
International Journal of Computer Applications (0975 – 8887)

Volume 75– No.4, August 2013

16

Algorithms for Task Consolidation Problem in a Cloud

Computing Environment

Amandeep kaur
Eternal University, Baru Sahib

H.P, India

Rupinder kaur
Eternal University, Baru Sahib

H.P, India

Prince Jain
Punjab Technical University,

Jalandhar
Punjab, India

ABSTRACT
Cloud computing has recently emerged as a new paradigm for

hosting and delivering services over the Internet. Task

consolidation problem in cloud computing systems became an

important approach to streamline resource usage which

improves energy efficiency. The task consolidation is also

known as workload consolidation problem which is the

process of assigning set of tasks to set of resources without

violating time constraints. Three existing energy conscious

heuristics such as ECTC (Energy-Conscious Task

Consolidation) Task Consolidation Algorithm and MaxUtil

(Maximum rate Utilization) Task Consolidation Algorithm

and Bi-objective Task Consolidation algorithm offering

different energy saving possibilities were analyzed in this

study. The cost functions incorporated effectively capture

energy saving possibilities and their capability has been

verified by evaluation study. The Bi-objective Task

Consolidation algorithm combines the two heuristics to

construct the corresponding bi-objective search space. The

efficiency of proposed algorithm was proved thought

evaluation study consisting of different simulations carried

out.

General Terms
Cloud Computing, Task Consolidation algorithms

Keywords
MaxUtil, ECTC, Bi-Objective Algorithms

1. INTRODUCTION
Cloud computing has recently emerged as a new paradigm for

hosting and delivering services over the Internet. Cloud

computing is attractive to business owners as it eliminates the

requirement for users to plan ahead for provisioning, and

allows enterprises to start from the small and increase

resources only when there is a rise in service demand. With

the rapid development of processing and storage technologies

and the success of the Internet, computing resources have

become cheaper, more powerful and more ubiquitously

available than ever before. This technological trend has

enabled the realization of a new computing model called

cloud computing, in which resources such as CPU and storage

are provided as general utilities that can be leased and released

by users through the Internet in an on-demand fashion [1].

A cloud typically consists of multiple resources possibly

distributed and heterogeneous. However, recent advances in

virtualization technologies in particular have made it much

more compelling compared to the time when it was first

introduced. The adoption and deployment of clouds has many

attractive benefits, such as scalability and reliability; however,

clouds in essence aim to deliver more economical solutions to

both parties: consumers and providers.

Figure 1: A cloud computing network

By economical it means that consumers only need to pay for

what resources they need while providers can capitalize

poorly utilized resources. From a provider’s perspective, the

maximization of the profit is a high priority. In this regard, the

minimization of energy consumption plays a crucial role.

Moreover, energy consumption can be much reduced by

increasing resource utilization. Energy usage in large-scale

computer systems like clouds also yields many other serious

issues including carbon emissions and system reliability [2,

10]. The first academic use of term Cloud Computing appears

to originally suggested that this would be a new computing

paradigm where the boundaries of computing will be

determined by economic rationale rather than technical limits

alone[7].

To better exploit the elastic provisioning of Clouds, it is

important that Cloud application Developers, before

deploying an application in the Cloud, understand its

behaviour when subject to different demand levels. This

allows developers to understand application resource

requirements and how variation in demand leads to variation

in required resources. This information is paramount to allow

proper Quality of Service (QoS) to be set and to estimate the

budget required to host the application in the Cloud [4, 13].

The most recent estimates for U.S. data centres suggest that

between 2000 and 2006, their electricity demand more than

doubled to approximately 61 billion kilowatt-hours (kWh) or

to around 1.6% of 2006 U.S. electricity sales . The rapid rise

and growing national significance of this electricity demand

has placed increased attention on strategies for improving the

energy efficiency of data center operations. The rapid rise and

growing national significance of this electricity demand has

placed increased attention on strategies for improving the

energy efficiency of data center operations. The assessment

resulted in a 2007 peer-reviewed report to the U.S. Congress

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.4, August 2013

17

containing projections of U.S. data center energy demand

under different efficiency scenarios. The EPA study also

contained policy recommendations for promoting greater data

center efficiency [5, 11, 12, 14].

A distributed computing system is a network of computing

nodes that interact with each other in order to achieve a

common goal. Distributed Cyber Physical Systems (DCPS’s)

are distributed systems in which computing systems interact

with physical environment based on information from the

physical and cyber space. Green computing generally refers to

the efficient use of resources in computing in conjunction with

minimizing environmental impact, and maximizing economic

viability. Similar to any other resource problem the goal of

green computing is

1. Use fewer hazardous materials

2. Maximize the efficiency of all resource use in

computing systems during their lifetime

3. Reuse as many resources as possible and to dispose

what cannot be recycled responsibly.

Research and industry continue to derive forward green

computing paradigms such as making the use of computer as

energy efficient as possible. Such solutions can be applied in

different levels of computing systems from low hardware

level such as low power electronics to the high software level

such as scheduling algorithms. The goal is to incorporate

effective green computing parameters in decision making for

workload assignment and power management of computing

nodes in DCP’s. Green computing is important in such

systems to increase scalability and sustainability. Green

DCP’s designers must try to find the optimal balance of

energy-latency trade-off, where the system performance is

sacrificed to gain energy efficiency. Only in the case where

the benefits of green computing such as increased lifetime,

increased system reliability, lower cost of ownership, and

improved safety outweigh the cost on system performance are

such solutions likely to be used [3].

The field of cloud computing uses different management

techniques for data center virtualization such as OpenNebula.

However, computers composing the cloud infrastructure use a

significant and growing portion of energy in the world

specifically when dealing with virtualization for high

performance computing (HPC). Therefore, energy-aware

computing is crucial for large-scale systems that consume

considerable amount of energy [6, 15].

2. MODELS

2.1 Energy Model

The energy model is based on the fact that processor

utilization has a linear relationship with energy

consumption. The proportional relationship means that, for a

particular task, the information on the processing time and the

processor utilization is sufficient to measure the energy

consumption for the task. At any given time, for a resource ri,

the utilization Ui is defined as

Ui = ui,j

𝑛−1

j=0
 ……….. (1)

Where n is the number of tasks running at the given time and

ui, j is the resource usage of a task tj. The energy consumption

Ei of a resource ri at any given time is defined as

Ei = pmax − pmin × Ui + pmin …… (2)

Where pmax is the power consumption at the peak load or

100% utilization and pmin is the minimum power consumption

in the active mode or as low as 1% utilization. Consequently,

at any given time, the total utilization (UR) as the total energy

consumption (ER) of the system are defined as

UR = Ui
m−1
i=0 and ER = Ei

m−1
i=0 ……(3)

Where m is the number of resources used. The resources in

the underlying system are assumed to be incorporated with an

effective power-saving mechanism for idle time slots. The

mechanism results from the significant difference in energy

consumption, between active and idle resources states.

Specifically, the energy consumption of an idle resource at

any given time is set to 10% of pmin. Because the overhead to

turn off and back on a resource takes a nonnegligible amount

of time, the option for idle resources was not considered in our

study or by others.

2.2 Cloud Model

The underlying system consists of a set R = {r0,….,rm-1} of m

resources that are fully interconnected in the sense that a route

exists between any two resources. It is assumed that resources

are homogeneous in terms of computing capability and

capacity. The aforementioned is achieved through the

virtualization technologies. Nowadays, as many core

processors and virtualization tools are commonplace. The

number of concurrent tasks on a single physical resource is

loosely bounded and a cloud computing can span across

multiple geographical locations. The cloud computing model I

consider is assumed to:

1. Be confined to a particular physical location

2. Have the inter-processor communications

performing with the same speed on all links without

substantial contentions

3. Allow messages to be transmitted from one resource

to another while a task is being executed on the

recipient resource.

2.3 Application Model

Services offered by cloud providers can be classified into

Software as a service (SaaS), Platform as a service (PaaS) and

Infrastructure as a service (IaaS). Note that, when instances of

these services are running, they can be regarded as

computational tasks or simply tasks. While IaaS requests are

typically tied with predetermined time frames such as pay-per-

hour, requests of SaaS and PaaS are often not strongly tied

with a fixed amount of time such as pay-per-use. However, it

can be possible to have estimates for service requests for SaaS

and PaaS based on historical data and consumer supplied

service information. Service requests in our study arrive in a

Poisson process and the requested processing time follows

exponential distribution. I assume that the processor usage of

each service request can be identifiable. It is also assumed that

disk and memory use correlates with processor utilization.

Hereafter, application, task and service are used

interchangeably [2, 8, 9].

3. THE TASK CONSOLIDATION

PROBLEM

The task consolidation is also known as workload

consolidation problem is the process of assigning a set

T={t0,…, tn-1} of n tasks to a set R = {r0,…,rm-1} of m cloud

computing resources, without violating time constraints. The

main purpose remains to maximize resource utilization and

ultimately to minimize energy consumption. Time constraints

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.4, August 2013

18

are directly related to the resource usage associated with the

tasks. More precisely, in the consolidation problem, the

resources allocated to a particular task must sufficiently

provide the resource usage of that given task. For example, a

task with its resource usage requirement of 60% cannot be

assigned to a resource for which the available resource

utilization at the time of that task's arrival is 50%.

4. PRESENT WORK

4.1 ECTC (Energy-Conscious Task Consolidation)

Task Consolidation Algorithm

The cost function, termed ECTC, computes the actual energy

consumption of the current task by subtracting the minimum

energy consumption (pmin) required to run a task, if other tasks

would be running in parallel with that task. That is, the energy

consumption of the overlapping time period among the

running tasks and the current task (tj) is explicitly taken into

account. The cost function tends to discriminate the task being

executed in a standalone mode.

Figure 2: Algorithm and flow chart of ECTC Algorithm

The value fi,j of a task tj on a resource ri obtained using the

ECTC cost function is defined as

fi,j = [(p∆ × uj + pmin ⁡)× τ0] − [p∆ × uj + pmin × τ1 +

 p∆ × uj × τ2] … (4)

Where p∆ is the difference between pmax and pmin, uj is the

utilization rate of tj, and τ0, τ1 and τ2 are the total processing

time of tj. The time period tj is running stand alone and that tj

is running in parallel with one or more tasks, respectively. For

example, consider two tasks t0 and t1 that are running in

parallel on the same resource r0 with t0 arriving time on first

resource. While computing the result for f0,1

τ0 = total execution time of t1

τ1 = τ0 − τ2

τ2 = τ0 − τ1 ……….. (5)

Where τ1 is the time period where t1 will be running stand

alone on r0, and τ2 the time period where t1 will be

consolidated with t0 in r0. The rationale behind the ECTC cost

function is that the energy consumption at the lowest resource

utilization is far greater than that in idle state, and the

additional energy consumption imposed by overlapping tasks

contributes to a relatively low increase [2, 8].

4.2 MaxUtil (Maximum rate Utilization) Task

Consolidation Algorithm
The MaxUtil cost function is derived with the average

utilization during the processing time of the current task, as

core component. The cost function aims to increase

consolidation density and has a double benefit:

ECTC Algorithm

Step 1: Let r*=Ø

Step 2: Repeat Step 3 to Step 5 for all ri € R

Step 3:calculate cost function fi,j where

fi,j = [(p∆ × uj + pmin ⁡)× τ0] − [p∆ × uj + pmin ×

τ1 + p∆ × uj × τ2]

Step 4:if fi,j>f*,j

 Then go to step 5

 Else go to step 2

Step 5: Set r*=ri

 and f*,j=fi,j

Step 6: Set r*=tj

Step 7: Exit

Flow chart

Let r*=Ø

Take ri € R

Find the cost

Function fi, j

 If
fi,j>f*, j

YES

NO

Set r*=ri and

f*, j=fi, j

 Set r*=tj

START

 STOP

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.4, August 2013

19

1. Implicit reduction of the energy consumption is

directly related

2. Decreased number of active resources

Figure 3: Algorithm and flow chart of MaxUtil Algorithm

In others words, MaxUtil tends to intensify the utilization of a

small number of resources. Consequently, the value fi,j of a

task tj on a resource ri using the MaxUtil cost function is

defined as

 fi,j = (Ui
τ0
τ=1)/τ0 ……… (6)

Which is the utilization of a resource ri, divided by total

execution time (t0) of task tj [2, 8].

4.3 Bi-Objective Algorithm
The idea behind the bi-objective model is to combine the two

cost functions to only benefit from ECTC and MaxUtil

advantages. The algorithm will then provide the more energy

efficient resource based on both of the considered aspects. I

must note that ECTC computes the energy consumption of a

given task on a selected resource, while MaxUtil looks after

the more energy-efficient resource in terms of resource

utilization. The ECTC cost function is designed to encourage

resource sharing; the energy consumption of two tasks

running in parallel is slightly superior than the energy

consumption of a task ran alone.

To be accurate on the computation of the energy consumption,

ECTC uses τ1 and τ2. Based on the time periods (τx), the cost

function gives priority to resources where concurrent tasks can

be fully consolidated and tends to discard the resources

offering only a partial consolidation. Task t0 do not fully

overlap task t3 on resource r0, and then ECTC assigns t3 on r1

because t3 can be fully consolidated with the task t2. The

working example presented pointed out the main drawback of

ECTC. Intuitively, the resulting divergence from the

behaviour of MaxUtil can be seen as a domino effect that will

temporarily affect the system. Being energy efficiency the

main concern of the presented heuristics, the eventuality of a

domino effect should not be neglected while considering the

ECTC cost function for the task consolidation problem.

Alternatively, MaxUtil always minimizes the total number of

used resources without individually considering the energy

consumption of the given task. Because the objective of my

study is to minimize the energy consumption as the total

number of used resources, my proposal combines the two cost

functions to select the resource that will most likely maximize

the utilization rate and minimize the energy consumption.

The approach uses the two cost functions described in

Equations. The respective results are combined to build a

point in a two-dimensional search space where ECTC gives

the x coordinate and MaxUtil the y coordinate. Originally,

Equation returns a value greater than zero only when applied

on a resource allowing task consolidation. Among the

collected results, the highest value identify the most energy-

MaxUtil Algorithm Flow chart

Step 1: Let r*=Ø

Step 2: Repeat Step 3 to Step 5 for all ri € R

Step 3:calculate cost function fi,j where

 fi, j= (Ui
τ0
τ=1)/τ0

Step 4:if fi,j>f*,j
 Then go to step 5

 Else go to step 2

Step 5: Set r*=ri and f*, j=fi, j

Step 6: Set r*=tj

Step 7: Exit

START

Let r*=Ø

Take ri € R

Find the cost

Function fi, j

if

fi,j>f*,j

NO

YES

Set r*=ri and

f*, j=fi, j

Set r*=tj

 STOP

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.4, August 2013

20

efficient resource (if τ1≠ τ0), while the null value identifies

empty resources (if τ1= τ0). Figure illustrates the rationale

behind the ECTC cost function. To properly construct the

point in the search space, the two cost functions have to be

slightly modified. Defining the energy consumption ej of a

task (tj) on a given resource (ri) as

ej=(p∆ × uj+pmin) ……… (7)

The value fi, j of tj on ri obtained using the ECTC cost function

is now defined as

fi,j =
 ej × τ0 ; if τ1 = τ0

 ej × τ1 + p∆ × uj × τ2 ; otherwise
 . . (8)

The value of fi, j obtained using the MaxUtil cost function as

fi,j = Ui
d j

a j
 ……… (9)

Where aj is the arrival time and dj the due date of the current

task tj. The design of Algorithm does not identify equivalent

solutions. A double dominance check must be introduced and

the equivalent solutions added to a subset F (F D).

Because the optimum solution may change by the time the

domain space (D) is constructed, F must reset each time a new

optimum point is identified. This will ensure that the subset

only contains the equivalent solutions to the latest optimum

point.

By the time the solution space is constructed, the equivalent

optimum points will be identified. The selection among the

equivalent solutions belonging to F, if any, will rely on d.

Because our approach maximizes the considered objectives,

the complement of d, denoted as δ, will be considered

according the formula

δ ∶ ymin ∶ ymax → ymin ∶ ymax , and δ = ymax − d

………(10)

The aforementioned selection process will sequentially

compare each f Є F with the actual optimum point. The actual

optimum will then be updated based on the δ parameter, or on

the sum of the two coordinates ((fx, fy) Є pi), if the pair share

the same value for the x(energy consumption) or y

(utilization) coordinate [8].

Figure 4: Algorithm and flow chart of Bi-Objective Algorithm

5. EXPERIMENT AND RESULTS
In this section, I describe experimental methods and settings

including task characteristics and their generation.

Experimental results are then presented based on energy

consumption. While resource utilization might be a good

performance measure, however, average utilization rates over

all resources are not shown since they are already represented

by energy consumption. The performance of ECTC, MaxUtil

and bi-objective will be thoroughly evaluated with a large

number of experiments using a diverse set of tasks. In addition

to task characteristics, Energy efficient utilization of resources

in cloud computing systems three algorithms (ECTC, MaxUtil

and bi-objective) will be used. Variants of these three

algorithms were further implemented incorporating task

migration

Bi-Objective Algorithm Flow chart

Step 1: Set r* and optimum = Ø

Step 2: Repeat Step 3 to Step 5 for all ri € R

Step 3: Set x=fx and y=fy and result=(x,y)

Step 4: if result>optimum

 Then go to step 5

 Else go to step 2

Step 5: Set optimum=result And r*=r

Step 6: Exit

START

Let r* and

optimum=Ø

Take ri € R

Set x=fx, y=fy and

result=(x, y)

NO

if

result>op

-timum

Set optimum=result and

r*=r

 STOP

YES

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.4, August 2013

21

Table 1: Experiment with different task and processing

time

 The total number of experiments conducted is 500 different

numbers of tasks between 1 and 50 at intervals of 10, 10 mean

inter-arrival times between 10 and 100 with a random uniform

distribution and three kinds of resource usage patterns which

are random, low and high. In the first case, resource usage of

tasks generated is random and uniformly distributed between

10% and 100%. For tasks with low and high resource usage

patterns, usage ranges are generated using a Gaussian random

number generator with mean utilization rates of 30% and70%,

respectively. Task arrival times are modelled in a Poisson

process and task processing times follow exponential

distribution. I assume task processing times specified are hard

deadlines performance degradation is not acceptable. Task 3

(t3) arrives at time 15 after tasks 0, 1 and 2, and it is assigned

onto resource 1 (r1) based on energy consumption even though

the utilization of resource 0 (r0) is higher if t3 is assigned on r0.

MaxUtil assigns

Figure 5: Working Example of ECTC

t3 onto r0 and this leads to a better match as compared with

ECTC.I used pmax and pmin of 30 and 20, respectively. These

values can be seen as rough estimates in actual resources and

can be referenced as 300 watt and 200 watt, respectively.

Since existing task consolidation algorithms are not directly

comparable to our heuristics, our comparisons

have been carried out between ECTC, MaxUtil and Bi-

Objective.

Figure 6: Working example of MaxUtil

Those existing task consolidation techniques introduced

exhibit substantial differences in energy and scheduling

models. During initial experiments with those three heuristics

(ECTC, MaxUtil and Bi-Objective), I observed that in some

circumstances the relocation of some running tasks can further

reduce energy consumption. This observation motivated us to

implement a variant for each of those three incorporating task

migration and these variants are named ECTC_m, MaxUtil_m

and Bi-Objective _m, respectively.

The entire results obtained from our extensive simulations are

summarized in Table and results for different resource usage

patterns are presented in Figure. Although the simulations

were performed with 50 different numbers of tasks, only

results obtained with 11 representative task volumes are

presented. Energy savings in Table are relative rates to results

obtained from experiments using Bi-Objective algorithm.

These results clearly demonstrate the competent energy saving

capability of ECTC, MaxUtil and Bi-Objective. Overall,

ECTC and MaxUtil outperformed, regardless of the adoption

of migration by 18% and 13%, respectively.

While energy savings with high and random resource usage

patterns are still appealing, tasks with low resource usage are

most suitable for task consolidation. Interestingly, the benefit

of using migration was not apparent. This is mainly because

migrated tasks tend to be with short remaining processing

times and these tasks likely to hinder the consolidation of new

arriving tasks, resulting in more energy consumption

compared with the case when migration is not considered.

0%

20%

40%

60%

80%

100%

Resource 1 Resource2

Ideal

used 2

used 1

Sr.

No

Task

Number

Task

Arrival

time

Processing

time

Utilization

1 T0 00 25 40%

2 T1 04 05 20%

3 T2 08 10 60%

4 T3 15 15 10%

40
60

20+10
0

40 40

Resource 1 Resource2

Working Example Of Max Util

used 1 used 2 Ideal

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.4, August 2013

22

Table 2: Relative energy savings

Usage Pattern ECTC MaxUtil Bi-Objective

Low Random High Low Random High Low Random High

With Migration

Energy Saving

32%

16%

9%

23%

11%

5%

34%

17%

11%

Without

Migration Saving

Energy

33%

17%

9%

25%

12%

4%

36%

20%

14%

Mean Saving 18% 13% 22%

6. CONCLUSION AND FUTURE SCOPE
Task consolidation, especially in cloud computing systems,

became an important approach to streamline resource usage

which improves energy efficiency. Three existing energy

conscious heuristics for task consolidation offering different

energy saving possibilities were analyzed in this study. The

cost functions incorporated effectively capture energy saving

possibilities and their capability has been verified by our

evaluation study. For these heuristics, I identified the

corresponding drawback and proposed, as a solution, the Bi-

objective Task Consolidation algorithm. This algorithm

combines the two heuristics to construct the corresponding bi-

objective search space. The efficiency of the proposed

algorithm was proved thought the evaluation study consisting

of different simulations carried out. at each task assignment I

observed three main aspects: total energy consumption, total

resource utilization, and time needed to select the optimum

solution. To evaluate the performance of the BTC algorithm,

the two heuristics were individually implemented and used as

key indicator for the energy efficiency and the scalability.

Despite the more elaborate selection of the optimum solution,

my study reported that the proposed BTC algorithm was the

slowest when compared but resulted being the heuristic that

provided the best energy efficient solution. During initial

experiments with those three heuristics (ECTC, MaxUtil and

Bi-Objective), I observed that in some circumstances the

relocation of some running tasks can further reduce energy

consumption. This observation motivated us to implement a

variant for each of those three incorporating task migration

and these variants are named ECTC_m, MaxUtil_m and Bi-

Objective _m, respectively. Relocation can be considered for

each running task at any time resource utilization changes for

task completion.

7. REFERENCES
[1] Qi Zhang, Lu Cheng, Raouf Boutaba, 2010, “Cloud

computing: state-of-the-art and research challenges”,

University of Waterloo, Waterloo, Ontario, Canada.

[2] Young Choon Lee, Albert Y. Zomaya, 2010, “Energy

efficient utilization of resources in cloud computing

systems”, Springer Science+Business Media.

[3] Zahra Abbasi, Michael Jones, Ayan Banerjee, Sandeep

Gupta, and Georgios Varsamopoulos, 2013,

“Evolutionary Green Computing Solutions for

Distributed Cyber Physical Systems”, Springer-Verlag,

Berlin Heidelberg.

[4] Rodrigo N. Calheiros, Marco A. S. Netto, C´esar A. F.

De Rose, Rajkumar Buyya1, 2012, “EMUSIM: An

Integrated Emulation and Simulation Environment for

Modeling, Evaluation, and Validation of Performance of

Cloud Computing Applications”, Wiley InterScience.

[5] Eric R. Masanet, Richard E. Brown, Arman Shehabi,

Jonathan G. Koomey and Bruce Nordman, 2012,

“Estimating the Energy Use and Efficiency Potential of

U.S. Data Centers”, Proceedings of the IEEE.

[6] Yacine.Kessaci, Nouredine.Melab, El-Ghazali.Talb, Nov

6, 2012, “A Multi-start Local Search Scheduler for an

Energy-aware Cloud Manager”, INRIA Lille Nord

Europe, Universite de Lille1.

[7] Kocovic Petar, March 3, 2011, “Challenges in Cloud

Computing”, AlphaUniversity, Belgrade, Serbia.

[8] Giorgio L. Valentini, Samee U. Khan, and Pascal

Bouvry, 2011, “Energy-efficient Resource Utilization in

Cloud Computing”.

[9] Fan X, Weber X-D, Barroso LA, 2007, “Power

provisioning for a warehouse sized”, 34th Computer In:

Proc annual international symposium on computer

architecture, pp 13–23.

[10] Parkhill D, 1996,“The challenge of the computer utility”,

Addison Wesley Educational.

[11] J. Koomey, 2007, “Estimating Total Power Consumption

by Servers in the U.S. and World”, Oakland, CA.

[12] J. Koomey, 2007, “Estimating Regional Power

Consumption by Servers: A Technical Note”, Oakland,

CA.

[13] Gustedt J, Jeannot E, Quinson M, September 2009,

“Experimental methodologies for large-scale Systems: a

survey”, Parallel Processing Letters, Page: 399–418.

[14] R. Brown, E. Masanet, B. Nordman, W. Tschudi, A.

Shehabi, J. Stanley, J. Koomey, D. Sartor,P. Chan, J.

Loper, S. Capana, B. Hedman, R. Duff, E. Haines, D.

Sass, and A. Fanara, 2007, “Report to Congress on

Server and Data Center Energy Efficiency: Public Law

109-431,” Lawrence Berkeley National Laboratory.

[15] Fontan, J, Vazquez, T, Gonzalez, L.,

Montero,R.S.,Llorente, 2008, “The open source virtual

machine manager for cluster computing”, San Francisco,

CA, USA.

IJCATM : www.ijcaonline.org

IJCATM : www.ijcaonline.org

