an n-dimensional dynamical system 

depending on 3n parameters. From the bifurcation analysis in 

ℤ𝑀-ring 
 

MAP 

Decode

r 1 

ℤ𝑀-ring 
 

MAP 

Decode

r 2 

Fig 2: The ℤ𝑴-ring-Turbo decode 
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[13], it can be seen that the turbo-decoding algorithm exhibits 

chaotic behavior for a relatively large range of SNR values. 

3.2 The Binary (0-1) Test for Chaos 
Recently a new test for determining chaos is introduced 

Gottwald and Melbourne [14]. In contrast to usual method of 

computing maximal lyapunov exponent, their method is 

applied directly to the time series data and does not require 

phase-space reconstruction. Moreover, the dimension and 

origin of the dynamical system and the form of the underlying 

equations are irrelevant. The input is the time series data and 

the output is 0 or 1, depending on whether the dynamics is 

non-chaotic or chaotic. 

 

3.2.1 Description of the Binary (0-1) Test for 

Chaos [15] 

Assuming scalar observable   φ(j), j = 1, 2, 3, . . . , T  a 

discrete set of measurement data. To test φ(j), the following 

sequence steps is Performed:  

I. for  c∈ (π , o), compute the translation variables 

𝑝𝑐 𝑡 =  ∅ 𝑗 cos 𝑗𝑐𝑡
𝑗 =1    ,  𝑞𝑐 𝑡 =  ∅ 𝑗 sin 𝑗𝑐𝑡

𝑗 =1                   

(12) 

for t =1, 2, . . . . T 

Claim that 

 pc(t)  is bounded if the underlying dynamics is non-

chaotic (e.g periodic or quasi periodic).   

 qc(t) behaves asymptotically like Brownian motion 

if the underlying dynamics is  chaotic . 

II. The mean square displacement of the translation 

variables pc(t)  and  qc(t) defined in (1), for several values of c 

∈ (π , o) . The mean square displacement is defined by 

𝑀𝑐 𝑡 = lim𝑛→∞
1

𝑇
  𝑃𝑐 𝑗 + 𝑡 − 𝑃𝑐 𝑗  

2𝑇
𝑗 =1 +  𝑞𝑐 𝑗 + 𝑡 −

𝑞𝑐 𝑗  
2  

(13) 

and smoothing mean square displacement is 

𝑀𝑐 𝑡 𝑛𝑒𝑤 = 𝑀𝑐 𝑡 𝑜𝑙𝑑 −
1−cos  𝑡𝑐  

1−sin  𝑡𝑐  
 lim𝑇→∞

1

𝑇
 𝜑(𝑗)𝑇

𝑗 =1  
2
                   

(14) 

 

Such that t << T, t ≤  tcut, where tcut < T. In practice it is find 

that tcut = T/10  yields good results. 

III. Mc(t) grows linearly in time the underlying dynamic 

is chaotic, but it is not chaotic when Mc(t)  is bounded. 

IV. The asymptotic growth rate Kc can be numerically 

determined by linear regression of  log Mc(t) versus log (t), 

and is given by 

 

𝐾𝑐 = lim𝑡→∞
log 𝑀𝑐 𝑡 

log 𝑡
                           (15) 

k = median (Kc )                               (16) 

Therefore, if:  

k ≈ 0, then the system is non chaotic ,  

k ≈ 1,  then the system is  chaotic . 

 

 

 

4. ℤ𝑴-RING-TTCM DECODER WITH 

ADAPTIVE CONTROL ON 

TRANSIENT CHAOS 

In this section, an application of nonlinear control theory is 

considered in order to speed up the convergence of the turbo 

decoding algorithm. The non-binary Turbo-Trellis-Coded 

Modulation (TTCM) decoding algorithm exhibits chaotic 

behavior for a relatively large range of SNR values. A simple 

adaptive control mechanism has developed to reduce the long 

transient behavior in the decoding algorithm. A schematic 

block diagram of the ℤ𝑀-ring-TTCM decoder with adaptive 

control is depicted in (Figure 3), where the control function 

g(·) is given by [9]: 

𝑔 𝑋𝑖 = 𝛼𝑋𝑖𝑒
−𝛽 𝑋𝑖                               (17) 

Where X is an extrinsic information variable, and parameters 

α, β are Constant selected from the intervals (0, 1] and [0, 

+∞), respectively, to optimize the error rate performance of 

the algorithm. The optimal values of α, β are usually close to 

the end and the beginning of the corresponding intervals, 

respectively.  

The control function is chosen because if 𝑋𝑖  is small, then the 

attenuation factor in equation (17) is close to 1(since α is close 

to 1 and β is small). In other words, the control algorithm does 

nothing. If, however, 𝑋𝑖  is large, then the control algorithm 

reduces the normalization factor, thereby, attenuating the 

effect of 𝑋𝑖  on the decoding algorithm. The adaptive control 

algorithm (see Figure 3) is very simple, and can be easily 

implemented (both in software and/or in hardware) without 

significantly increasing the complexity of the decoding 

algorithm. 

 

5. SIMULATION RESULTS 

Binary test for chaos, the 0-1 test is used for the analysis of 

ℤ4-Ring-TTCM Decoder system, the test is applied directly to 

the computed extrinsic information from each decoder after 

applying the adaptive control algorithm to this extrinsic 

information. The goal from this test is to distinguish between 

regular and chaotic of the extrinsic information. The flow 

chart of the (0-1) test algorithm can be shown (see Figure 4). 

The use of adaptive control algorithm in the turbo decoding 

topology resulted in performance improvement for the ℤ4-

Ring-TTCM system in different number of iterations and 

fixed number of symbols can be shown (see Figure 5). A 

comparison in performance improvements between the 

normal ℤ4-Ring-TTCM system and the chaotic ℤ4-Ring-

TTCM system, for different number of iterations and with 

1024 symbols, is shown (see Figure 6).  

The performances of the ℤ4-Ring-TTCM scheme-based 3-

dimensional decoding algorithm, ℤ4-Ring-TTCM scheme-

based chaos technique can be summarized in Table 1, where 

the coding gains are defined as the (Eb/No) difference, 

expressed in decibels, at different values of BERs. The 

performance of the best scheme in Table 1, is printed in bold, 

since the performance comparison shows that the ℤ4-ring-

TCM scheme-based chaos technique outperforms the ℤ4-ring-

TCM scheme as shown in Table (1) and shows that the gains 

improvements are; (0.51 dB, 0.6 dB, 0.03dB) at the BERs of 

10-2, 10-4, 10-6 respectively for the scheme with sixteen 

iterations. 
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- - 
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𝐿 1  ∏ 𝑎𝑡
 0 

 𝑟  

𝐿 2  ∏ 𝑎𝑡
 0 

 𝑟  
… …

𝐿 𝑀−1  ∏ 𝑎𝑡
 0 

 𝑟   

  
 

 

 

 

 
 

𝐿 1  𝑎𝑡
 0 

 𝑟 

𝐿 2  𝑎𝑡
 0 

 𝑟 
… …

𝐿 𝑀−1  𝑎𝑡
 0 

 𝑟  

 
 

 

 

 

  
 

𝐿 1  ∏ 𝑎𝑡
 0 

 𝑟  

𝐿 2  ∏ 𝑎𝑡
 0 

 𝑟  
… …

𝐿 𝑀−1  ∏ 𝑎𝑡
 0 

 𝑟   

  
 

 

 

 

  
 

𝐿2
 1 

 ∏ 𝑎𝑡
 0 

  

𝐿2
 2 

 ∏ 𝑎𝑡
 0 

  
… …

𝐿2
 𝑀−1 

 ∏ 𝑎𝑡
 0 

   

  
 

 

 

 

 
 

𝐿𝑒1
 1 

 𝑎𝑡
 0 

 

𝐿𝑒1
 2 

 𝑎𝑡
 0 

 
… …

𝐿𝑒1
 𝑀−1 

 𝑎𝑡
 0 

  

 
 

 

 

 

 
 

𝐿 1  𝑟 𝑎𝑡
 1 

 

𝐿 2  𝑟 𝑎𝑡
 1 

 
… …

𝐿 𝑀−1  𝑟 𝑎𝑡
 1 

  

 
 

 

 

- - 

+ 

 

 
 

𝐿1
 1 

 𝑎𝑡
 0 

 

𝐿1
 2 

 𝑎𝑡
 0 

 
… …

𝐿1
 𝑀−1 

 𝑎𝑡
 0 

  

 
 

 

 

 

 
 

𝐿 1  𝑎𝑡
 0 

 𝑟 

𝐿 2  𝑎𝑡
 0 

 𝑟 
… …

𝐿 𝑀−1  𝑎𝑡
 0 

 𝑟  

 
 

 

 

   
 

Multi-

dimensional 

MAP 

Algorithm 

Decoder 1 

 

 
 

𝐿 1  𝑟 𝑎𝑡
 0 

 

𝐿 2  𝑟 𝑎𝑡
 0 

 
… …

𝐿 𝑀−1  𝑟 𝑎𝑡
 0 

  

 
 

 

 

 

 
 

𝐿 1  𝑟 𝑎𝑡
 2 

 

𝐿 2  𝑟 𝑎𝑡
 2 

 
… …

𝐿 𝑀−1  𝑟 𝑎𝑡
 2 
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Fig 4: Flow chart of the binary (0-1) test algorithm 
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Fig 5: The performance of the ℤ𝟒-Ring-TTCM system-based chaos technique 

 

Fig 6: The performance comparison for the normal ℤ𝟒-Ring-TTCM system and theℤ𝟒-Ring-TTCM  

system-based chaos technique 
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Table 1. The performances of the normal and chaotic ℤ𝟒-Ring-TTCM schemes, for sixteen iterations 

 

Number of 

Iterations  

 

 (16) 

BER AWGN 

channel 
Eb / No (dB) Gain (dB) 

CM 

scheme 

CM 

Code rate 

 

10
-2 

 

10
-4 

 

10
-6 

 

10
-2 

 

10
-4 

 

10
-6 

 

Modem 

ℤ4-RTTCM 1/2 8.51 9.30 10.00    4-PAM 

ℤ4-RTTCM 

Based chaos 

1/2 8.00 8.70 9.70 0.51 0.60 0.30 4-PAM 

 

 

 

6. CONCLUSIONS AND FUTURE 

WORKS  
The use of non-binary TCM and TTCM codes led to reduction 

in the effective input block length, since each m bits of binary 

information correspond to one non-binary symbol for q = 2m, 

and thus non-binary system can be used with high number of 

symbols. Non-binary TTCM schemes that have modulation 

order (M) can achieve an error performance similar to that of 

binary schemes that have higher order (M), and this is the 

reason of achieving good performance by non-binary systems 

over binary systems. 

The non-binary turbo decoding algorithm can be viewed as a 

high-dimensional dynamical system parameterized by a large 

number of parameters.  As an application of the chaos theory 

developed, it has devised a simple technique to control 

transient chaos of the non-binary turbo decoding algorithm. 

This results in a faster convergence and a signicant gain in 

terms of BER performance.   

 

 Binary test for chaos, the 0-1 test is used for testing the 

extrinsic information of non-binary turbo decoding algorithm, 

the most powerful aspect of the method, which differs from 

Lyapunov exponents method, it is independent of the nature 

of the vector field (or data) under consideration.  

The future work can be done by designing a chaotic 

interleaver to use instead of the algebraic interleaver in the 

turbo decoder scheme, since, the purpose of the chaotic 

interleaver is to offer each encoder an uncorrelated or a 

“random” version of the information, resulting in parity bits 

from each RSC that are independent. How “independent” 

these parity bits are, is essentially a function of the type and 

length/depth of the interleaver. 

 

 

 

 

 

Fig 6: Continued 
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