

22

Novel Distributed Query Optimization Model and Hybrid

Query Optimization Algorithm

Deepak Sukheja
PITM

Indore

Umesh Kumar Singh
Dept. of Computer Science,

Vikram University,Ujjain.

ABSTRACT

Query optimization is the most critical phase in query

processing. Query optimization in distributed databases

explicitly needed in many aspects of the optimization

process, this is not only increases the cost of optimization,

but also changes the trade-offs involved in the optimization

process significantly .This paper describes the synthetically

evolution of query optimization methods from uniprocessor

relational database systems to parallel database systems.

We point out a set of parameters to characterize and

compare query optimization methods, mainly: (i) type of

algorithm (static or dynamic), (ii) working environments

(re-optimization or re-scheduling) and (iii) level of

modification.

The major contributions of this paper are: (I)

Understanding the mechanisms of query optimization

methods with respect to the considered environments and

their constraints (e.g. parallelism, distribution,

heterogeneity, large scale, dynamicity of nodes). (ii) Study

the problem of query optimization particular in term of

heterogeneously environment and pointing out their main

characteristics, which allow comparing them and help to

Implement new query optimization algorithm and model.

These contributions is led to performance enhancement of

query optimization in distributed database system through

classify by different QEPs and minimize the response time.

Keywords

Query optimization, distributed query optimization, query

optimization algorithm.

1. INTRODUCTION

Practically all heterogeneous databases are used for

improving the performance of relational operations for

different types of applications. These applications are

demanding and involve the handling of large volumes of

data. A distributed database management system is a type

of Heterogeneous Databases. In [1], Ozsu and Valduriez

defined the principle of distributed database system. A

distributed database system is a collection of multiple,

logically interrelated databases distributed over a computer

network. This system is defined as the software system that

permits the management of the distributed database and

makes the distribution transparent to the users. The

distribution (including fragmentation and replication) of

data across multiple site/processors is not visible to the

users is known as transparency. According to Das and

Gupta in [2], the distributed/parallel database technology

extends the concept of data independence, which is a

central notion of database management, to environments

where data are distributed and replicated over a number of

machines connected by a network. Data independence is

provided by several forms of transparencies like network

transparency, replication transparency, and fragmentation

transparency. Transparent access means that users are

provided with a single logical image of the database even

though it may be physically distributed, enabling them to

access the distributed database. In this paper, we present

the design of a semantic query optimizer for a

heterogeneous database management system (HDBMS). It

is based on a powerful data model. The motivation for this

works comes from two different needs. First is the number

of non-expert users are growing to access databases and

second the information systems no longer tend to be based

on a single centralized architecture. They tend to be

constituted of several heterogeneous component systems

which cooperate to achieve global tasks.

1.1 Uniprocessor Relational Query

Optimization

In the uniprocessor relational systems, the query

optimization process consists of two steps: (i) logical

optimization which consists in applying the classic

transformation rules of the algebraic trees to reduce the

manipulated data volume, and (ii) physical optimization

which has roles of (a) determining an appropriate join

method for each join operator by taking into account the

size of the relations, the physical organization of the data,

and access paths, and (b) generating the order in which the

joins are performed with respect to a cost model.

1.2 Query Optimization for Centralized

Databases

Early work in query optimization followed two tracks. One

was minimization of expression size [3]: Expression size

was measured by metrics, such as the number of joins in a

query that are independent of the database state. Another

track was the development of heuristics based on models

that considered the cost of an operator to depend on the size

of its operands as well the data structures in which the

operands were stored. For example, the cost of a join was

estimated using the sizes of operands as well as whether an

index to access an operand was available.

While most modern database systems are designed to

execute in a client-server environment, relational and

object-oriented systems tend to exploit the resources of

such environments in significantly different ways.

23

Relational systems and their descendants are typically

based on query shipping, in which the majority of query

processing is performed at servers. The benefits of query

shipping include: the reduction of communication costs for

high selectivity queries, the ability to utilize server

resources when they are overflowing, and the ability to

tolerate resource-poor (i.e., low cost) client machines.

When a user issues a query in a centralized DBMS the

optimizer must produce a detailed Query Execution Plan

(QEP) that can be passed to the executer. The executer can

then follow this plan to carry out the evaluation of the

query and return the results to the user. An optimizer can

combine selectivity information from the system catalog

with an SQL query in order to produce a join graph

representation of the given query.

1.3 Query Optimization for Distributed

Databases

Distributed and Parallel databases are fundamentally

similar, distributed query optimization process was

implemented around 1990s, a time at which communication

over a network was prohibitively expensive and computer

equipment was not cheap enough to be thrown at parallel

processing. Techniques for exploiting parallelism were

largely ignored. Apers et al. [5] discuss the independent

parallelism but don’t define either pipelined or partitioned

parallelism. Thus, for historical reasons, the concept of

distributed execution differs from parallel execution. Since

the space of possible executions for a query is different, the

optimization problems are different. In [6], research work

considered minimizing response time as an optimization

objective, at other hand most project work, such as in SDD-

1, A* and R* Optimizer, focused on minimizing resource

consumption. Techniques for distributing data using

horizontal and vertical partitioning schemes were

developed for distributed data that also find a use in exploit

parallelism. The main motivation of the distributed

databases is to present data which are distributed on

networks of type LAN (Local Area Network) or of type

WAN (Wide Area Network) in an integrated way to a user.

The optimization process of a distributed query is

composed of three steps: (i) the global optimization

consists of determining the best execution site for each

local sub-query considering data replication, (ii) finding the

best inter-site operator scheduling, and (iii) placing these

last ones. As for local optimization, it optimizes the local

sub-queries on each site which are involved to the query

evaluation. The inter-site operator scheduling and their

placement are very important in a distributed environment

because they allow reducing the data volumes exchanged

on the network and consequently to reduce the

communication costs. Hence, the estimation accuracy of

the temporary relation sizes that must be transferred from a

site to another one is important. In the rest of this section,

we present global optimization methods of distributed

queries. They differ by the objective function used by the

optimization process and by the type of approach: static or

dynamic.

1.4 Query Optimization for Parallel

Databases

In [8, 9 & 10] several research projects such as Bubba,

Gamma, DBS3 and Volcano devised techniques for

placement of base tables and explored a variety of parallel

execution techniques. This has yielded a well understood

notion of parallel execution. Considerable research has also

been done on measuring the parallelism available in

different classes of shapes for join trees. Hong and

Stonebraker [11] proposed the two-phase approach to

parallel query optimization. They used a conventional

query optimizer as the first phase. For parallelization, they

considered exploiting partitioned and independent

parallelism but not pipelined parallelism. Hong develops a

parallelization algorithm to maximize machine utilization

under restrictive assumptions. The parallel machine is

assumed to consist of a single disk (RAID) and multiple

processors and each operator is assumed to have CPU and

IO requirements. Assuming that two operators, one CPU-

bound and the other IO-bound to always be available for

simultaneous execution, the algorithm computes the degree

of partitioned parallelism for each operator so as to fully

utilize the disk and all CPUs.

2. Query Optimization Algorithm

A query optimization algorithm can be evaluated on the

basis of its operation mode or the timing of its

optimization. The different query optimization algorithms

are as follows:

2.1 System R algorithm:

In [12] the System R algorithm was examined as it

produces optimal execution plans. However, it is not a

viable solution in the large autonomous and distributed

environments that we consider for two reasons. The first

one is that it cannot cope with the complexity of the

optimization search space. The second one is that it

requires cost estimations from remote nodes. Not only this

makes the notes not autonomous, but for a query with n

joins, it will take n rounds of message exchanges to find the

required information. In each round, the remote nodes will

have to find the cost of every feasible k-way join

(k=1…N), which quickly leads to a network bottleneck for

even very small numbers of n. In other word this algorithm

may the optimization algorithm consists of two steps

1. Predict the best access method to each individual

relation (mono-relation query) Consider using index,

file scan, etc.

2. For each relation R, estimate the best join ordering.

R is first accessed using its best single-relation access

method.

Efficient access to inner relation is crucial

2.1.1 System R* Algorithm:

The System R* query optimization algorithm is an

extension of the System R query optimization algorithm

with the following main characteristics:

24

Only the whole relations can be distributed, i.e.,

fragmentation and replication is not considered.

Query compilation is a distributed task, coordinated by a

master site, where the query is initiated

Master site makes all inter-site decisions, e.g., selection of

the execution sites, join ordering, method of data transfer.

System R* algorithm used in distributed database system as

well as in relational database system.

2.2 Dynamic Programming Algorithm:

The basic dynamic programming for query optimization as

presented in [17]. It works in bottom up way by building

more complex sub-plans from simpler sub-plans until the

complete plan is constructed. In the first phase, the

algorithm builds access plan for every table in the query.

Typically, there are several different access plans for a

relation (table). If relation A, for instance, is replicated at

sites S1 and S2, the algorithm would enumerate table-scan

(A, S1) and table-scan (A, S2) as alternative access plans

for table In the second phase, the algorithm enumerates all

two - way join plans using the access plans as building

blocks. Again, the algorithm would enumerate alternative

join plans for all relevant sites; i.e. consider carrying out

joins with A at S1 and S2. Next the algorithm builds three-

way join plans, using access-plans and two-way join plans

as building blocks. The algorithm continues in this way

until it has enumerated all n-way join plans. The strength of

the dynamic programming is that inferior plans are

discarded as early as possible. Dynamic programming

algorithm performs well with small number of relations,

but this situation is inverted when the query has more

relations

2.2.1 IDP – M:

A heuristic extension of the SystemR algorithm, in [13],the

Iterative Dynamic Programming IDP-M(k,m) , was propose

for use in distributed environments. Given an n-way join

query, it works like: First, it enumerates all feasible k-way

joins, i.e., all feasible joins that contain less than or equal to

k base tables and finds their costs, just like SystemR does.

Then, it chooses the best m subplans out of all the subplans

for these k-way joins and purges all others. Finally, it

continues the optimization procedure by examining the rest

n − k joins in a similar to SystemR way. The IDP algorithm

is not suitable for autonomous environment as it shares

the problems of SystemR mentioned above.

2.3 Mariposa:

The Mariposa query optimization algorithm [14] is a two-

step algorithm that considers conventional optimization

factors (such as join orders) separately from distributed

system factors (such as data layout and execution location).

First, it uses information that it keeps locally about various

aspects of the data to construct a locally optimal plan by

running a local optimizer over the query, disregarding the

physical distribution of the base relations and fixing such

items as join order and the application of join and

restriction operators. It then uses network yellow pages

information to parallelize the query operators, and a

bidding protocol to select the execution sites, all in a single

interaction with the remote nodes. The degree of

parallelism is statistically determined by the system

administrator before query execution and is independent of

the available distributed resources.

2.4 A* algorithm:

One major heuristic algorithm proposed for query

optimization is A star (A*) algorithm. This algorithm is

useful for queries with few relations [15]. It normally gets

stuck with some local minima if the numbers of relations

are substantially increased, producing an output sub

standard to the exhaustive search. Heuristic algorithms

have helped in reducing the time of optimization process at

the cost of quality of output. The A* algorithm can be

explained as follows. Each state in the query optimization

can be considered to be a node in the strategy tree. Each

node contains, in addition to a description of the problem

state it represents, an indication of the cost it takes to reach

from its parent to the node. It is very helpful to implement

distributed query optimization process.

3. PROBLEM STATEMENTS

According to different query optimization algorithm, query

processing is an important concern in the field of

distributed databases. The main problem is query

optimization in distributed database are: if a query can be

decomposed into subqueries that require operations at

geographically separated databases, determine the sequence

and the sites for performing this set of operations such that

the operating cost (communication cost and processing

cost) for processing this query is minimized.

The problem is complicated by the fact that query

processing not only depends on the operations of the query,

but also on the parameter values associated with the query.

Distributed query processing is an important factor in the

overall performance of a distributed database system.

Query optimization is a difficult task in a distributed

client/server environment as data location becomes a major

factor.

4. PROPOSED QUERY

OPTIMIZATION MODEL AND

HYBRID ALGORITHM
In a relational database all information can be found in a

series of tables. A query therefore consists of operations on

tables. The most common queries are Select-Project-Join

queries.

25

Figure-1.1 (query optimization process).

4.1 Novel query Optimization model

The Query optimization process shown in figure-1.1

consists of getting a query on n relations and generating the

best Query Execution Plan (QEP) and the Layers of

distributed query processing and optimization process

shown in proposed optimization model figure-1.2.

Query optimization refers to the process by which the

“best” execution strategy for a given query is found from

among a set of alternatives.

Figure-1.2 distributed query optimization model.

Algebraic Query on Distributed Database

Query on distributed database

Query Decomposition

Global Schema

Data Localization

Fragment Schema

Fragment Query

Global Optimization

Fragments Statistics

Optimized query through Join

Order

Local Optimization Local Schema

Transformation Rules Search Space

Input Query

Query Execution Plan

Search Strategy Optimization

Model

 Best QEP

26

4.2 Proposed hybrid Query Optimization

Algorithm:

To design a new hybrid query optimization algorithm, we

attempt to resolve the weaknesses of distributed query

optimization which is mentioned in previous section. This

query optimization algorithm attempts to find the best

execution plan for a join query which accesses data on two

remote sites by considering the impact of data size,

transmission speed, and server process speed. This

algorithm calculates the response time for the possible

execution plans in both sequential and parallel way.

Finally, this algorithm executes the plan which has the

minimum estimated response time. The algorithm is

implemented in 4 stages, these stages are:

Generation of logical plans

Generation of physical plans

Conversion and distribution.

Calculate response time

Choose best execution plan.

Execute plan

4.2.1 Generation of logical plans:

The given query tree is initially represented in the directed

acyclic graphs formulation. For example query trees of

A×B×C initial represented in figure 1.3. The equivalence

nodes are shown as boxes, while the operation nodes are

shown as circles.

After initialization of given query applying all possible

transformations on every node of the initial LQDAG

(logical Query directed acyclic graphs) to represents all

logical plans.

Figure1.3: Initial query

Then the plans (A×(B×C)) and ((A×C)×B) as well as

several plans equivalent to these modulo commutatively

can be obtained shown in figure 1.4.

Figure 1.4: Plan 2

Expanded logical plan is shown in figure 1.5, which

include all logical plans of given query. In [16], define the

procedure for generation of expanded logical Plan.

Figure 1.5 Expanded logical plan

4.2..2 Generation of Physical Plans:

The plans represented in the Logical Query DAG are only

at an abstract, semantic level and, in a sense, provide

“templates” that assurance of semantic accuracy for the

physical plans. The logical plan does not consider the

physical properties of the results, like sort order on some

attribute, into account since results with different physical

properties are logically equivalent.

The generation of physical query plan from logical query

directed acyclic graphs is smoothly defined prasan roy in

his research work [16]. Before generation of physical plan

search algorithm has been applied to find optimal logical

query execution plan those are generated in section 3.1.

27

4.2.3 Conversion and Distribution:

The first stage is to convert what the user asks for from his

data model to a query that accounts for where the data is

located in the entire database and then try to find subparts

of the query that can be processed at a single site or

minimal data transfer that could achieve greater local

processing.

4.2.4 Calculate Response Time:

Response time is calculated through “Elapsed time between

the initiation and the completion of a query”.

Response time = (CPU time + I/O time + Communication

time)

CPU time = (unit instruction time ∗ no. of sequential

instructions).

I/O time = (unit I/O time ∗

 no. of sequential I/Os).

Communication time = (unit msg initiation time ∗ no. of

sequential msg + unit transmission time ∗ no. of sequential

bytes).

4.2.5 Chose Best Execution Plan:

The algorithm compares the estimated response times of

the three execution plans, chooses the one with the

minimum estimated execution time, and then executes the

plan. The goal of query optimization is to find an execution

strategy for the query that is close optimal. An execution

strategy for a distributed query can be described with

relational algebra operations and communication primitives

(send/ receive operations) for transferring data between

sites. The query optimizer that follows this approach is seen

as three components: A search space, a search strategy and

a cost model. The search space is the set of alternative

execution to represent the input query. These strategies are

equivalent, in the sense that they yield the same result but

they differ on the execution order of operations and the way

these operations are implemented. The search strategy

explores the search space and selects the best plan. It

defines which plans are examined and in which order. The

cost model predicts the cost of a given execution plan

which may consist of the following components.

Secondary storage cost: This is the cost of searching for

reading and writing data blocks on secondary storage.

Memory storage cost: This is the cost pertaining to the

number of memory buffers needed during query execution.

Computation cost: This the cost of performing in memory

operations on the data buffers during query optimization.

Communication cost: This is the cost of shipping the query

and its results from the database site to the site or terminal

where the query originated.

4.2.6 Execution Plan:

 Execute plan with minimal cost and generate the result of

input query.

4.3 New Hybrid Algorithm

Step 1: Do initial processing

Step 2: Select initial feasible solution P1

2.1 Determine the candidate result sites, sites where a

relation referenced in the query exist

2.2 Compute the cost of transferring all the other referenced

relations to each candidate site

2.3 P1 = candidate site with minimum cost

Step 3: Determine candidate plans of P1 into {P2,..Pn}

Step 4: Replace P1 with the split schedule which

gives cost(p2) + cost(local join) + cost(P3) +cost

(local join+….+ cost(Pn) < cost(P1).

Step 5: Recursively apply steps 3 and 4 on Next

Query Plan until no such plans can be

 Found

Step 6: Check for redundant transmissions in the final

plan and eliminate them.

Step 7: Execute Plan.

The mentioned hybrid algorithm attempts to find the best

execution plan for a join query which accesses data on two

remote sites by considering the impact of data size,

transmission speed, and server process speed. This

algorithm calculates the response time for the possible

execution plans in both sequential and parallel way.

Finally, this algorithm executes the plan which has the

minimum estimated response time.

5. IMPLEMENTATION AND

ANALYSIS OF PROPOSED

ALGORITHM

Distributed database system, provides data distribution

transparency by hiding the data distribution details from the

users. Whenever a distributed query is generated at any site

of a distributed system, it follows a sequence of phases

namely query decomposition, query fragmentation, global

query optimization and local query optimization. The

allocation of data considers a set of fragments, a set of

locations in a network, and a set of applications placed at

Location. These applications need to access the fragments

which should be allocated in the locations of a network.

The allocation problem consists on finding an optimal

distribution of fragment over location. Thus, distributed

cost model includes cost functions to predict the cost of

operators, database statistics, base data, and formulas to

calculate the sizes of intermediate results. In a distributed

system, the cost of processing a query is expressed in terms

of the total cost measure or the response time measures.

The total cost measure is the sum of all cost components. If

no relation is fragmented in the distributed system and the

given query includes selection and projection operations,

then the total cost measure involves the local processing

cost only. However, when join and semi join operations are

28

executed, communication costs between different sites may

be incurred in addition to the local processing cost.

Total Cost Measured

Tcost = Tcpu * Insts + Ti/o* C0 + C1 * x

where, Tcpu is the CPU processing cost per instructions,

insts represents the total number of CPU instructions, + Ti/o

is the I/O processing cost per I/O operation, C0 is the start-

up cost of initiating transmission, C1 is a proportionality

constant, and X is the amount of data to be transmitted.

To verify the feasibility of “hybrid query optimization

algorithm” we developed simulation models in a dynamic

environment, experiments were conducted in a distributed

database environment using the functionality of

multithreading, networking and JDBC concept. To develop

the simulation model, use following software and hardware

specifications.

5.1 Software Description and

Specifications:

The detail software descriptions shown in table 1

Software Description Detail

Operating

System

WINDOWS

SERVER 2003

Enterprise Edition

(32-bit x86)

Database MySql Bytes

SGA : 1, 174, 405,

120

Java Version 1.2 Java 2 Platform,

Enterprise Edition

Tbale 1: Software description

5.2 Hardware Description and its

specifications:

We have carried out extensive experiments to evaluate the

effectiveness of “hybrid query optimization algorithm”, use

3 terminals which are interconnected through LAN and the

configuration of each terminal is 2.3 GHz AMD

Athlon™XP 2600 PC with 2Gb of RAM and SATA disk.

Before start the execution of experiment, it will make the

following assumptions: Accurate Statistics: We assume that

statistics regarding the cardinalities and the selectivity are

available. This information can be collected through

standard protocols that allow querying the host database

about statistics, or by caching statistics from before query

executions. Communication Costs: We assume that

communication costs remain roughly constant for the

duration of optimization and execution of the query, and

that the optimizer can estimate the communication costs

incurred in data transfer between any two sites involved in

the query. No Pipelining across all terminals: We assume

that there is no pipelining of data among query operators

across the terminals.

5.3 Experimental Setup:

In this experiment we use MySql database and we create

the banking relation schema which holds the following

relational tables with size and its location (terminal) as

mentioned in table 2. Although these relational schema are

not too large, the experimental results clearly demonstrate

the relative merits of using restructured according to “new

optimization model” and “hybrid query optimization

algorithm”.

Branch: (branch_name,branch_city,assets)

Customer:(customer_name,customer_street, customer_city)

loan: (loan_number,branch_name,amount)

borrower: (customer_name,loan_number)

account : (account_number, branch_name, balance)

depositor:(customer_name, account_number)

Table size is calculated through following commands;

SELECT DATA_LENGTH FROM TABLES

WHERE TABLE_SCHEMA = 'banking'

AND TABLE_NAME = 'customer'

Relation Terminals Table Size

Bytes

customer Termianl1 2058451

Branch Terminal 2 301653

Loan Terminal 3 236554

Borrower Terminal 1 1166529

Account Terminal 3 2245256

Deposit Terminal 1 325182

Table 2: Schema description

In this simulation model we are executing some different

plane of single query through different thread. All threads

having same priority and execute simultaneously. Same

simulation model run on all connected terminals. The

simulator is implemented in Java because it’s directly

support to multithreading, networking and JDBC.

5.4 Experimental Results:

This section details the results that were obtained in the

execution of the more than 5 queries against the database to

retrieve the data from the different terminal. Theses queries

are combination of single table query (simple query), multi

table query (query with join operation, complex query)

where tables are not fragmented and multi table query

(query with join operation, complex query) where tables

are fragmented on different terminal, because of the

different type of queries, we can perform a more thorough

analysis and gain some insights.

29

In this experiment we consider replication fragmentation.

Execute all queries and compared the execution time of

each plan in recommended mode.

Execution time of each plan of query, respectively its

terminal (performance metrix) is shown in table 4. For

example consider the query Q1:

Q1: select customer_name, borrower.loan_ number,

amount from borrower,loan where

borrower.loan_number = loan.loan_number and

branch_name = ‘Annpurna’ and amount > 2000000;

Both relations are stored on a different terminal and

generate different access plan according to mentioned

process in section 5 and generate the different logical and

physical execution plan of query and then apply hybrid

query optimization algorithm in conversion and distribution

phase of distributed query processing and optimization

process to reduce the total cost and response time of

database query. The different execution plan and execution

time as shown in table 3

Alternative Plan Execution strategy Location Execution time in m. sec.

Plan 1 Exec (borrower, loan) at terminal 1 Terminal 1 156

Plan 2 Exec (borrower, loan) at terminal 3 Terminal 3 154

Plan 3 Exec ((sub query (borrower)) at

terminal 1, (sub query (borrower)) at

terminal 3,Exec(Join operation query at

terminal 1))

Terminal 1,3 152

Plan 4 Exec ((sub query (borrower)) at

terminal 1, (sub query (borrower)) at

terminal 3,Exec(Join operation query at

terminal 1))

Terminal 1,3 154

Table 3: Query execution plan table

Same process applied on Q2, Q3, Q4 and Q5 to get all possible plans of all respective queries and execute in same manner.

Execution time of different execution plan of every query with respective its terminal (site) is shown in table 4.

30

 Queries

Terminals

Q1 Q2 Q3 Q4 Q5

Terminal 1

Plan Time

M.Sec

P1 156

P2 154

P3 152

P4 154

Plan Time
M.Sec

P1 198

P2 192

P3 200

Plan Time

M.Sec

P1 185

P2 188

P3 198

P4 195

Plan Time

M.Sec

P1 260

P2 260

Plan Time

M.Sec

P1 192

P2 188

P3 188

P4 193

Terminal 2

Plan Time

M.Sec

P1 110

P2 106

P3 113

P4 125

Plan Time

M.Sec

P1 156

P2 150

P3 165

Plan Time

M.Sec

P1 246

P2 246

P3 246

P4 246

Plan Time

M.Sec

P1 188

P2 190

Plan Time

M.Sec

P1 203

P2 203

P3 203

P4 203

Terminal 3

Plan Time
M.Sec

P1 180

P2 180

P3 180

P4 180

Plan Time

M.Sec

P1 225

P2 225

P3 225

Plan Time
M.Sec

P1 178

P2 178

P3 175

P4 177

Plan Time
M.Sec

P1 182

P2 179

Plan Time

M.Sec

P1 188

P2 185

P3 187

P4 185

Table 4: Execution Detail

180 180 180 180

110 106 113 125

156 154 152 154

0

100

200

P1 P2 P3 p4

Terminal 1

Terminal 2

Terminal 3

performance Chart of Query 1 on different

terminal

225 225 225

156 150 165

198 192 200

0

100

200

300

P1 P2 P3

Terminal 1

Terminal 2

Terminal 3

performance Chart of Query 2 on different

terminal

31

178 178 175 177

246 246 246 246

185 188 198 195

0

100

200

300

P1 P2 P3 p4

Terminal 1

Terminal 2

Terminal 3

performance Chart of Query 3 on different

terminal

182 179

188 190

260 260

0

100

200

300

P1 P2

Terminal 1

Terminal 2

Terminal 3

performance Chart of Query 4 on different

terminal

This performance is calculated on replication fragmentation

distributed scheme. In this experiment database install on are

terminals and plans are executed through threads. Time shown

in mentioned graph is Thread execution time. It means time will

more reduce when the queries will directly apply on actual

distributed database. Table 5 showing the best plan of each

query with respect to the terminal.

 Query

Terminal

Q1 Q2 Q3 Q4 Q5

Terminal 1 P3 P2
Not

used

Not

used
P2/P3

Terminal 2 P2 P2
Not

used
P1

Not

used

Not

used

Not

used
P 3 P2 P2/ P4

Table 5: Best execution plan

6. CONCLUSION

In this paper, we study the query optimization process in

different database environment and also discuss the different

query optimization algorithms. After the study we have

defineed query optimization model and implement a new hybrid

query optimization algorithm. This implemented algorithm is

simulated through java program. The result of this algorithm is

provied the query execution plan with respect to the terminal

and also defined query execution strategy to best use of system

resource by minimize network traffic.

7. REFERENCES

[1] M.T. Ozsu and P. Valduriez. "Distributed Database

Systems: Where Are We Now?", IEEE Computer, 24(8):

68 - 78, August 1991.

[2] Sanjib Kumar Das, Sayantan Das gupta,“Middle Layer

Java Software for the Implementation of a

Homogeneous Distributed Database System”,DBMS LAB

– 2007.

[3] A.V. Aho, Y. Sagiv, and J.D. Ullman. efficient

Optimization of a Class of Relational Expressions.

Transactions on Database Systems, 4(4):435–454, 1979.

[4] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T.

Price. Access Path Selection in a Relational Database

Management System, In Proceedings of ACM SIGMOD

International Conference on Management of Data, Boston,

Massachusetts, USA, May 1979.

[5] P.M.G. Apers, A.R. Hevner, and S.B. Yao. Optimization

Algorithms for Distributed Queries. IEEE Transaction on

Software Engineering, 9(1), PP 57-68 1983.

[6] L. F.Mackert andG.M.Lohman. R*Optimizer Validation

and Performance Evaluation for Local Queries. Technical

report, IBM Research Division, January 1986. IBM

Research Report RJ 4989.

[7] M.T.Ozsu and P.Valduriez. Principles of Distributed

Database Systems, 2nd edition englewood cliffs, NJ:

PrenticeHall, 1991.

[8] H. Lu, M-C. Shan, K-L Tan, "Optimization of Multi-Way

Join Queries for Parallel Execution" Proceedings of the

17th International Conference on Very Large Databases,

Barcelona, PP: 550-560. September 1991

[9] K-L Tan, H. Lu, "On Resource Scheduling of Multi-Join

Queries in Parallel Database Systems", Information

Processing Letters 48,1993.

[10] G. Hallmark, "Oracle Parallel Warehouse Server", IEEE

1997.

[11] W.Hong andM. Stonebraker. Optimization of ParallelQuery

Execution Plans inXPRS. In Proceedings of the First

International Conference on Parallel and Distributed

Information Systems, December 1991.

[12] Donald D. Chamberlin, Morton M. Astrahan, Mike W.

Blasgen, Jim Gray, W. Frank King III, Bruce G. Lindsay,

Raymond A. Lorie, James W. Mehl, Thomas G. Price,

Gianfranco R. Putzolu, Patricia G. Selinger, Mario

Schkolnick, Donald R. Slutz, Irving L. Traiger, Bradford

W. Wade, Robert A. Yost: A History and Evaluation of

System R. Commun. ACM 24(10): 632-646 (1981).

[13] STONEBRAKER, M., AOKI, P. M., DEVINE, R.,

LITWIN, W., AND OLSON, M. A. 1994. Mariposa: A

new architecture for distributed data. In Proceedings of the

10th International Conference on Data Engineering

(Houston, TX, Feb. 14–18). IEEE Computer Society Press,

Los Alamitos, CA, 54–65.

32

[14] STONEBRAKER, M., AOKI, P. M., LITWIN, W.,

PFELLER, A., SAH, A., SIDELL, J., STAELIN, C., AND

YU, A Mariposa, “A wide-area distributed database

system”, VLDB journal ,vol. 1, 48–63, 1996.

[15] Michael Steinbrun, “Heuristic and randomized optimization

for the join ordering problem”, The VLDB Journal vol: 6,

PP: 191–208, 1997 .

[16] Prasan Roy, Multi-Query Optimization and Applications,

Ph.D. Thesis, Dept. of Computer Science and Engineering,

IIT-Bombay, December 2000.

[17] Kossmann D. “The State of Art in Distributed Query

Optimization”, ACM Computing Surveys, September 2000

IJCATM : www.ijcaonline.org

