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1. INTRODUCTION 

Wavelet is compactly supported [1] square integrable function in 

time domain and frequency domain. Firstly, wavelet was 

introduced by N. Ricker [2] in Seismology to provide a time 

dimension to seismic analysis. Also, it was repeated by E. A. 

Robinson    [3, 4]. But finally wavelet was defined by J. Morlet 

et al [5, 6]. After that A. Grossman [7], a French theoretical 

physicist recognized the importance of wavelet transform and 

developed an inversion formula with the help of admissibility 

condition. Wavelet is new developing area which is being 

applied mathematics, medical science, technology and more 

widely in signal analysis. There is a reason of more success of 

wavelet and their transform to the comparison of Fourier 

analysis because Fourier analysis does not contain the local 

information of non-stationary signals but wavelets examine 

signals simultaneously in both time and frequency. In recent 

years, wavelet techniques are used to find out the numerical 

solution of linear and non-linear problems [10,13]. Current 

applications of wavelet contain climate analysis, financial 

denoising, denoising of astronomical images, fast solution of 

differential equations, computer graphic and so on. 

The basic approach initiates from the integral of basis vector 

)(t
 which is defined by 

                   

,)x(Pdt)t(

x

0

 

                                (1)                                                                                                                                  

where, 
T

nt ]...,,,[)( 21  
 in which the elements 

n,...,3,2,1i);t(i 
 are orthonormal basis function on 

certain interval [0, 1], and the matrix P  can be uniquely 

illustrated based on the particular orthonormal function. 

In section 2, quadratic Legendre multi-wavelet (QLMW) is 

introduced. Approximation of any function within interval [0, 

1], using QLMW, followed by error analysis, is included in 

section 3. In section 4, the operational matrix of integration for 

QLMW is calculated.  The product of operational matrix is 

produced in section 5. In section 6, these computations are used 

to derive a method for solving initial value problem.  Finally, the 

advantages of present method with the help of two examples are 

shown in section 7.     

2. THE QUADRATIC LEGENDRE MULTI-

WAVELET (QLMW) 

Let ψ  be a function of  ),(L2 
 called mother wavelet, 

satisfying the following  properties [7, 8]: 

               

.1dt)t(0dt)t(
2

 


 and  

This is also called unit energy function. 

A family of such type of functions constructed from translation 

and dilation of a single function ,ψ  wavelets [7, 8] can be 

defined as:
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(2) 

where a  and b are dilation and translation parameters 

respectively. 

By discretization [1, 7] of these parameters 
k2a   

and knb  2 , one gets    

                  ,22)( 2/

, ntt kk

nk        n,k          (3) 
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 Let    be a function of )(L2 
  space. It is said to be scaling 

function for  ,V0  if it satisfies the following condition 

                      

          )}.({and1)( 0 ktspanVdtt
k








              

(4) 

2.1. Definition: The nested sequence 


jjV }{  of the 

subspaces of )(L2 
 with scaling function     is called multi-

resolution analysis (MRA) if it satisfies the following 

conditions: 

 

(i) )(LVlim 2j
j




 

and }0{lim 


j
j

V  

(ii) 
j

j VtVt  )2()( 0   

(iii) 


 nnt )}({    is a Riesz basis of 
0V . 

 

For any orthogonal MRA with a multi-scaling function  , there 

exist [12] a  multi-wavelet function   and a multi-scaling 

function   orthogonal to each other, given as below:                       

            






n

n

n )nt2(b2)t( 
                            

(5) 



njnj ,, }{and 
 
forms an orthonormal basis for )(L2 

 

under certain condition [11].  

For constructing the quadratic Legendre multi-wavelet, when the 

single scaling function )(t is replaced with vector of scaling 

function )t(  yields: 

          
,)t(),t(),t()t( T

210 ][    

where                          
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       (6) 

Since T

210 (t)ψ(t),ψ(t),ψΨ(t) ][  are the corresponding 

mother wavelet functions [11], using equation (2) one gets the 

quadratic Legendre wavelet (QLW) as given 

 

 

below: 
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Translating and dilating the quadratic Legendre wavelet ),t(  

we get  
                                                 

 

     
,)2(2)( 2

, ntt kj
k

j

nk  
    

.j,n,k             (8) 

The family )}({ , tj

nk
 
forms an orthonormal basis for )(L2 

 

and subfamily is orthonormal in 1][0,2L  for 

,1,0n  ;12,...,2 k  ,...2,1,0k  and .2, 1, 0 j   
If ;1,0n   

;2, 1, 0j1,0k  and
 
the scaling functions and subfamily 

members are plotted in the figures 1-12. Here, variable t and 

family members 
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along horizontal and vertical axes respectively. 
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3. FUNCTION APPROXIMATIONS  

The function ),x(f   using quadratic Legendre multi-wavelets 

in the interval [0, 1], is approximated as given below:  

        ),()( ,
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where,  

.)x(),x(gc)x(),x(fc j

n,k

j

n,kii    and

After truncating the infinite series, equation (9) takes the 

following form: 
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Theorem 3.1 Let the function 1][0,:f  and 

1].[0,3Cf   Then TC  approximates f  with mean error 

bound as follows:                                        

               ,)x(fsup
2!3

1
Cf '''

xk3

T

[0,1]   

where .  denotes  the norm in )(L2 
 space. 

Proof. The proof of this theorem can be seen in [2]. 

It can be seen from this theorem; the factor 
k32!3

1
 shows best 

approximation of function because if k  increases then error 

decreases rapidly. 

4. OPERATIONAL MATRIX OF 

INTEGRATION     OF QLMW 
With the help of equation (12), equation (1) takes the form:  

                        
,)x(Pdt)t(

x

0

1212  
             

where, 
1212P 

 an operational matrix of integration of QLMW 

[11] is given below: 

 
In general 
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where order of ,P  given by [11], is .)2.3()2.3( 1n1n    

 

5. THE PRODUCT OF QLMW BASIS 

VECTOR AND IT’S TRANSPOSE 
In this section the product of operational integration matrix of 

QLMW is obtained, which is useful in solving non 

homogeneous differential and integral equations.                                                                 

From equation (12) we have                                       
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The order of the elements of the matrices
jA , 

jB , 
jC , 

j

kiA .
, 

j

kiB .
, j

kiC .  
is )2.3()2.3( 11   nn . For 
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1,0k;2,1,0j;1,0i 
 

,1M and
 
the matrices 

jI  and 

j

kiI ,
are of order 1212 . Also, the matrices ,0I 0A  are 

identities and
1

1,1A , 
2

1,1A  are null matrices. Thus, the entries of 

matrices ,A j

j

kiA ,  are given below: 
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Remaining twelve matrices are the generalization of the 

following six matrices X1, X2, X3, X4, X5, X6:  
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Thus, the entries of 
jC
 
and j

k,iC are achieved. Also, it can be 

seen that 
0C
 

is obtained as identity matrix, 
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1,1)'c(  as null matrices and the 

following as non-zero matrices:  

    

,, 11 )''c()'c(























































0
53

1
0

00
48

17
000

2

3
0

48

17

0
2

3
0

48

17
0

2

3

                           

 

,, 0

0,11 )'c()'''c(


















































00
321

22
000

321

22
00

2

3
0

53

1

0
2

3
0

53

1
0

2

3

          

,1

0,1

0

0,1 )''c()''c(










































000

00
221

32

000

,

0
3084

31
0

000

000

    

 

,

000

0
321

22
0

000

,

7

63
00

000

00
321

22

0

1,1

2

0,1 )'c()'c(










































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,, 0

1,1

0

1,1 )'''c()''c(












































321

252
00

000

00
7

63

000
3084

31
00

000                     

,)''c()''c()'''c( T2

1,1

2

0,1

2

1,1 , ][
000

000

0
3084

31
0

00
321

252

000
321

252
00





















 

























., 1

0,1

1

1,1

2

0,1

1

1,1 )'''c()'c()'''c()''c( 













































00
3084

31
000

3084

31
00

000

0
321

252
0

000

Similarly, corresponding to the entries of 
jC and 

j

k,i
C  the 

twelve matrices are the generalization of the following six 

matrices 
654321 Z,Z,Z,Z,Z,Z : 

  

,

57

1
0

15

1

332

517

0
5126

29
0

15

1

332

517
0

5126

29

)15(Z

l

l

1














































 l

 

   

,Z l

2














































0
15

1

32

1
0

2016

173
0

15

1

332

517

0
2016

173
0

)15(

1l

l
   

   

,Z l

3

































 










 



l

l

l

l

(5)
5126

13
0

15

1

32

1

0(5)
5126

13
0

15

1

32

1
0

57

1

)15(

                                     

     

 

,
52

1
Z

l

4
































 








 








 











ll

l

ll

11

19

21

11
0

324

)17(5

0
5

547

189

5
0

324

)17(5
0

5

547

189

5

 

    

,


































 
















 
















0
5

2

324

17
0

5

2

1512

5173
0

5

2

324

17

0
5

2

1512

5173
0

Z

l

ll

l

5

              

 

  ,Z
l

6









































 

















 







 



ll

l

ll

386

41

189

193
0

2

1

153

2

0
386

41

189

193
0

2

1

153

2
0

110

19

21

11

5

    

 

such that   

               

,
1l,)'''c(

0l,)'''c(
Z,

1l,)''c(

0l,)''c(
Z

,
1l,)'c(

0l,)'c(
Z,

1l,)'''c(

0l,)'''c(
Z

,
1l,)''c(

0l,)''c(
Z,

1l,)'c(

0l,)'c(
Z

2

0,0

0

0,0

62

0,0

0

0,0

5

2

0,0

0

0,0

41

0,0

2

3

1

0,0

2

21

0,0

2

1





























































 

 

And in equation (15) the matrix 0B  is the null matrix while the 

other matrices 
jB , ;B j

k.i
 i, k = 0, 1; j = 0, 1, 2 are given 

below:  

 

 

     

,1B








































0000
108

33

108

33

0000
264

27

264

27

0000
216

33

216

33

0000
1064

39

1064

39
000000

000000       

 

,l

1Y

































































 







 








































00
214

3

214

3

45

19

264

27

45

19

264

27

00
2112

59

2112

59

7

1

1064

363

7

1

1064

363

00
228

15

228

15

9

1

1016

27

9

1

1016

27

00
2112

33

2112

33

15

7

264

27

15

7

264

27

0000
1064

39

1064

39
000000

)15(

ll

ll

ll

ll

 

,l

2Y
































































 







 




























































00
37

10

37

10

1016

(10)3

1016

(10)3

00
2

1

228

15

2

1

228

15

8

19

216

33

8

19

216

33

00
2

1

67

5

2

1

67

5

8

1

24

3

8

1

24

3

00
228

15

228

15

8

5

1016

27

8

5

1016

27

0000
216

33

216

33
000000

)
5

2
(

ll

llll

llll

ll
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, 

0
53

1
0

542

191)(
0

348

5171)(

0
56

1)(
0

7

3
0

96

171)(

0
153

2
0

21

111)(
0

324

17

0
32

1)(
0

57

1
0

332

171)(

0
53

1
0

2

31)(
0

48

17

000100

=  

ll

1l1l

1l

ll

l

3Y



















































                                       

,4Y

























































0
378

5411)(
0

33

1
0

756

1731)(

0
342

65
0

56

1)(
0

2672

5173

0
189

1931)(
0

153

2
0

1512

51731)(

0
126

513
0

32

1)(
0

2016

173

0
2

31)(
0

53

1
00

010000

1ll

1l

1ll

l

l

                    

 

.5Y























































0
756

1731)(
0

348

517
0

5378

5471)(

0
3673

5173
0

96

171)(
0

342

29

0
1512

51731)(
0

324

17
0

189

51)(

0
2016

173
0

332

5171)(
0

526

29

000
48

17
0

2

31)(
000001

ll

1l

l1l

l

l

       

When 0l then ,Y 2

0,13 B  1

1,1B4Y
 

and 0

0,15Y B  and 

if 1l   543 YYYthen ,,  are related to 1

0,1

2

1,1

0

1,1 B,B,B  

respectively with cyclic operation of columns 

5 4, 3, 2, 1,=,1 scc ss 
 and 

 

.
1l,B

0l,B
Y,

1l,B

0l,B
Y

2

0,0

0

0,0

21

0,0

2

1



















    

With the help of equation (11) and the matrices jI and 
j

k,iI , the 

equation (34) of [9] takes the form:
                                                  

 

                   ).x(C
~

C)x()x( T                              
(16) 

 

6. METHOD OF SOLUTION OF INITIAL   

VALUE PROBLEMS 

In this section is suggested an approximate solution of second 

order differential equation with initial conditions using QLMW 

and operational matrix of integration. 

Consider the equation 

,)0('and)0(with

)()()(')('')(

 



yy

xfxyxcyxbyxa

                 

 (17)                                     

where, cba ,,  and f  are function of x  or constants.   

First, approximating cba ,, and f  by using equation (10) we 

get  

,)x(C)x(c,)x(B)x(b),x(A)x(a TTT  

                                                                                            ).x(D)0(y)x(E)0('y),x(F)x(f T

0

T

0

T   and   (18) 

Now 

)x(Y)x(''y T    

and                                         

  )0('ydx)x(''y)x('y

x

0

   

  
)x(E)x(PY

T

0

T  
                

(19)                                    

      )0()(')(
0

ydxxyxy

x

   

                
)x(D)x(PE)x(PY T

0

T

0

2T    

By using equations (18) and (19), the equation (17) yields

       


0

TT

0

T

TTT

0

T

TTTTTT

D)x(EP)x(

YP)x()x(C)E)x(

YP)x(()x(BY)x()x(AF)x(













2][

.D)x()x(CEP)x()x(C

YP)x()x(CE)x()x(B

YP)x()x(BY)x()x(A

0

TTT

0

TT

2TTT

0

TT

TTTTT













][

                                                                             

                                                                                (20)   

Now using the product operation matrix C
~

 of equation (16) we 

obtained 

        
FDC

~
EPC

~
YPC

~
EB

~
YPB

~
YA

~
0

T

0

T2

0

T 
                                           

.DC
~

EPC
~

EB
~

FYPC
~

YPB
~

YA
~

0

T

00

T2T or
 

After finding Y  the approximated solution of differential 

equation can be obtained. 

 

7. EXAMPLES 

The following two examples have been solved by proposed 

method in this paper. 

Example 1.1 Consider                                                         

.0)0('y,0)0(y

0x6'y2''xy





with
                                     

(21) 

Putting,                

                         ),x(Y)x(''y T
                        

   (22) where                            

TyyyyyyyyyyyyY ][ 11,10,9,8,7,6,5,4,3,2,1,0
      

  (23) 

and                                     

.,,,,,,,,,,,)x( T2

11

1

11

0

11

2

10

1

10

0

10

2

00

1

00

0

00210 ][  

                                                                                
(24) 

Using initial condition, we can get 

       )x(PY)x(y),x(PY)x('y 2TT         
(25) 
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and                     

     ).x(G6),x(F2),x(Ex TTT         
(26) 

Now inserting equations (22)-(26) into equation (21) we obtain  

                         .EG
~

Y)PF
~

E
~

( TTT    

Which is hold for each x  in defined interval, therefore we get 

                       ,
~

)
~~

( EGYPFE T   

so yields 

           .0]0,0,0,0,0,0,0,0,0,0,[2, TY               
(27) 

By virtue of equation (25) we get exact solution 

     .)( 2xxy                                                           (28)      

 

Example 1.2 Consider  
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Taking, 
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       (32)  

From initial condition, we have                                    

    )x(PY)x(y),x(PY)x('y 2TT        (33) 

and                               

            ).x(F1 T                                             
(34) 

Using equations (28)-(33) into equation (28) we get  

        FY TT    

which is satisfy for each x  in finite interval, therefore we get 

            FY   
and hence                                          

            .0]0,0,0,0,0,0,0,0,0,0,[1,Y T
            

      (35)     

Using equation (33) and we get exact solution      

        .
2

)(
2x

xy                                                        (36)     

8. CONCLUSION 

The aim of the present work is to suggest an efficient method for 

solving non homogeneous differential equation with IVP by 

reducing an integral equation into a set of algebraic equations 

with the help of operational matrix. It is also shown the QLMW 

provides an exact solution. This work shall facilitate in solving 

real-world problems, such as related to the mathematical physics 

and digital electronics etc.  
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