
International Journal of Computer Applications (0975 – 8887)

Volume 75– No.4, August 2013

29

Compression Algorithm for all Specified bases in
Nucleic Acid Sequences

Subhankar Roy

CSE Department, Academy of Technology,
G. T. Road, Aedconagar,

Hooghly-712121, W.B., India

Sunirmal Khatua
Department of Computer Science and Engineer,

University of Calcutta,
92, A.P.C. Road, Kolkata-700009, India

ABSTRACT

Organizations such as IT industry, colleges and Scientists

regularly encounter problems to handle large data sets for

their different purpose in many areas as for example

biological research. These limitations also affect internet

search to fetch data, business for analysis etc. So it is simply

needed generalized but special types of compression

algorithm for dissimilar data to get utmost saving percentage.

In this article Compression of biological data that is single and

double strand DNA and single strand RNA have been

considered. Since biological data are less random compare to

any text data that means redundancy within the sequences are

more but they have some special property as for example

different types of repeat one of such repeat is called

dinucleotide repeat .This type of repeat are more in any

sequence. Here the two proposed algorithm are based on this

repeat using static fixed length LUT for input file and output

file mapping.

Keywords

Completely and incompletely specified nucleic acid bases,

static LUT, dinucleotide repeats, base pair, sequence line

length, compressed sequence length, compression factor,

saving percentage.

1. INTRODUCTION
Till now in most of the nucleic acid sequences compression

algorithm, only completely specified bases that are A, C, G

and T/U [1-2]. That means if any sequence contains some of

the incompletely bases, although it is a rare case then those

techniques will not be adequate. So there is need of some

different algorithm which has the generalized property. That

means those techniques can handle only four completely bases

[3-5] as well as eleven incompletely specified bases. The

primary bases are adenine (A), cytosine (C), guanine (G)

which are exist in both DNA and RNA sequence, thymine (T)

only in DNA and uracil (U) in RNA respectively. The above

said symbols are typically called bases in genome. Other than

theses symbols there may exists some intermittent and

incompletely specified bases in nucleic acid sequences these

are K, M, R, S, W, Y, B, D, H, V, N respectively [6]. The

incompletely specified bases can be represent in terms of A,

C, G and T/U where Keto (K) may be G or T, Amino (M) A

or C, Puine (R) A or G, S C or G, W A or T, Pyrimidine (Y)

C or T all of these having 50% probability between two

primary bases. The following bases which may have one of

the three primary bases are B - C or G or T, D A or G or T, H

A or C or T and V A or C or G respectively. The last one N

may be A or C or G or T. The above said bases relevant for

both deoxyribonucleic acids (DNA) and ribonucleic acids

(RNA) respectively. The only difference is in T and U in case

RNA it is U where T for DNA. So the deduction of RNA

sequences from the subsequent DNA sequences is just a

replacement of all occurrence of U by T in the corresponding

incompletely specified bases. Since the difference between

DNA and RNA is just by single bases so storing process are

quite equivalent both for DNA and RNA. So programmer

need not to make different data bank for DNA and RNA. Here

no discrimination between lower and upper case letters have

been considered also i.e. „A‟ is equivalent to „a‟ and so on. All

symbols have their corresponding complement but only for

DNA not for RNA they are A-T, C-G, K-M, M-K, R-Y, Y-R,

B-V, D-H, H-D, and V-B. Some symbols are self complement

they are S, W, and N.

2. BRIEF REVIEW

There have a lot of pre-existing DNA sequence compression.

Here only few of them have been explained.

Some authors use the property approximate repeat [7].

Approximate repeats are subsequences of a sequence which

can be transformed into a copy of the original previous

subsequences using edit operations such as substitution,

insertion and deletion. But the searching process is time

consuming, to save time greedy approach misses long repeats

which prohibits from receiving high compression.

The tandem repeat finder [8] which is a program to analyze

DNA sequences. It is used to find the two or more contiguous

exact or approximate pattern in a sequence. It helps to find

which portions of a genomic sequence are similar and which

are not.

Another compression, which divides the entirely scanned

DNA sequence into factors of length four, is Hashbased

(Ateet Mehta et al, 2010) [9] and as its name itself suggests,

the algorithm initially builds a hash table and assigns a unique

character to each of the factors which act as the hash key.

Each factor of length four is assigned corresponding unique

characters to each of the factors. But this algorithm doesn‟t

consider any junk characters in the sequence.

In this article completely specified as well as all incompletely

specified bases have been considered. So here the proposed

compression techniques are more flexible to switch a wide

variety of bases.

Rest of the article organized as follows. Section 3 two

proposed generalized and specially designed algorithms which

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.4, August 2013

30

have four sub-sections explain four important basics of the

two algorithms, sections 4 results after applying this algorithm

on a set of twelve biological data, section 5 conclusions and

discussions, section 6 future work and finally section 7

references.

3. PROPOSED ALGORITHMS
This article contains two proposed algorithms B2 (Block

Two) and B2DNR (Block Two of Dinucleotide Repeats)

respectively as explained below. These two algorithms are

based on four possible fundamentals. These are explained

below respectively.

3.1 Static fixed length Look up table

Both algorithms are based on mapping implemented by static

fixed length LUT.

Here all the input sequences are of frequent and rarely

specified bases in nucleic acid sequences {A, C, G, T or U}

and {K, M, R, S, W, Y, B, D, H, V, N} respectively. There

are total 15^2=225 combinations are formed using the above

15 characters as a combination of two. Using input-output

mapping process those 225 combinations are mapped into 225

ASCII character out of possible 256 ASCII character. The

resultant mapping table is shown in table 1. Reverse mapping

is done at decompression process.

3.2 ASCII characters

Here some chosen 8 bit ASCII characters are used.

 In both algorithms, as the total number of ASCII

character required is 225 so among 256 available ASCII

character 225 can be selected easily. So the number of

remaining characters are (256-225) = 31. Out of which 15

possible input characters not be used. Now the remaining

characters are (31-15) = 16. Two characters gives new line

and five characters do not give correct mapping, so the

remaining (16-2-5) = 9 characters are used for repeat count.

Table 1: Static Look up table for all specified bases

B
as

e

C
h

ar
ac

te
r

B
as

e

C
h

ar
ac

te
r

B
as

e

C
h

ar
ac

te
r

B
as

e

C
h

ar
ac

te
r

B
as

e

C
h

ar
ac

te
r

B
as

e

C
h

ar
ac

te
r

B
as

e

C
h

ar
ac

te
r

B
as

e

C
h

ar
ac

te
r

B
as

e

C
h

ar
ac

te
r

B
as

e

C
h

ar
ac

te
r

B
as

e

C
h

ar
ac

te
r

B
as

e

C
h

ar
ac

te
r

B
as

e

C
h

ar
ac

te
r

B
as

e

C
h

ar
ac

te
r

B
as

e

C
h

ar
ac

te
r

A
A

(c
h

ar
)0

T
A

(c
h

ar
)2

6

C
A

(c
h

ar
)4

1

G
A

(c
h

ar
)5

6

R
A

(c
h

ar
)8

0

Y
A

(c
h

ar
)1

0
1

W
A

(c
h

ar
)

1
1

6

S
A

(c
h

ar
)1

3
2

M
A

(c
h

ar
)1

5
0

K
A

(c
h

ar
)1

6
6

H
A

(c
h

ar
)1

8
1

B
A

(c
h

ar
)1

9
6

V
A

(c
h

ar
)2

1
1

D
A

(c
h

ar
)2

2
6

N
A

(c
h

ar
)2

4
1

A
T

(c
h

ar
)1

1

T
T

(c
h

ar
)2

7

C
T

(c
h

ar
)4

2

G
T

(c
h

ar
)5

7

R
T

(c
h

ar
)8

1

Y
T

(c
h

ar
)1

0
2

W
T

(c
h

ar
)1

1
7

S
T

(c
h

ar
)1

3
3

M
T

(c
h

ar
)1

5
1

K
T

(c
h

ar
)1

6
7

H
T

(c
h

ar
)1

8
2

B
T

(c
h

ar
)1

9
7

V
T

(c
h

ar
)2

1
2

D
T

(c
h

ar
)2

2
7

N
T

(c
h

ar
)2

4
2

A
C

(c
h

ar
)1

2

T
C

(c
h

ar
)2

8

C
C

(c
h

ar
)4

3

G
C

(c
h

ar
)5

8

R
C

(c
h

ar
)8

5

Y
C

(c
h

ar
)1

0
3

W
C

(c
h

ar
)1

1
8

S
C

(c
h

ar
)1

3
4

M
C

(c
h

ar
)1

5
2

K
C

(c
h

ar
)1

6
8

H
C

(c
h

ar
)1

8
3

B
C

(c
h

ar
)1

9
8

V
C

(c
h

ar
)2

1
3

D
C

(c
h

ar
)2

2
8

N
C

(c
h

ar
)2

4
3

A
G

(c
h

ar
)1

4

T
G

(c
h

ar
)2

9

C
G

(c
h

ar
)4

4

G
G

(c
h

ar
)5

9

R
G

(c
h

ar
)8

8

Y
G

(c
h

ar
)1

0
4

W
G

(c
h

ar
)1

1
9

S
G

(c
h

ar
)1

3
5

M
G

(c
h

ar
)1

5
3

K
G

(c
h

ar
)1

6
9

H
G

(c
h

ar
)1

8
4

B
G

(c
h

ar
)1

1
9

V
G

(c
h

ar
)2

1
4

D
G

(c
h

ar
)2

2
9

N
G

(c
h

ar
)2

4
4

A
R

(c
h

ar
)1

5

T
R

(c
h

ar
)3

0

C
R

(c
h

ar
)4

5

G
R

(c
h

ar
)6

0

R
R

(c
h

ar
)9

0

Y
R

(c
h

ar
)1

0
5

W
R

(c
h

ar
)1

2
0

S
R

(c
h

ar
)1

3
6

M
R

(c
h

ar
)1

5
4

K
R

(c
h

ar
)1

7
0

H
R

(c
h

ar
)1

8
5

B
R

(c
h

ar
)2

0
0

V
R

(c
h

ar
)2

1
5

D
R

(c
h

ar
)2

3
0

N
R

(c
h

ar
)2

4
5

A
Y

(c
h
ar

)1
6

T
Y

(c
h
ar

)3
1

C
Y

(c
h
ar

)4
6

G
Y

(c
h
ar

)6
1

R
Y

(c
h
ar

)9
1

Y
Y

(c
h
ar

)1
0

6

W
Y

(c
h
ar

)1
2

1

S
Y

(c
h
ar

)1
3

7

M
Y

(c
h
ar

)1
5

5

K
Y

(c
h
ar

)1
7

1

H
Y

(c
h
ar

)1
8

6

B
Y

(c
h
ar

)2
0

1

V
Y

(c
h
ar

)2
1

6

D
Y

(c
h
ar

)2
3

1

N
Y

(c
h
ar

)2
4

6

A
W

(c
h
ar

)1
7

T
W

(c
h
ar

)3
2

C
W

(c
h
ar

)4
7

G
W

(c
h
ar

)6
2

R
W

(c
h
ar

)9
2

Y
W

(c
h
ar

)
1
0
7

W
W

(c
h
ar

)1
2
2

S
W

(c
h
ar

)1
3
8

M
W

(c
h
ar

)1
5
6

K
W

(c
h
ar

)1
7
2

H
W

(c
h
ar

)1
8
7

B
W

(c
h
ar

)2
0
2

V
W

(c
h
ar

)2
1
7

D
W

(c
h
ar

)2
3
2

N
W

(c
h
ar

)2
4
7

A
S

(c
h
ar

)1
8

T
S

(c
h
ar

)3
3

C
S

(c
h
ar

)4
8

G
S

(c
h
ar

)6
3

R
S

(c
h
ar

)9
3

Y
S

(c
h
ar

)1
0
8

W
S

(c
h
ar

)1
2
3

S
S

(c
h
ar

)1
3
9

M
S

(c
h
ar

)1
5
8

K
S

(c
h
ar

)1
7
3

H
S

(c
h
ar

)1
8
8

B
S

(c
h
ar

)2
0
3

V
S

(c
h
ar

)2
1
8

D
S

(c
h
ar

)2
3
3

N
S

(c
h
ar

)2
4
8

A
M

(c
h
ar

)1
9

T
M

(c
h
ar

)3
4

C
M

(c
h
ar

)4
9

G
M

(c
h
ar

)6
4

R
M

(c
h
ar

)9
4

Y
M

(c
h
ar

)

1
0
9

W
M

(c
h
ar

)1
2
4

S
M

(c
h
ar

)1
4
0

M
M

(c
h
ar

)1
5
9

K
M

(c
h
ar

)1
7
4

H
M

(c
h
ar

)1
8
9

B
M

(c
h
ar

)2
0
4

V
M

(c
h
ar

)2
1
9

D
M

(c
h
ar

)2
3
4

N
M

(c
h
ar

)2
4
9

A
K

(c
h

ar
)2

0

T
K

(c
h

ar
)3

5

C
K

(c
h

ar
)5

0

G
K

(c
h

ar
)6

9

R
K

(c
h

ar
)9

5

Y
K

(c
h

ar
)

1
1

0

W
K

(c
h

ar
)1

2
5

S
K

(c
h

ar
)1

4
2

M
K

(c
h

ar
)1

6
0

K
K

(c
h

ar
)1

7
5

H
K

(c
h

ar
)1

9
0

B
K

(c
h

ar
)2

0
5

V
K

(c
h

ar
)2

2
0

D
K

(c
h

ar
)2

3
5

N
K

(c
h

ar
)2

5
0

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.4, August 2013

31

A
H

(c
h
ar

)2
1

T
H

(c
h
ar

)3
6

C
H

(c
h
ar

)5
1

G
H

(c
h
ar

)7
0

R
H

(c
h
ar

)9
6

Y
H

(c
h
ar

)1
1
1

W
H

(c
h
ar

)1
2
6

S
H

(c
h
ar

)1
4
5

M
H

(c
h
ar

)1
6
1

K
H

(c
h
ar

)1
7
6

H
H

(c
h
ar

)1
9
1

B
H

(c
h
ar

)2
0
6

V
H

(c
h
ar

)2
2
1

D
H

(c
h
ar

)2
3
6

N
H

(c
h
ar

)2
5
1

A
B

(c
h
ar

)2
2

T
B

(c
h
ar

)3
7

C
B

(c
h
ar

)5
2

G
B

(c
h
ar

)7
3

R
B

(c
h
ar

)9
7

Y
B

(c
h
ar

)1
1
2

W
B

(c
h
ar

)1
2
7

S
B

(c
h
ar

)1
4
6

M
B

(c
h
ar

)1
6
2

K
B

(c
h
ar

)1
7
7

H
B

(c
h
ar

)1
9
2

B
B

(c
h
ar

)2
0
7

V
B

(c
h
ar

)2
2
2

D
B

(c
h
ar

)2
3
7

N
B

(c
h
ar

)2
5
2

A
V

(c
h
ar

)2
3

T
V

(c
h
ar

)3
8

C
V

(c
h
ar

)5
3

G
V

(c
h
ar

)7
4

R
V

(c
h
ar

)9
8

Y
V

(c
h
ar

)1
1
3

W
V

(c
h
ar

)1
2
8

S
V

(c
h
ar

)1
4
7

M
V

(c
h
ar

)1
6
3

K
V

(c
h
ar

)1
7
8

H
V

(c
h
ar

)1
9
3

B
V

(c
h
ar

)2
0
8

V
V

(c
h
ar

)2
2
3

D
V

(c
h
ar

)2
3
8

N
V

(c
h
ar

)2
5
3

A
D

(c
h
ar

)2
4

T
D

(c
h
ar

)3
9

C
D

(c
h
ar

)5
4

G
D

(c
h
ar

)7
6

R
D

(c
h
ar

)9
9

Y
D

(c
h
ar

)1
1
4

W
D

(c
h
ar

)1
1
3

0

S
D

(c
h
ar

)1
4
8

M
D

(c
h
ar

)1
6
4

K
D

(c
h
ar

)1
7
9

H
D

(c
h
ar

)1
9
4

B
D

(c
h
ar

)2
0
9

V
D

(c
h
ar

)2
2
4

D
D

(c
h
ar

)2
3
9

N
D

(c
h
ar

)2
5
4

A
N

(c
h
ar

)2
5

T
N

(c
h
ar

)4
0

C
N

(c
h
ar

)5
5

G
N

(c
h
ar

)7
9

R
N

(c
h
ar

)1
0
0

Y
N

(c
h
ar

)1
1
5

W
N

(c
h
ar

)1
3
1

S
N

(c
h
ar

)1
4
9

M
N

(c
h
ar

)1
6
5

K
N

(c
h
ar

)1
8
0

H
N

(c
h
ar

)1
9
5

B
N

(c
h
ar

)2
1
0

V
N

(c
h
ar

)2
2
5

D
N

(c
h
ar

)2
4
0

N
N

(c
h
ar

)2
5
5

3.3 Line length
Line length in the sequence is the number of bytes in a line.

If the length of a line in the sequences is even then

there will be no extra character, if it is odd then there will be

extra character. In both algorithms if there are any extra

character exist then we keep it as it is.

E.g. let us consider line length (L) = 70bp

 where bp=base pair, a unit of length in nucleic acid

chains.

Then L%2 = 0 so there are L/2 = 35 block each of size two

and there are no extra base at the end of line.

If L = 71bp, then L%2 = 1 so there are L/2 = 35 block each of

size two and there are one extra base at the end of line. Even

number line length sequences give better result compare to

odd length.

3.4 Dinucleotide repeats

One of the properties in the sequences is dinucleotide repeats.

In B2DNR this feature has been used by counting

the number of dinucleotide repeats occur in the sequence. But

at a time not more than nine repeats have been counted. If

there are more than nine repeats then recount the repeats.

 E.g. ACACACACACACACACACACACAC

Here total twelve blocks are same. So from index eight

recounts started.

3.5 B2 and B2DNR compression algorithm

The compression and decompression are just reverse process.

3.5.1 B2 Compression algorithm

Input: Text file contains completely and incompletely

specified bases in the biological sequences respectively.

Output: Compressed file of ASCII characters.

Function Compression (input.txt)

Begin

Step1: A List which adds 15 possible bases in the sequence.

Step2: A HashMap map string of length two (all possible) to

chosen ASCII characters.

Step3: An input file of bases is taken to read data.

Step4: An output file is opened to write the compressed data.

Step5: Read the input file line wise.

Step6: Calculate the line length.

Step7: While str <> null do

 /* str is String type variable. It store a line at time */

While str.length()>2 do

 /* used to take block size of two characters */

 subStr = str.substring(0,2)

 /* subStr is a string type variable to store block

of two bases */

 Add these bases block to cbufList.

 /* cbufList is an ArrayList of String type*/

 End While

 For cbuf : cbufList do

 /* cbuf is a String variable*/

 Write the mapped value to output file

 End For

 End While

End

3.5.2 B2DNR Compression algorithm

Input: Original file of completely and incompletely specified

bases.

Output: Compressed file.

Function Compression (input.txt)

Begin

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.4, August 2013

32

Step1: A List which adds 15 possible bases in the sequence.

Step2: A HashMap map string of length two (all possible) to

chosen ASCII characters.

Step3: An input file of bases is taken to read data.

Step4: An output file is opened to write the compressed data.

Step5: Read the input file line wise.

Step6: While str <> null do

 /* str is String type variable. It store a line at time */

 While str.length()>2 do

 /* used to take block size of two characters */

 subStr = str.substring(0,2)

 /* subStr is a string type variable to store block

of two bases */

 Add these bases block to cbufList.

 /* cbufList is an ArrayList of String type*/

End While

For cbuf : cbufList do

/* cbuf is a String variable*/

 If cbuf.length() = 2 do

 If cbuf.equals(temp) do

 /* temp is used to previous block */

 count++;

 If count=9

 Write the count to output file

 count=0

 End If

 /* count is used to count number of

dinucleotide repeats*/

 Else

 If count>0 do

 Write the count to output file

 count=0

 Write the mapped value

 Else

 Write the mapped value

 Enf If

 End If

 temp=cbuf;

 End If

End For

 End While

End

4. RESULTS

Here the above said techniques are applied on twelve

sequences [10] of size in bp (base pair).

These are six Homo sapiens, sequences: IL4, transcript variant

1 (IL4, 1); IL4, transcript variant 2 (IL4, 2); MT1F; Rattus

norvegicus; SERF2 and TP53AIP1, transcript variant 3

(TP53AIP1) respectively. Three Zea mays, sequences:

HDZIV13_OCL13, ZM_BFc0038A03 and ZM_BFb0129K09

respectively. Three Mus musculus sequences: 496.1h6-3,

496.1H6-5S and IST15114H3 respectively. We have

calculated compression factor and saving percentages by

different techniques.

Table 2: Comparison of Compress Sequence Length by

different techniques

Sequence Name Origi

nal

Seq.

Len.

ID, LL

&

BZIP2

LZS

S &

PP

M

B2 B2

DN

R

IL4, 1 660 402 358 321 307

IL4, 2 610 379 333 297 282

MT1F 468 363 281 228 217

Rattus norvegicus 442 332 256 215 207

SERF2 536 355 295 261 252

TP53AIP1 616 393 336 300 294

HDZIV13_OCL13 391 280 231 191 184

ZM_BFc0038A03 765 422 396 373 363

ZM_BFb0129K09 682 385 355 332 321

496.1h6-3 687 414 350 333 320

496.1H6-5S 384 322 250 186 176

IST15114H3 506 328 293 245 238

140
160
180
200
220
240
260
280
300
320
340
360
380
400
420
440

C
o
m

p
re

ss
io

 le
n
g
th

 (
b
p
)

--
->

Sequences Name --->

ID, LL

&

BZIP2

LZSS

&

PPM

B2

B2DN

R

Fig 1: The graphical representation of table 2.

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.4, August 2013

33

Table 3: Comparison of Compression Factor by different

techniques

Sequence Name ID, LL

&

BZIP2

LZSS

& PPM

B2 B2

DNR

IL4, 1 1.642 1.859 2.056 2.150

IL4, 2 1.609 1.843 2.054 2.163

MT1F 1.289 1.665 2.053 2.157

Rattus norvegicus 1.331 1.727 2.056 2.135

SERF2 1.510 1.817 2.054 2.127

TP53AIP1 1.567 1.833 2.053 2.096

HDZIV13_OCL13 1.397 1.693 2.047 2.125

ZM_BFc0038A03 1.813 1.932 2.051 2.108

ZM_BFb0129K09 1.772 1.921 2.054 2.125

496.1h6-3 1.660 1.963 2.063 2.147

496.1H6-5S 1.193 1.536 2.065 2.182

IST15114H3 1.543 1.727 2.065 2.126

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

C
o

m
p

re
ss

io
n

 F
ac

to
r

--
->

Sequences Name --->

ID, LL

&

BZIP2

LZSS

&

PPM

B2

B2

DNR

Fig 2: The graphical representation of table 3.

Table 4: Comparison of Saving Percentage (%) by

different techniques

Sequence Name ID, LL

&

BZIP2

LZSS

& PPM

B2 B2

DNR

IL4, 1 39.091 45.758 51.364 53.485

IL4, 2 37.869 45.409 51.312 53.771

MT1F 22.436 39.957 51.282 53.634

Rattus norvegicus 24.887 42.081 51.358 53.168

SERF2 33.769 44.963 51.306 52.985

TP53AIP1 36.201 45.454 51.299 52.273

HDZIV13_OCL13 28.389 40.921 51.151 52.941

ZM_BFc0038A03 44.837 48.235 51.242 52.549

ZM_BFb0129K09 43.548 47.947 51.320 52.933

496.1h6-3 39.738 49.054 51.539 53.421

496.1H6-5S 16.146 34.896 51.563 54.167

IST15114H3 35.178 42.095 51.581 52.965

10

15

20

25

30

35

40

45

50

55

S
av

in
g
 P

er
ce

n
ta

g
e

 (
%

)
--

->

Sequences Name --->

ID, L

L &

BZIP2

LZSS

&

PPM

B2

B2DN

R

Fig 3: The graphical representation of table4.

5. CONCLUSIONS AND DISCUSSIONS
There are different compression techniques available usually

like WinZIP, WinRAR, Gzip, Bzip2 etc but they are not

appropriate for the compression of nucleic acid sequences due

to some special property of those sequences. Therefore need

of some specialized compression algorithms for those

sequences. Although there have been different algorithm

developed using the property of tandem repeat, approximate

repeat, Interspersed repeats and complementary nature of

DNA sequences. But those algorithms can handle only

completely specified bases.

The proposed algorithms can hold both completely and all

incompletely specified bases as well as use the best possible

redundant property i.e. dinucleotide repeat in the sequence.

Also the memory requirement, compression factor, saving

percentage and compression time are good compare to the

existing algorithms as shown by the above experiential results

and graph. More the compression factor and saving

percentage means sequence length is very less after

compression

6. FUTURE WORK
Develop a compression algorithm to compresses any sequence

level wise. That means input sequences will pass through

more than one compression techniques to produce final

compress data.

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.4, August 2013

34

7. REFERENCES
[1] Subhankar Roy, Sunirmal Khatua, Sudipta Roy and Prof.

Samir K. Bandyopadhyay, “An Efficient Biological

Sequence Compression Technique Using LUT and

Repeat in the Sequence”, IOSRJCE, Vol. 6, Issue 1, pp.

42-50, Sep-Oct. 2012.

[2] R.K. Bharti and Prof. R.K. Singh, “A Biological

Sequence Compression based on Look up Table (LUT)

using Complementary Palindrome of Fixed Size”, ICJA

(0975–8887), Volume 35– No.11, December 2011.

[3] Heba Afify, Muhammad Islam and Manal Abdel Wahed,

“DNA lossless differential compression algorithm based

on similarity of genomic sequence database”, IJCSIT,

Vol. 3, No 4, August 2011.

[4] R. K. Bharti and Prof. R.K. Singh, “A Biological

sequence compression Based on Approximate repeat

Using Variable length LUT”, International Journal of

Advances in Science and Technology, Vol. 3, No.3, PP:

71-75, 2011.

[5] Suman Chakraborty, Sudipta Roy, Prof. Samir K.

Bandyopadhyay, “Image Steganography Using DNA

Sequence and Sudoku Solution Matrix”, International

Journal of Advanced Research in Computer Science and

Software Engineering(IJARCSSE), Volume 2, Issue 2,

February 2012.

[6] Department of Chemistry, Queen Mary University of

London, “Nomenclature for Incompletely Specified

Bases in Nucleic Acid Sequences”.

[7] Xin Chen, Sam Kwong and Ming LiA, “Compression

Algorithm for DNA Sequences, Using Approximate

Matching for Better Compression Ratio to Reveal the

True Characteristics of DNA”, pp. 61-66, IEEE

Engineering in Medicine and Biology, July/August 2001.

[8] Gary Benson, “Tandem repeats finder: a program to

analyze DNA sequences”, pp. 573-580, Oxford

University Press, Nucleic Acids Research, Vol. 27, No.2.

[9] Ateet Meheta & Bankim Patel, “DNA compression using

hash based data structure”, International Journal of

Information Technology and Knowledge Management,

pp. 383-386, Vol. 2, No. 2, July-December 2010.

[10] Sequences are taken from:

httpncbi.nl://www.m.nih.gov/Genbank.

IJCATM : www.ijcaonline.org

