
International Journal of Computer Applications (0975 – 8887)

Volume 75– No.18, August 2013

33

An Exploratory Survey of Hadoop Log Analysis Tools

Madhury Mohandas
 DCS Rajagiri School of Engineering and

Technology
Cochin, India

Dhanya P M
DCS Rajagiri School of Engineering and

Technology
Cochin, India

ABSTRACT

In view of the fact that clusters used in large scale computing

are on the rise, ensuring the wellbeing of these clusters is of

paramount significance. This highlights the importance of

supervising and monitoring the cluster. In this regard, many

tools have been contributed that can efficiently monitor the

Hadoop cluster. The majority of these tools congregates

necessary information from each of the node in the cluster and

takes it for processing. These diagnosis tools are mostly post

execution analysis tools. This paper presents an exploratory

assessment of the different log analyzers used for failure

detection and monitoring in Hadoop.

General Terms

Failure Monitoring

Keywords

Cloud computing, HDFS, Failure monitoring, Hadoop, Log

analyzer

1. INTRODUCTION

This is the era of BigData. Massive and gargantuan amount of

data is produced on per day basis. Such scenario elevates the

need for apposite storage, supervision and processing of data.

Hadoop[1], an extensively used technology includes

distributed storage and processing of data. This framework is

currently employed in almost all companies to deal with data-

intensive applications. Conventional infrastructures used for

data processing prove to be less efficient in distributed

processing of data. Thus there was a move for developing

models for large scale distributed storage and processing.

Architectures like shared nothing proved to work better with

BigData primarily because of the speed of processing, storing

and accessing data. Apache Hadoop [1] is one among the

most widely used large scale data processing paradigm which

is currently being employed in Facebook, Google, Amazon

etc. The chief advantage with Hadoop is that it allows for the

storage of data in any format. The massive use of this

framework calls for the faster analysis and diagnosis of

failures. Due to the distributed nature of processing, it’s

difficult for cluster administrator to isolate the failures and

failed nodes. Many contributions have been done for failure

monitoring, analysis etc in the last few years.

2. HADOOP AND STORAGE

2.1 Framework

Hadoop[2] is gaining popularity mainly because of its ability

to manage huge amount of data. The clusters used for data

storage and processing may vary from a single server to a

group of machines, generally, commodity machines. Though

there are some limitations with single namenode [3], this

framework is widely used. This software framework supports

the MapReduce programming model for performing the

distributed processing of data stored on the cluster. Hadoop

Distributed File System (HDFS) is the default storage layer

given by the Hadoop framework and for this reason the

layer is used by all applications that run on this Hadoop

framework. This layer got its structure from Google File

System (GFS) [4] and the whole framework depends on the

efficiency of HDFS. HDFS [5] layer has master-slave

architecture and was designed for reliable storage of data

[6]. This architecture consists of two types of nodes in a

cluster specifically the NameNode and DataNodes.

NameNode responsibility is to act like a master and

DataNodes takes up the role of slaves. The execution flow

is shown in figure 1.

Figure 1: Flow of execution in cluster

2.2 MapReduce Layer

Just as the name indicates, the MapReduce [7] is a

software framework that supports massive computations,

and is based on two basic steps: Map and Reduce. It is a

programming model and has an implementation associated

with it. The runtime system is a helping hand for the

programmers, in view of the fact that it take care of all

background details like input data partitioning, fault

tolerance, task schedules etc. in an environment having

huge number of machine and large data amounts for

computation, MapReduce becomes an aid. The master

choose some slaves to perform the map task and others to

perform the reduce task [7]. Those who have to do the map

task will read input from the corresponding file and perform

the map task, storing the intermediate data in the

memory. These intermediate data will be periodically

transferred to the local disk associated with the map

workers and the location details will be passed to the master

node. The master node then notifies the reducer about this

intermediate result and then using RPC, they access the

corresponding local disk of map workers to get the

intermediate data. The reduce workers produce the output

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.18, August 2013

34

files. After all map and reduce task are completed, the master

then wake up the user program.

3. LOG ANALYZERS

Since the big data is ever increasing (without any signs of

decrease), the clusters dealing with this big data need to be

monitored and maintained efficiently. Log analysis can aid in

optimizing the overall system performance since realizing a

system’s performance is correlated with system resource

usage understanding. Though there are many subprojects of

Apache Hadoop including scribe [8] [9], Chukwa [10],

Gridmix3 [11] etc, the analysis in this paper also includes

some of the contributions.

3.1 Vaidya

Vaidya [12], a very helpful tool for performance analysis of

the applications running on the Hadoop cluster, is one of the

contributions to Hadoop framework. This tool enables the

cluster administrator in spotting jobs with deteriorating

performance. Vaidya analyses the application’s performance

through a set of diagnostic rules; which can be written by the

user according to the application. In each diagnostic test rule,

the importance, threshold and prescription can be detailed.

Importance specifies the general significance of the test. The

prescription specifies the intended advice to improve the

performance of the particular job. The test report consists of

test name, importance of test, description of diagnostic test,

severity, result of the test and the prescription. In the default

version of Vaidya, it incorporates five test rules [13]. A

limitation with this tool is the difficulty in copping up with the

consistency of rules against continuously increasing Hadoop

code base.

3.2 Salsa & Mochi

Salsa [14] examines the Hadoop logs (Data Node logs and

Task Tracker logs) to outline the data and control flow

execution and presents with a state machine view of the

execution on each node. Since a map reduce job includes

logging statements [15], each activity will release log

messages. In order to model the control flow, every log

message is considered as an event which can be either a start

or end state of execution. The identification of events from

logs is by the use of pattern recognition. Salsa also tries to

incorporate the fault detection and diagnosis of job MR job

executions. This approach does not require the modification

of operating system, middleware or the application. Hadoop

debugging can also be done using Mochi, a log based analysis

tool for Hadoop. Mochi [16] relates the behavior of execution

in time, space and volume and also incorporates the

interdependencies in the distributed environment. It first

extracts the Job execution view per node by executing the

Map Reduce nob and then constructs a Job Centric Data Flow

(JCDF) which is a directed graph, by relating the collected

execution views on each node and also with the HDFS layer.

The JCDF is also distributed among nodes. Thus it tries to

automatically generate and correlate the data and control flow

between nodes and then analyze the Hadoop behavior. Mochi

provides visualization to reason and debug performance issues

by the users. The visualizations include: MIROS, REP and

Swimlanes. MIROS captures the data flow on each node

among the maps and reduces. REP check that states which

process larger volumes of data should take larger time in

processing. Swimlanes for capture task progress and shows

the duration of each task.

3.3 Chukwa

Yet another subproject to Hadoop is Chukwa [10], similar to

Ganglia [17] in the storage aspect. It is a data collection and

network management system [18] that is built on top of

Hadoop ie, Hadoop distributed File System and Map Reduce

framework and so, is scalable. The storage of the logged data

is done on the distributed file system of Hadoop, HDFS unlike

other tools that store them on local storage. HDFS has high

throughput and is highly flexible, efficient and reliable for

storage of large files. Chukwa give support to failure

diagnosis by continuous monitoring of the system. The basic

architecture of Chukwa [20] consists of adaptor, agent,

collector and HDFS storage. Chukwa collects system metrics,

log files, arbitrary log files, logs from X-trace [19] etc. these

data are collected by adaptors and are stored in HDFS as large

files, since HDFS is efficient for operations on large files

rather than small ones. For the same reason, the collector and

agents are added between the adaptors and HDFS layer. Thus,

this tool highly aids in the storage of outsized data and

processing of these chunks.

4. ANALYTICAL STUDY

An epigrammatic comparison of the above discussed log

analyzers are shown in table 1. Vaidya does a post execution

log analysis and mainly focus on application failure diagnosis

rather than hardware and network failure. The range of failure

detection and diagnosis by Vaidya can be improved by

incorporating further test rules. But this depends on the

application to be monitored, and so the preciseness of failure

diagnosis by Vaidya is mostly in the hands of the user. As

discussed in section 3, the Salsa and Mochi identify the states

using pattern recognition. But unfortunately when the log

patterns have to be changed (as part of any source code

modification) the patterns may not be easily identified by use

of pattern matching. It can capture the task dependencies

efficiently, as each task are depicted as states and the

transition from one state to another shows the dependency

between the two. Since the time aspect is considered, extra

care has to be given for clock synchronization. Chukwa on the

other hand takes as input all possible sources of information

from various sources and monitors the system as a whole. It

models a data collection and network supervision system for

hadoop.

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.18, August 2013

35

Table 1: Analytical Study of Log Analyzers

Log Analyzer Feature Input Output Limitation Future Enhancements

Vaidya [12] Rule supported

scrutiny on logs

Does rule based

assessment for

every job

execution

For every problem

diagnosed it gives

intended guidance

Job History log

Job Configuration

log (XML)

XML report of

evaluated result

Worthless outcome,

proviso parameters are

improperly placed

Online progress analysis

Incorporate additional

rules to capture all

aspects of failure

Salsa [14] State Machine

outlook of the

execution of job in

an individual node

Portrays control

flow and data flow

execution

incorporates

semantic

information for

analysis

Datanode Log

Tasktracker Log

State machine with

inter dependencies

highlighted

Synchronization of

clocks in cluster

Automate visualization

of analysis

generalize format and

structure of logs for

enhanced analysis

Correlate network logs

for failure diagnosis

Mochi [16] Hadoop

performance

analysis in time,

space and volume

Spotlights the

execution of job in

distributed

environment

Datanode Log

Tasktracker Log

Number of nodes,

jobs, task per job,

their progress,

duration &

interaction among

jobs

Synchronization of

clocks in cluster

Online Mochi analysis

Regression testing on

programs

Chukwa[10] Distributed

gathering of logs

and hasty analysis

Large scale

storage (on

HDFS) and

processing of data

in pipelined

manner (using

MapReduce)

All Hadoop Logs

System metrics

Application metrics

Toolkit that

demonstrate

analyzed and

monitored results

Being HDFS as the

default storage, has

limited throughput

during heavy access

concurrency to same

file

HICC graph accuracy

improvement for

machines with local time

zone

International Journal of Computer Applications (0975 – 8887)

Volume 75– No.18, August 2013

36

5. CONCLUSION

This era of BigData calls for the debugging, performance

monitoring, storage and operation monitoring of data since the

data is increasing exponentially without any signs of

dwindling. Consequently a dreadful need for scalable and

reliable scheme for the same is felt which resulted in the

contribution of many tools for monitoring and diagnosis of

huge clusters. Hadoop being the most popularly used

methodology for storage and processing of BigData, has

several subprojects for failure monitoring and analysis. The

majority of these tools seize the log files to capture the

behavior of the cluster and the running application. They

process the logs to retrieve the necessary information required

for failure diagnosis, and some of the tools even support the

failure recovery. An expository survey of some of these log

analyzers shows that most tools try to capture only the

application failure diagnosis aspect ignoring the hardware and

network failures. In such clusters, the failures are not an

exception and so diagnosis of failures must be extended to all

possible levels of failures ranging from node failure to

application failures.

6. REFERENCES

[1] Hadoop, http://hadoop.apache.org/.

[2] W. Tom, Hadoop:the definitive guide(O’reilly media,

May 2009)

[3] K. Shvachko, Hdfs scalability: The limits to growth, The

USENIX Magazine , 35(2), 2010

[4] S. Ghemawat, H. Gobioff, and Leung, “The Google File

System,” SIGOPS Oper. Syst. Rev., 37(5):29–43, 2003

[5] D. Borthakur, HDFS Architecture, http://hadoop. apache.

org/common/ docs/r0.20.0/ hdfs_design.html, April 2009

[6] K. Shvachko, H. Huang, S. Radia, and R. Chansler, The

hadoop distributed file system, In 26th IEEE

(MSST2010) Symposium on Massive Storage Systems

and Technologies, May 2010.

[7] J. Dean and S. Ghemawat, Mapreduce: simplified data

processing on large clusters, In Proceedings of the 6th

conference on Symposium on Opearting Systems Design

& Implementation - Volume 6, pages 10–10, Berkeley,

CA, USA, 2004.

[8] Scribe, https://github.com/facebook/scribe.

[9] Scribe logfile aggregation system described by

Facebook’s Jeff Hammerbacher

https://issues.apache.org/jira/browse/HADOOP-

2206?focusedCommentId=12542775#action 12542775

[10] Chukwa, http://wiki.apache.org/hadoop/Chukwa

[11] Gridmix3 – Emulating Production Workload for Apache

Hadoop, www.usenix.org/conference/fast-10/gridmix3-

emulating-production-io-workload-apache-hadoop

[12] Vaidya,

http://hadoop.apache.org/docs/stable/vaidya.html

[13] Revisiting the physician : Hadoop Vaidya,

http://www.hadoopsphere.com/2013/01/revisiting-

physician-hadoop-vaidya.html

[14] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P.

Narasimhan, Salsa: Analyzing logs as state machines, In

Workshop on Analysis of System Logs, San Diego, CA,

Dec 2008.

[15] Log4J, http://logging.apache.org/log4j, 2007

[16] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and P.

Narasimhan, Mochi: visual log-analysis based tools for

debugging hadoop, In Proceedings of the 2009

conference on Hottopics in cloud computing,

HotCloud’09, Berkeley, CA, USA, 2009.

[17] Matthew L. Massie, Brent N. Chun, and David E.Culler,

The Ganglia Distributed Monitoring System: Design,

Implementation, and Experience, In Parallel Computing

Volume 30, Issue 7, pp 817-840, 2004

[18] J. Boulon, A. Konwinski, R. Qi, A. Rabkin, E. Yang, and

M. Yang, Chukwa, a large-scale monitoring system,

In First Workshop on Cloud Computing and its

Applications (CCA '08), Chicago, IL, 2008

[19] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott

Shenker, and Ion Stoica, X-Trace: A Pervasive Network

Tracing Framework, In 4th USENIX Symposium on

Networked Systems Design & Implementation

(NSDI’07), Cambridge, MA, USA, April 2007

[20] A. Rabkin, R Katz, Chukwa: a system for reliable large-

scale log collection, In Proceedings of the 24th

International Conference on Large Installation System

Administration LISA’10, USENIX

Association Berkeley, CA, USA.

IJCATM : www.ijcaonline.org

http://hadoop.apache.org/
http://wiki.apache.org/hadoop/Chukwa
http://hadoop.apache.org/docs/stable/vaidya.html

