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ABSTRACT 
Cloud computing has recently emerged as a new paradigm for 

hosting and delivering services over the Internet. Task 

consolidation problem in cloud computing systems became an 

important approach to streamline resource usage which 

improves energy efficiency. The task consolidation is also 

known as workload consolidation problem which is the 

process of assigning set of tasks to set of resources without 

violating time constraints. Three existing energy conscious 

heuristics such as ECTC (Energy-Conscious Task 

Consolidation) Task Consolidation Algorithm and MaxUtil 

(Maximum rate Utilization) Task Consolidation Algorithm 

and Bi-objective Task Consolidation algorithm offering 

different energy saving possibilities were analyzed in this 

study. The cost functions incorporated effectively capture 

energy saving possibilities and their capability has been 

verified by evaluation study. The Bi-objective Task 

Consolidation algorithm combines the two heuristics to 

construct the corresponding bi-objective search space. The 

efficiency of proposed algorithm was proved thought 

evaluation study consisting of different simulations carried 

out. 
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1. INTRODUCTION 
Cloud computing has recently emerged as a new paradigm for 

hosting and delivering services over the Internet. Cloud 

computing is attractive to business owners as it eliminates the 

requirement for users to plan ahead for provisioning, and 

allows enterprises to start from the small and increase 

resources only when there is a rise in service demand. With 

the rapid development of processing and storage technologies 

and the success of the Internet, computing resources have 

become cheaper, more powerful and more ubiquitously 

available than ever before. This technological trend has 

enabled the realization of a new computing model called 

cloud computing, in which resources such as CPU and storage 

are provided as general utilities that can be leased and released 

by users through the Internet in an on-demand fashion [1].  

A cloud typically consists of multiple resources possibly 

distributed and heterogeneous. However, recent advances in 

virtualization technologies in particular have made it much 

more compelling compared to the time when it was first 

introduced. The adoption and deployment of clouds has many 

attractive benefits, such as scalability and reliability; however, 

clouds in essence aim to deliver more economical solutions to 

both parties: consumers and providers. 

 

Figure 1: A cloud computing network 

By economical it means that consumers only need to pay for 

what resources they need while providers can capitalize 

poorly utilized resources. From a provider’s perspective, the 

maximization of the profit is a high priority. In this regard, the 

minimization of energy consumption plays a crucial role. 

Moreover, energy consumption can be much reduced by 

increasing resource utilization. Energy usage in large-scale 

computer systems like clouds also yields many other serious 

issues including carbon emissions and system reliability [2, 

10]. The first academic use of term Cloud Computing appears 

to originally suggested that this would be a new computing 

paradigm where the boundaries of computing will be 

determined by economic rationale rather than technical limits 

alone[7].  

To better exploit the elastic provisioning of Clouds, it is 

important that Cloud application Developers, before 

deploying an application in the Cloud, understand its 

behaviour when subject to different demand levels. This 

allows developers to understand application resource 

requirements and how variation in demand leads to variation 

in required resources. This information is paramount to allow 

proper Quality of Service (QoS) to be set and to estimate the 

budget required to host the application in the Cloud [4, 13]. 

The most recent estimates for U.S. data centres suggest that 

between 2000 and 2006, their electricity demand more than 

doubled to approximately 61 billion kilowatt-hours (kWh)  or 

to around 1.6% of 2006 U.S. electricity sales . The rapid rise 

and growing national significance of this electricity demand 

has placed increased attention on strategies for improving the 

energy efficiency of data center operations. The rapid rise and 

growing national significance of this electricity demand has 

placed increased attention on strategies for improving the 

energy efficiency of data center operations. The assessment 

resulted in a 2007 peer-reviewed report to the U.S. Congress 
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containing projections of U.S. data center energy demand 

under different efficiency scenarios. The EPA study also 

contained policy recommendations for promoting greater data 

center efficiency [5, 11, 12, 14]. 

A distributed computing system is a network of computing 

nodes that interact with each other in order to achieve a 

common goal. Distributed Cyber Physical Systems (DCPS’s) 

are distributed systems in which computing systems interact 

with physical environment based on information from the 

physical and cyber space. Green computing generally refers to 

the efficient use of resources in computing in conjunction with 

minimizing environmental impact, and maximizing economic 

viability. Similar to any other resource problem the goal of 

green computing is  

1. Use fewer hazardous materials 

2. Maximize the efficiency of all resource use in 

computing systems during their lifetime 

3. Reuse as many resources as possible and to dispose 

what cannot be recycled responsibly.  

Research and industry continue to derive forward green 

computing paradigms such as making the use of computer as 

energy efficient as possible. Such solutions can be applied in 

different levels of computing systems from low hardware 

level such as low power electronics to the high software level 

such as scheduling algorithms. The goal is to incorporate 

effective green computing parameters in decision making for 

workload assignment and power management of computing 

nodes in DCP’s. Green computing is important in such 

systems to increase scalability and sustainability. Green 

DCP’s designers must try to find the optimal balance of 

energy-latency trade-off, where the system performance is 

sacrificed to gain energy efficiency. Only in the case where 

the benefits of green computing such as increased lifetime, 

increased system reliability, lower cost of ownership, and 

improved safety outweigh the cost on system performance are 

such solutions likely to be used [3]. 

The field of cloud computing uses different management 

techniques for data center virtualization such as OpenNebula. 

However, computers composing the cloud infrastructure use a 

significant and growing portion of energy in the world 

specifically when dealing with virtualization for high 

performance computing (HPC). Therefore, energy-aware 

computing is crucial for large-scale systems that consume 

considerable amount of energy [6, 15]. 

2.  MODELS 

2.1   Energy Model 

The energy model is based on the fact that processor 

utilization has a linear relationship     with energy 

consumption. The proportional relationship means that, for a 

particular task, the information on the processing time and the 

processor utilization is sufficient to measure the energy 

consumption for the task. At any given time, for a resource ri, 

the utilization Ui is defined as 

Ui =  ui,j

𝑛−1

j=0
 ……….. (1) 

Where n is the number of tasks running at the given time and 

ui, j is the resource usage of a task tj. The energy consumption 

Ei of a resource ri at any given time is defined as 

Ei =  pmax − pmin  × Ui + pmin  …… (2) 

Where pmax is the power consumption at the peak load or 

100% utilization and pmin is the minimum power consumption 

in the active mode or as low as 1% utilization. Consequently, 

at any given time, the total utilization (UR) as the total energy 

consumption (ER) of the system are defined as 

UR =  Ui
m−1
i=0  and ER =  Ei

m−1
i=0  ……(3) 

Where m is the number of resources used. The resources in 

the underlying system are assumed to be incorporated with an 

effective power-saving mechanism for idle time slots. The 

mechanism results from the significant difference in energy 

consumption, between active and idle resources states. 

Specifically, the energy consumption of an idle resource at 

any given time is set to 10% of pmin. Because the overhead to 

turn off and back on a resource takes a nonnegligible amount 

of time, the option for idle resources was not considered in our 

study or by others. 

2.2   Cloud Model 

The underlying system consists of a set R = {r0,….,rm-1} of m 

resources that are fully interconnected in the sense that a route 

exists between any two resources. It is assumed that resources 

are homogeneous in terms of computing capability and 

capacity. The aforementioned is achieved through the 

virtualization technologies. Nowadays, as many core 

processors and virtualization tools are commonplace. The 

number of concurrent tasks on a single physical resource is 

loosely bounded and a cloud computing can span across 

multiple geographical locations. The cloud computing model I 

consider is assumed to: 

1. Be confined to a particular physical location 

2. Have the inter-processor communications 

performing with the same speed on all links without 

substantial contentions 

3. Allow messages to be transmitted from one resource 

to another while a task is being executed on the 

recipient resource. 

2.3 Application Model 

Services offered by cloud providers can be classified into 

Software as a service (SaaS), Platform as a service (PaaS) and 

Infrastructure as a service (IaaS). Note that, when instances of 

these services are running, they can be regarded as 

computational tasks or simply tasks. While IaaS requests are 

typically tied with predetermined time frames such as pay-per-

hour, requests of SaaS and PaaS are often not strongly tied 

with a fixed amount of time such as pay-per-use. However, it 

can be possible to have estimates for service requests for SaaS 

and PaaS based on historical data and consumer supplied 

service information. Service requests in our study arrive in a 

Poisson process and the requested processing time follows 

exponential distribution. I assume that the processor usage of 

each service request can be identifiable. It is also assumed that 

disk and memory use correlates with processor utilization.  

Hereafter, application, task and service are used 

interchangeably [2, 8, 9]. 

3. THE TASK CONSOLIDATION 

PROBLEM 

The task consolidation is also known as workload 

consolidation problem is the process of assigning a set 

T={t0,…, tn-1} of n tasks to a set R = {r0,…,rm-1} of m cloud 

computing resources, without violating time constraints. The 

main purpose remains to maximize resource utilization and 

ultimately to minimize energy consumption. Time constraints 
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are directly related to the resource usage associated with the 

tasks. More precisely, in the consolidation problem, the 

resources allocated to a particular task must sufficiently 

provide the resource usage of that given task. For example, a 

task with its resource usage requirement of 60% cannot be 

assigned to a resource for which the available resource 

utilization at the time of that task's arrival is 50%. 

 

4. PRESENT WORK 

4.1 ECTC (Energy-Conscious Task Consolidation) 

Task Consolidation Algorithm 

The cost function, termed ECTC, computes the actual energy 

consumption of the current task by subtracting the minimum 

energy consumption (pmin) required to run a task, if other tasks 

would be running in parallel with that task. That is, the energy 

consumption of the overlapping time period among the 

running tasks and the current task (tj) is explicitly taken into 

account. The cost function tends to discriminate the task being 

executed in a standalone mode.  

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Algorithm and flow chart of ECTC Algorithm 

 

The value fi,j of a task tj on a resource ri obtained using the 

ECTC cost function is defined as 

fi,j = [(p∆ × uj + pmin )× τ0] − [  p∆ × uj + pmin  × τ1 +

 p∆ × uj × τ2 ] … (4) 

Where p∆ is the difference between pmax and pmin, uj is the 

utilization rate of tj, and τ0, τ1 and τ2 are the total processing 

time of tj. The time period tj is running stand alone and that tj 

is running in parallel with one or more tasks, respectively. For 

example, consider two tasks t0 and t1 that are running in 

parallel on the same resource r0 with t0 arriving time on first 

resource. While computing the result for f0,1 

τ0 = total execution time of t1 

τ1 = τ0 −  τ2 

τ2 = τ0 −  τ1 ……….. (5) 

Where τ1 is the time period where t1 will be running stand 

alone on r0, and τ2 the time period where t1 will be 

consolidated with t0 in r0. The rationale behind the ECTC cost 

function is that the energy consumption at the lowest resource 

utilization is far greater than that in idle state, and the 

additional energy consumption imposed by overlapping tasks 

contributes to a relatively low increase [2, 8]. 

4.2 MaxUtil (Maximum rate Utilization) Task 

Consolidation Algorithm 
The MaxUtil cost function is derived with the average 

utilization during the processing time of the current task, as 

core component. The cost function aims to increase 

consolidation density and has a double benefit: 

ECTC Algorithm 

Step 1:  Let r*=Ø 

 

Step 2: Repeat Step 3 to Step 5 for all ri € R 

 

Step 3:calculate cost function fi,j  where       

fi,j = [(p∆ × uj + pmin )× τ0] − [  p∆ × uj + pmin  ×

τ1 +  p∆ × uj × τ2 ]   
 

Step 4:if  fi,j>f*,j 

           Then go to step 5 

           Else go to step 2 

 

Step 5: Set r*=ri 

           and  f*,j=fi,j 

 

Step 6: Set r*=tj 

 

Step 7: Exit 

Flow chart 
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1. Implicit reduction of the energy consumption is 

directly related  

2. Decreased number of active resources 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Algorithm and flow chart of MaxUtil Algorithm 

 

In others words, MaxUtil tends to intensify the utilization of a 

small number of resources. Consequently, the value fi,j of a 

task tj on a resource ri using the MaxUtil cost function is 

defined as     

              fi,j = ( Ui
τ0
τ=1 )/τ0 ……… (6) 

Which is the utilization of a resource ri, divided by total 

execution time (t0) of task tj [2, 8]. 

4.3 Bi-Objective Algorithm 
The idea behind the bi-objective model is to combine the two 

cost functions to only benefit from ECTC and MaxUtil 

advantages. The algorithm will then provide the more energy 

efficient resource based on both of the considered aspects. I 

must note that ECTC computes the energy consumption of a 

given task on a selected resource, while MaxUtil looks after 

the more energy-efficient resource in terms of resource 

utilization. The ECTC cost function is designed to encourage 

resource sharing; the energy consumption of two tasks 

running in parallel is slightly superior than the energy 

consumption of a task ran alone. 

To be accurate on the computation of the energy consumption, 

ECTC uses τ1 and τ2. Based on the time periods (τx), the cost 

function gives priority to resources where concurrent tasks can 

be fully consolidated and tends to discard the resources 

offering only a partial consolidation. Task t0 do not fully 

overlap task t3 on resource r0, and then ECTC assigns t3 on r1 

because t3 can be fully consolidated with the task t2. The 

working example presented pointed out the main drawback of 

ECTC. Intuitively, the resulting divergence from the 

behaviour of MaxUtil can be seen as a domino effect that will 

temporarily affect the system. Being energy efficiency the 

main concern of the presented heuristics, the eventuality of a 

domino effect should not be neglected while considering the 

ECTC cost function for the task consolidation problem. 

Alternatively, MaxUtil always minimizes the total number of 

used resources without individually considering the energy 

consumption of the given task. Because the objective of my 

study is to minimize the energy consumption as the total 

number of used resources, my proposal combines the two cost 

functions to select the resource that will most likely maximize 

the utilization rate and minimize the energy consumption. 

The approach uses the two cost functions described in 

Equations. The respective results are combined to build a 

point in a two-dimensional search space where ECTC gives 

the x coordinate and MaxUtil the y coordinate. Originally, 

Equation returns a value greater than zero only when applied 

on a resource allowing task consolidation. Among the 

collected results, the highest value identify the most energy-

MaxUtil Algorithm                                                                  Flow chart 
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efficient resource (if τ1≠ τ0), while the null value identifies 

empty resources (if τ1= τ0). Figure illustrates the rationale 

behind the ECTC cost function. To properly construct the 

point in the search space, the two cost functions have to be 

slightly modified. Defining the energy consumption ej of a 

task (tj) on a given resource (ri) as 

ej=(p∆ × uj+pmin ) ……… (7) 

The value fi, j of tj on ri obtained using the ECTC cost function 

is now defined as 

fi,j =  
 ej × τ0                              ;    if    τ1 =  τ0

  ej × τ1 +  p∆ × uj × τ2  ;   otherwise  
 . . (8) 

The value of fi, j obtained using the MaxUtil cost function as 

fi,j =  Ui
d j

a j
 ……… (9) 

Where aj is the arrival time and dj the due date of the current 

task tj. The design of Algorithm does not identify equivalent 

solutions. A double dominance check must be introduced and 

the equivalent solutions added to a subset F (F D). 

Because the optimum solution may change by the time the 

domain space (D) is constructed, F must reset each time a new 

optimum point is identified. This will ensure that the subset 

only contains the equivalent solutions to the latest optimum 

point. 

By the time the solution space is constructed, the equivalent 

optimum points will be identified. The selection among the 

equivalent solutions belonging to F, if any, will rely on d. 

Because our approach maximizes the considered objectives, 

the complement of d, denoted as δ, will be considered 

according the formula 

δ  ∶  ymin ∶ ymax  →  ymin ∶ ymax  ,  and δ = ymax − d 

………(10) 

The aforementioned selection process will sequentially 

compare each f Є F with the actual optimum point. The actual 

optimum will then be updated based on the δ parameter, or on 

the sum of the two coordinates ((fx, fy) Є pi), if the pair share 

the same value for the x(energy consumption) or y 

(utilization) coordinate [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Algorithm and flow chart of Bi-Objective Algorithm 

 

5. EXPERIMENT AND RESULTS 
In this section, I describe experimental methods and settings 

including task characteristics and their generation. 

Experimental results are then presented based on energy 

consumption. While resource utilization might be a good 

performance measure, however, average utilization rates over 

all resources are not shown since they are already represented 

by energy consumption. The performance of ECTC, MaxUtil 

and bi-objective will be thoroughly evaluated with a large 

number of experiments using a diverse set of tasks. In addition 

to task characteristics, Energy efficient utilization of resources 

in cloud computing systems three algorithms (ECTC, MaxUtil 

and bi-objective) will be used. Variants of these three 

algorithms were further implemented incorporating task 

migration

Bi-Objective Algorithm                                                    Flow chart 
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Table 1: Experiment with different task and processing 

time 

 

  

 The total number of experiments conducted is 500 different 

numbers of tasks between 1 and 50 at intervals of 10, 10 mean 

inter-arrival times between 10 and 100 with a random uniform 

distribution and three kinds of resource usage patterns which 

are random, low and high. In the first case, resource usage of 

tasks generated is random and uniformly distributed between 

10% and 100%. For tasks with low and high resource usage 

patterns, usage ranges are generated using a Gaussian random 

number generator with mean utilization rates of 30% and70%, 

respectively. Task arrival times are modelled in a Poisson 

process and task processing times follow exponential 

distribution. I assume task processing times specified are hard 

deadlines performance degradation is not acceptable. Task 3 

(t3) arrives at time 15 after tasks 0, 1 and 2, and it is assigned 

onto resource 1 (r1) based on energy consumption even though 

the utilization of resource 0 (r0) is higher if t3 is assigned on r0. 

MaxUtil assigns 

 

  
 

 

Figure 5: Working Example of ECTC 

 

t3 onto r0 and this leads to a better match as compared with 

ECTC.I used pmax and pmin of 30 and 20, respectively. These 

values can be seen as rough estimates in actual resources and 

can be referenced as 300 watt and 200 watt, respectively. 

Since existing task consolidation algorithms are not directly 

comparable to our heuristics, our                       comparisons 

have been carried out between ECTC, MaxUtil and Bi-

Objective.  

 

 

 

 

 

 

 

Figure 6: Working example of MaxUtil 

 

Those existing task consolidation techniques introduced 

exhibit substantial differences in energy and scheduling 

models. During initial experiments with those three heuristics 

(ECTC, MaxUtil and Bi-Objective), I observed that in some 

circumstances the relocation of some running tasks can further 

reduce energy consumption. This observation motivated us to 

implement a variant for each of those three incorporating task 

migration and these variants are named ECTC_m, MaxUtil_m 

and Bi-Objective _m, respectively.  

The entire results obtained from our extensive simulations are 

summarized in Table and results for different resource usage 

patterns are presented in Figure. Although the simulations 

were performed with 50 different numbers of tasks, only 

results obtained with 11 representative task volumes are 

presented. Energy savings in Table are relative rates to results 

obtained from experiments using Bi-Objective algorithm. 

These results clearly demonstrate the competent energy saving 

capability of ECTC, MaxUtil and Bi-Objective. Overall, 

ECTC and MaxUtil outperformed, regardless of the adoption 

of migration by 18% and 13%, respectively. 

While energy savings with high and random resource usage 

patterns are still appealing, tasks with low resource usage are 

most suitable for task consolidation. Interestingly, the benefit 

of using migration was not apparent. This is mainly because 

migrated tasks tend to be with short remaining processing 

times and these tasks likely to hinder the consolidation of new 

arriving tasks, resulting in more energy consumption 

compared with the case when migration is not considered. 
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Table 2: Relative energy savings 

Usage Pattern ECTC MaxUtil Bi-Objective 

Low Random High Low Random High Low Random High 

With Migration 

Energy Saving 

 

32% 

 

16% 

 

9% 

 

23% 

 

11% 

 

5% 

 

34% 

 

17% 

 

11% 

Without 

Migration Saving 

Energy 

 

33% 

 

17% 

 

9% 

 

25% 

 

12% 

 

4% 

 

36% 

 

20% 

 

14% 

Mean Saving 18% 13% 22% 

 

6. CONCLUSION AND FUTURE SCOPE 
Task consolidation, especially in cloud computing systems, 

became an important approach to streamline resource usage 

which improves energy efficiency. Three existing energy 

conscious heuristics for task consolidation offering different 

energy saving possibilities were analyzed in this study. The 

cost functions incorporated effectively capture energy saving 

possibilities and their capability has been verified by our 

evaluation study. For these heuristics, I identified the 

corresponding drawback and proposed, as a solution, the Bi-

objective Task Consolidation algorithm. This algorithm 

combines the two heuristics to construct the corresponding bi-

objective search space. The efficiency of the proposed 

algorithm was proved thought the evaluation study consisting 

of different simulations carried out. at each task assignment I 

observed three main aspects: total energy consumption, total 

resource utilization, and time needed to select the optimum 

solution. To evaluate the performance of the BTC algorithm, 

the two heuristics were individually implemented and used as 

key indicator for the energy efficiency and the scalability. 

Despite the more elaborate selection of the optimum solution, 

my study reported that the proposed BTC algorithm was the 

slowest when compared but resulted being the heuristic that 

provided the best energy efficient solution. During initial 

experiments with those three heuristics (ECTC, MaxUtil and 

Bi-Objective), I observed that in some circumstances the 

relocation of some running tasks can further reduce energy 

consumption. This observation motivated us to implement a 

variant for each of those three incorporating task migration 

and these variants are named ECTC_m, MaxUtil_m and Bi-

Objective _m, respectively. Relocation can be considered for 

each running task at any time resource utilization changes for 

task completion. 
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