International Journal of Computer Applications (0975 — 8887)
Volume 75— No.15, August 2013

Solving Differential Equations of Second Order using
Quadratic Legendre Multi-wavelets (QLMW) with
Operational Matrix of Integration

Meenu Devi
Department of Mathematics

Gurukula Kangri University
Haridwar (UK), India.

S. R. Verma*
Department of Mathematics
and Statistics, Faculty of Science, and Statistics, Faculty of Science,
Gurukula Kangri University

Haridwar (UK), India.

M. P. Singh
Department of Mathematics
and Statistics, Faculty of Science,
Gurukula Kangri University
Haridwar (UK), India.

*Corresponding Author:

ABSTRACT

In this paper is suggested an efficient method to solve
differential equations. Using quadratic Legendre multi-wavelets
approximation method, differential equations are converted into
the system of algebraic equations with the help of operational
matrix of integration and its product. Some illustrative examples
are included to show the efficiency and applicability of the
method.
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1. INTRODUCTION

Wavelet is compactly supported [1] square integrable function in
time domain and frequency domain. Firstly, wavelet was
introduced by N. Ricker [2] in Seismology to provide a time
dimension to seismic analysis. Also, it was repeated by E. A.
Robinson  [3, 4]. But finally wavelet was defined by J. Morlet
et al [5, 6]. After that A. Grossman [7], a French theoretical
physicist recognized the importance of wavelet transform and
developed an inversion formula with the help of admissibility
condition. Wavelet is new developing area which is being
applied mathematics, medical science, technology and more
widely in signal analysis. There is a reason of more success of
wavelet and their transform to the comparison of Fourier
analysis because Fourier analysis does not contain the local
information of non-stationary signals but wavelets examine
signals simultaneously in both time and frequency. In recent
years, wavelet techniques are used to find out the numerical
solution of linear and non-linear problems [10,13]. Current
applications of wavelet contain climate analysis, financial
denoising, denoising of astronomical images, fast solution of
differential equations, computer graphic and so on.

The basic approach initiates from the integral of basis vector
Z(t) \which is defined by

[ r(tydt=P (x),
0 )

— T
where, 2O =19, 0, 0.1 in which the elements
§Di(t); i=1,2,3,..,n

are orthonormal basis function on
certain interval [0, 1], and the matrix P can be uniquely
illustrated based on the particular orthonormal function.

In section 2, quadratic Legendre multi-wavelet (QLMW) is
introduced. Approximation of any function within interval [0,
1], using QLMW, followed by error analysis, is included in
section 3. In section 4, the operational matrix of integration for
QLMW is calculated. The product of operational matrix is
produced in section 5. In section 6, these computations are used
to derive a method for solving initial value problem. Finally, the
advantages of present method with the help of two examples are
shown in section 7.

2. THE QUADRATIC LEGENDRE MULTI-
WAVELET (QLMW)

Let ¥ be a function of L,(¥), called mother wavelet,
satisfying the following properties [7, 8]:

jy/(t)dt:o and j\w(t)\zdtzl.
Lx £
This is also called unit energy function.

A family of such type of functions constructed from translation
and dilation of a single function Y/, wavelets [7, 8] can be

defined as:

1 l//(t_bj, a,befxya=0, @
a

l//a,b (t) =
Vel

where @ and Dare dilation and translation parameters
respectively.

By discretization [1, 7] of these parameters a=2_k
and b=n27%, one gets

Ve, =22y(2t-n) kneC @
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Let ¢ be afunction of L,(%¥) space. It is said to be scaling

function for V0 , if it satisfies the following condition

T¢(t)dt =1 and V, = span{g(t —k)}. (4)

2.1. Definition: The nested sequence {V }_, of the

0

subspaces of L, ( %) with scaling function ¢ is called multi-

resolution analysis (MRA) if it satisfies the following
conditions:

M) lim V, =L,(¥) and lim V ,={0}
jo -

jotoo
(i) g(t) eV = p(2'1) eV,
(i) {p(t—n)},_  isaRiesz basisof V.

For any orthogonal MRA with a multi-scaling function ¢ , there
exist [12] a multi-wavelet function ¥/ and a multi-scaling

function ¢ orthogonal to each other, given as below:

w(t):ﬁnfbﬂ;ﬁ(zt—n) ®)

and {y; .} ,-_., forms an orthonormal basis for L,( £¥)
under certain condition [11].

For constructing the quadratic Legendre multi-wavelet, when the
single scaling function ¢(t) is replaced with vector of scaling
function @(t) yields:

(1) =[¢y (1), 4,(1), 4,(D)]",

where
#(t)=1 ¢4,(t)=+3(2t-1) and
#,()=+5(6t? -6t +1),  O<t<l.

Since (1) = [y, (1), w,(t), w,(t)]" are the corresponding

mother wavelet functions [11], using equation (2) one gets the
quadratic Legendre wavelet (QLW) as given

(6)

below:
1 , 1
—Z(120t2 - 72t +7), 0<t<=
_J 3 2
Wo(t)— 1 1
= (120t* —168t +55), = <t<1,
3 2
J3(30t% —14t +1), o<t<i ,
vi(t)= 2 @

J3(30t2 — 46t +17), %stsl,

International Journal of Computer Applications (0975 — 8887)
Volume 75— No.15, August 2013

=5 (g ~18t41), 0=t <t
=1 > ’
NG

== (48t* — 78t + 31), 1 <t<l,

3 2
Translating and dilating the quadratic Legendre wavelet ¥(t),
we get

vl (0=2"y2t-n),  knjeG  ®
The family {'//kj,n(t)} forms an orthonormal basis for L,( %)

and  subfamily is orthonormal in  L,[0,1] for
n=0,, 2,...2“-1;k =0,1,2,...and j=0,1,2. If n=0,1;
k=0,1and j=0, 1, 2; the scaling functions and subfamily
members are plotted in the figures 1-12. Here, variable t and
family members
{% .4, vW(?o -‘/’éo lWozo 1‘//50 l‘//110 v'r’/lzo -‘/’fl l‘//lll ’lel}are shown
along horizontal and vertical axes respectively.
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3. FUNCTION APPROXIMATIONS

The function f(X), using quadratic Legendre multi-wavelets

in the interval [0 1], is approximated as given below:
o 2 2%

f(x)= zc¢+zzzcknwkn<x) ©)

k=0 j=0 n=0
where,

¢, =< F(X),4(x)>and ¢/, =< g(x).yin(X)>.

After truncating the infinite series, equation (9) takes the
following form:

(0~ e iiicknwkn(x) —cTo(x), (10

k=0 j=0 n
where,
0 0 1
C=[c,,C,,C;,Coq1eems Cop 24 1)+ Co0 »++s (11)
1 2 T

CM(ZM—l)’COO ""'CM(ZM—l)]

and
0 0

O(x)=[¢ ¢,.9, Woo Wy om1y (12)

1 1 2 2 T
WOO """I//M(ZM*l) ’l//OO ""’I/IM(ZMfl)] -

Theorem 3.1 Let the function f :[0,1]—>% and

feC’0,1]. Then C'® approximates f with mean error
bound as follows:

i-cTo|<

SUpXS[ou‘f

where|| . || denotes the normin L,( %) space.
Proof. The proof of this theorem can be seen in [2].

It can be seen from this theorem; the factor

1 - shows best

approximation of function because if K increases then error
decreases rapidly.

4. OPERATIONAL MATRIX OF

INTEGRATION OF QLMW
With the help of equation (12), equation (1) takes the form:
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Joydt=Py,..,6(x),
0

where, P, ., an operational matrix of integration of QLMW
[11] is given below:
r -1 % [ 0 0 0 0 0 0 0 0
—g a % o a [ a [ a a /]
[ 73—;5 a I:\f; a [ i:j, jjfrf a a /]
0 0 ;u_jf_? o ﬁ 0 7‘(_ g 0 0 0
Byn= ’ Z : ?fi j ﬁiE %:_ %:_ Z Z :
I3 N5 NG
o _3‘"_ e R e ] o o 0 J o
25645 64 256 a5 s 967 s
o o [} o [ [ Un"lr} o o ? JJE
o o [} o [ [ a o;_j} o ? [
0 0 0 0 0 a 0 ;;_JJT; 0 0
i_ o o [} o [ [ a o o 12_‘!% [
In general
P= A(S.Z”)x(3.2") B(s.z")x(s.z”) (13)

—BT @22y C '

(32")x(32")

where order of P, given by [11], is (3.2")x(3.2"1).

5. THE PRODUCT OF QLMW BASIS
VECTOR AND IT’S TRANSPOSE

In this section the product of operational integration matrix of
QLMW is obtained, which is wuseful in solving non

homogeneous  differential and integral equations.
From equation (12) we have
2 2 M 2" _
CECHEIEDIATEDIVIDNZ N I (14)
j=0 j=0i=0 k=0
where,
I _ Al BJ:|
i~ T '
BT Gy
1= AiJ;k Bij;k:|
ik — iqT i ’
_[Bi,k] Ci,k (3.2"1)x(32")
r an . an )
a=| &8, } (1
@)1 @) e

)J'
|:[(a”)lk] (am)lk}(ez)(n),
{ ©); (") }

”)] ) (3.2") (32n

ci :{ (C')_ij,k ) (C”)i-'.k }
: [(C”)ij,k] (CI”)i],k (32")x(32")

The order of the elements of the matrices Aj, Bj, C,—r Afk

B\ C s (382")x(32").  For
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i=0,1; j=0,1,2; k=0,1 and M =1, the matrices | and

Iijkare of order 12x12 . Also, the matrices |, AO are

. .. 1 2 . .
identities and A11’ A11 are null matrices. Thus, the entries of

; j ; :
matrices Aj ) ALk are given below:

01 0 o 0 0
(@)=[r 0 &l (a')=| o o o]
02 0 9./3
NS 0 o0
85
o ¥
17 2 2 0 8 1
alu _| 20 0 < ' _ Z
(@ )=|5, o5 (@)=|0 = 0
2 J5
0 -2 o0 2+/5
L 3 o=
58 173
0 58 i3
6345 504
(all) _ 9\/§ 0 O (a”') (;/7 4
ENG ' - G
0 33 173 -2615
L 7 | 504 63
0 0 0 1 0 0
" 17
(a' ), |0 %’ ("), =| o 2 O
' 85
58 173
0 H ok O o
| 85 -
2
oA (@) 00 0
-3t | (&), =l00 o0
ary =[—2- o , 00
(@), 2143 168V15 00 33
_31
0
168+/15
2 o |
0 1 0 2173
(au)oloz 17 0 iy(a...)31 _ 0 3 0
vl 24 35 ° 73
4 -31 52
75 168+/15 2143
0 0 0 0 g 1
a )y, =000 a'p=| 0 = 0o |
(@0 0 0 (@Y= 0 %
L 173 -23J5
504 63
-3 3
16815 16410
" - 52
al )P = — .
@, 168415 213
52
2143

Remaining twelve matrices are the generalization of the
following six matrices Xy, Xy, X3, X4, Xs, Xg:
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0 0 0 0 0 0
« <|o 93 - D83 21 ()33
! 64410 | : 1642 6442 810
93 ()27 24 ()63 27
64V10 1642 16110 64+/10 642
[1)™3  3/3  (-1)'3 3
42 16V2  16V10 00 o0
- 33 (-1'27 -5743 % <lo o o
Pl 1ev2  eav2 eav2 | 33
(-1)'3  -57J3  (-1)'3 0 27
| 16J10 6442 42
i (_1)'+1£ @
0 0 0 76 82 143
X;=| 0 0 0 X<y 1B 4B -3
s OB 95 ()3 ' § \/ﬁgﬁ 11;2/% 124:/55
28V2 122 142 = LAt
3 W2 3
such that
- @Y, 1=0 (@, 1=0
Pl@), 1=1" @, =1
“ _ @y, 1=0 @)%, 1=0
i (amiov =1 ) (a')iia =1
- @"%, 1=0 @, 1=0
* @, 1=1" " @, 1=1

Thus, the entries of CJ. and Cijk are achieved. Also, it can be

seen that C, is obtained as identity matrix, (C' )i,

1\ 1 UL 1\2 R
(¢ ). (c )fo, (C' ), as null matrices and the
following as non-zero matrices:

;3 0
2
(¢)= o B
2
L
48
RN
2
(€)= o =2
2
1
- 0
ES
0 o0
c')Y =0 o
(€)oo s,
| 84430
[ 22 0
. 2143
(c)y=| o o
0 0

17
48 0 0
I 17
OV
~\3
—v3 0 — 0
2 35
1
i 22
. 2143
0 (c)=] o 0o o0 |
242
3 e
= 2143
2 L
0 0 00
ol (¢, = 243
1l 1.0 21\/5 [l
0 0 00
[0 0 o0
0| (C')fl_ ﬂ 0],
3J6 ’ 213
7 _0 0] 0
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00 o
(C )1,1: mr ( )1‘1:
00 0
0 0 %
(CI”)lz,l: 0 0 0 (C”)12,o:
52f
21f
[0 ?F 0
wy | 5242 " (@)
(€40 g O(E RO

Similarly, corresponding to the entries

7
0 0
52f
2143
o -31
0 —— 0
844/30 T
o o o=[(c")],
0 0 0
r -31
84F
0 0 =(c" ).
-3 '
84430
of Cjand C'jk the

twelve matrices are the generalization of the following six
matrices 7,,2,,2,,2,,Z,Z;"

29 1745 ( 1)'
12645 ” 3243
=(15) 12645 0 '
175 [ j -1
32[ 75
mo
L 2016
|17 173
Z,=(15) 3243 (15) 2016
1 [1]”1
i 23115 |
=" 1[_1J'
5 23115
Z,=(19)'| 0 12_61} 70
1[—1j' -1 g
| 24315 126f
5{547) o 16
189\ 5 24,3
1) 5 (547
Z(ﬁj ° 189( 5 j ol
17(5) o 11( 19)
2N 21l 11
[ —173\/5[ 2 j .
1512 \ 45
z - 17[—2]" —mﬁm'
* 24345 1512 (5) |
17 (-2
0 24\/§(Tj 0 ]
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-11/-19)
21 {110

such that

Zl :{(C' )2!' =0

N
. :{w- ),
(" )

oo

zs={(d o
(C”)oz,ovlzl

=1
1=0
=1

1=0
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193[ j
1891 386

_@(ﬂ |
189\ 386

z, :{(C" ).,1=0 '
(C” )3,07| =1

z, - {(CI )g,ovl :0’

(¢ ool =1
. {( Kol =0
(¢ ol =1

And in equation (15) the matrix By is the null matrix while the

other matrices B, Bi’:k; i,k=0,1;j=0,1, 2 are given

below:
M (0] (o] 0O 0 0 O]
64\/\2}.79 64://7]3 O 0 0O o
— 33 3/3
B, = 162‘45 162\45 0 0 0O
64\/\/2 64\/\/; ©c o000
—-3J3 33
78\/5 8710 O 0 O 07
0 0 0 0 0
6410 64+/10
27 (7) 27 (lj' 33 33
6442115 64v2\15) 11242 11242
IS R TR
16410\ 9 16410 (9 28v2 282
633 [;1)' 63v3 (;1]' o5 95
64+/10 | 7 64+/10 7 11242 11242
27 (19) 27 ( 19) 3 V3
7@(_5) m[_ﬁj 142 142
r 0 0 0 0
T N
1642 1642
27 (5) 27 (5Y —\15 V15
m@ m(éj 282 282
Y, =&y -3( 1) 3 (1)} 5 (1) 5 (1Y
#| 505 asls) w6l 7RG
33 (-19) 33 (-19) -15(1) 15 (1Y
3(10) -3(10) J10 V10
16410 16410 743 73
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0 1 0 o0
17 (-1)'V3 1
v 0
48 2 kNG
(-1)'17 -1 D',
3243 75 243
Y, =| 17 et 2 )
2443 21 3V15
(-1)"17 -3 n"™
96 7 65
(-1)'1745 o (-D'19 -1,
483 425 NCEE
T 0 0 o0 1 0]
|
o o L o ¥
35 2
173 (&) -13/5
2016 243 126
Y,=[ (D735 2 (-n'193 |,
1512 3J15 189
1735 (D™ —65
6722 615 4243
(D173 1 (DA
756 33 378 ]
1 0 0 0 0]
|
(_1) \/g 0 E 0 0
2 48
29 (D175 173
26+/5 3243 2016
Y, -| ()5 17, (W17
189 243 1512
20, (D 17345
423 9% 673V3
(-1)'547 -17.5 (D173
| 3785 4843 756 ]
_ 1
When | =0 then Y3:B12,0! Y4:B1,1 and YszBlo,o and
if =1 thenY,Y,,Y, are related to B;,.B’,. Bi,
respectively ~ with ~ cyclic ~ operation  of  columns

C., =6, 5$=1,2,3,4,5 and
BZ' IZO B(?D’ |:0
Y1: 1 o Y2: ) .
BO,o:I—l Bo,ov |=1

With the help of equation (11) and the matrices | ;and |iJ;k , the

equation (34) of [9] takes the form:
A(x)@" (x)C ~C O(x). (16)

6. METHOD OF SOLUTION OF INITIAL
VALUE PROBLEMS

In this section is suggested an approximate solution of second
order differential equation with initial conditions using QLMW
and operational matrix of integration.

Consider the equation
a(x)y"+b(x)y+c(x) y(x) = f(x)

_ a7)
with y(0)=a and y'(0)=p,
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where, &,b,C and f are function of X or constants.
First, approximating a,b,cand f by using equation (10) we
get
a(x)=A"O(x), b(x)=B"O(x),c(x)=C"O(x),
f(x)=F'O(x),y'(0)= EOT@(X) and y(0)= DJ@(X). (18)
Now

y (x)=Y'O(x)
and

Y (x)=[y" (x)dx+y (0)
~Y PO(x)+E, O(x) (19)
y(x) = [y (x)dx+y(0)

~YTP?O(x)+E, PO(x)+D; O(x)
By using equations (18) and (19), the equation (17) yields
OT(X)F=ATO(Xx)O" (x)Y +BTO(x)(OT(x)PTY
+07(X)E, )+ CTO(x)O (X)PTIY
+0"(X)PE] +0"(x)D,)
=A"O(x)O" (x)Y +BTO(x)O" (x)PTY
+BTO(x) O (X)E, +CTO(x)O" (X)[PT1’Y
+CTO(Xx)O"(X)PE; +C'O(x)O" (x)D,.
(20)

Now using the product operation matrix C of equation (16) we
obtained

AY +BPTY +BE, +CP?Y +CPE] +CD, = F
or AY+BP'Y+CP”Y=F-BE,-CPE] -CD,.

After finding Y the approximated solution of differential
equation can be obtained.

7. EXAMPLES

The following two examples have been solved by proposed
method in this paper.

Example 1.1 Consider

_ xy"'+2y'—6x =0 1)
with y(0)=0,y (0)=0.
Putting,
y' (x)=YTO(x), (22) where

Y =[Yo Y1 Y2 Y5 Ya Vs Yo Y7 Ve Yo Yio Yl (23)
and
O(X)=[dhy By, W50 Woo Wao Wi WioWios Wiy Wi Wil -

(24)
Using initial condition, we can get

V(X)=YTPO(x), y(x)=YTP2@(x) (25)
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and
x=E"®(x), 2=F'O(x), 6=G"O(x). (26)
Now inserting equations (22)-(26) into equation (21) we obtain
O"(E+FPT)Y =0'GE.
Which is hold for each X in defined interval, therefore we get
(E+FEPT)Y =GE,

so yields

Y =[2,0,0,0,0,0,0,0,0,0,0,0]". (27)
By virtue of equation (25) we get exact solution

y(x)=x°. (28)

Example 1.2 Consider

y'(x) =1,
with  y(0)=0, y'(0)=0. (29)
Taking,

y'(x)=Y"0(x), (30)

where

Y = [ yO,yl,yZ,yS,y4,y5,y6,y7,y8,y9,y10,yll]T (31)

and

O(X) = [y 0,8 Woo Wao Woo WioWio Wior Vir Wi Wia] -

(32)
From initial condition, we have
V(X)=YTPO(x), y(x)=YTP?’@(x) (33)

and

1=F"O(x). (34)
Using equations (28)-(33) into equation (28) we get

O'Y=0"F

which is satisfy for each X in finite interval, therefore we get

Y=F
and hence

Y =[1,0,0,0,0,0,0,0,0,0,0,0]". (35)

Using equation (33) and we get exact solution

X2

= 36
y(x) 5 (36)

8. CONCLUSION

The aim of the present work is to suggest an efficient method for
solving non homogeneous differential equation with IVP by
reducing an integral equation into a set of algebraic equations
with the help of operational matrix. It is also shown the QLMW
provides an exact solution. This work shall facilitate in solving

[JCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume 75— No.15, August 2013

real-world problems, such as related to the mathematical physics
and digital electronics etc.
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