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ABSTRACT 

A Stress Intensity Factor (SIF) Mode I is calculated for 

longitudinal composite plate with dimensions (104 mm × 40 

mm) and fiber volume fraction (37.5%).The finite element 

method (FEM) (ANSYS) and MFree method are used for 

calculating the SIF of quarter model (i.e. (52 mm × 20 mm))  

with constant displacement in y- direction that is applied at 

the ends of the plate. The crack length, material properties of 

fiber and material properties of matrix affect the SIF and these 

parameters are studied to understand the crack growth and the 

fracture mechanism in composite material. The value of SIF 

depends on the position of crack tip in additional to the 

material properties of fiber and matrix.  

A comparison between the FEM and MFree method is made 

to study the advantages and disadvantages of each method and 

to choose the suitable method for calculating SIF for 

composite plate. Generally, there is a good agreement 

between the FEM and MFree method but there is a slightly 

difference between them specially when the crack length 

increases. This slight difference happens due to the 

calculation technique of SIF used in each method. This 

difference makes the FEM accurate than the MFree method 

unless increasing the number of nodes around the crack tip in 

MFree method. 
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INTRODUCTION 
Due to their high strength to weight and stiffness to weight 

ratio, composite materials are being used extensively in the 

manufacturing of aerospace structures, automobile parts and 

even in construction and repair of buildings and bridges. 

Additional attributes like low thermal and electrical 

conductivity make them attractive replacement for many 

conventional metals. One area in which these materials lag 

behind metals is the resistance to fracture. Most often the 

thermosetting resins used as the matrix in fiber composites are 

inherently brittle and hence susceptible to fracture during 

service. The orthotropic nature of composites adds complexity 

to the analysis of these materials; however, there enough 

literature exists addressing the analysis procedure for 

structures made of composites [1].   

According to linear elastic fracture mechanics (LEFM), the 

behavior of a crack in any brittle material can be characterized 

completely by a single parameter known as the stress intensity 

factor (SIF). The crack becomes unstable once a critical level 

of the SIF is reached and hence the determination of the SIF 

for a given loading and geometry is very important in the 

analysis of cracked structures. In unidirectional fiber 

composites, the behavior of cracks aligned along the fiber can 

be very well characterized by the SIF [2]. Different 

experimental techniques have been used in the past to 

determine the SIF for cracks in composites by various 

researchers. Singular stress field in the neighborhood of the 

periphery of an annular crack was studied by Gdoutos et al. 

[3]. The case of fiber debonding originating from the annular 

crack was also considered. In the study, they calculated KI 

and KII stress intensity factors and energy release rates. The 

energy release rate was derived by Liu and Kagawa [4] for an 

interfacial debonding of a crack in a ceramic–matrix 

composite and they used the Lame solution for an 

axisymmetric cylindrical fiber/matrix model. A numerical 

solution was carried out for the problem of interface crack by 

Aslantas and Tasgetiren [5]. Variations in the stress intensity 

factors KI and KII, with load position were obtained for 

various cases such as different combinations of material of 

coating layer and substrate, changes in the coefficient of 

friction on the surface. Xia et al. [6] analyzed fatigue crack 

initiation in SiC fiber (SCS-6) reinforced titanium on the basis 

of a finite element model. Their results showed that the 

formation of matrix crack largely depends on the applied 

stress and reaction layer thickness. A new method that obtains 

the complex stress intensity factor was presented by Bjerken 

and Persson, [7] (or alternatively the corresponding energy 

release rate and mode mixity) for an interface crack in a 

bimaterial using a minimum number of computations. 

Dirikolu and Aktas [8] carried out a comparative study 

regarding the determination of stress intensity factors for 

nonstandard thin composite plates. Carbon–epoxy composite 

plates were also considered for the study.  

A number of methods have been used for the determination of 

stress intensity factors [9-13].One of these methods is a 

numerical method like Green's function, weight functions, 

boundary collocation, alternating method, integral transforms, 

continuous dislocations and finite elements methods. In this 

paper, the finite elements method and free mesh method 

(MFree Method) were used to calculate the stress intensity 

factor (KI) (Mode I) for unidirectional composite material. 

1. THE FINITE ELIMENET METHOD 

Aslantas [14] presented a numerical model developed for the 

analysis of a cylindrical element of matrix containing a single 

fiber. He used the finite element method (ANSYS 6.1) in 

order to create his model. He assumed a ring-shaped crack at 

interface of fiber and matrix. Both layers in the model were 

bonded perfectly with the exception of the crack faces. 

Contact elements, which had bonded feature, were used 
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between fiber and matrix. He used displacement correlation 

method to calculate opening-mode and sliding-mode stress 

intensity factors. These results obtained from the analysis help 

to understand the debonding phenomenon between fiber and 

matrix interface. He discussed effects of the mechanical 

properties of fiber and matrix on direction of crack 

propagation. 

Chandwani et al [15] used the ANSYS software to calculate 

the three dimensional stress intensity factors and energy 

release rate. They discussed, in their paper, the topology and 

meshing in relation to three dimensional cracks in additional 

to three dimensional crack growth. For three dimensional 

finite element method, Chin [16] investigated how a crack 

propagates and grows in a typical Ti-6Al-4V aerospace 

bracket. He simulated crack growth and computed the stresses 

and the stress-intensity factor. He compared the ANSYS 

results with the crack growth program FRANC3D. 

A comparison between six models, calculating stress intensity 

factor (SIF) mode I for central cracked plate with uniform 

tensile stress, was made by Al-Ansari [17] in order to select 

the suitable model. He found that the quarter ANSYS model 

is a suitable model calculating stress intensity factor (SIF) 

mode I for central cracked plate with uniform tensile stress. 

In this paper, the stress intensity factor (SIF) mode I for 

composite plate was computed using ANSYS software [17]. 

The procedure that was proposed by Phan [18] is used.  Phan 

used a quarter two dimensions model for central cracked 

plate. 

 

2. THE MESHLESS (MFee) METHOD 
A meshless method is defined in a broad sense as a method 

where nodes are not required to be interconnected. Based on 

the formulation, meshless methods can generally be divided 

into two major categories: methods based on strong form 

formulations and methods based on weak form formulations. 

Most of the current meshless applications have been based on 

the Galerkin (global weak-form) formulation. Galerkin based 

meshless methods are similar to FEM in that they both require 

numerical integration to form the disrectised system of 

equations. However, unlike FEM where the basis functions 

are simple piecewise polynomials, the basis functions used for 

meshless methods are often highly nonlinear and not in closed 

form, as they must satisfy a number of stringent requirements 

[19]. Some commonly used methods for generating the basis 

functions include the moving least square (MLS) method [20], 

the reproducing kernel particle method (RKPM) [19] and 

point interpolation method [21]. 

Guiamatsia et.al. [22], observed delamination and matrix 

cracking by post-mortem analysis of laminated structures 

containing geometrical features such as notches or bolts. The 

finite element tools, that they used, cannot explicitly model an 

intralaminar matrix microcrack, except if the location of the 

damage is specified a priori. They used meshless technique, 

the Element-Free Galerkin (EFG) method, to utilize for the 

first time to simulate delamination (interlaminar) and 

intralaminar matrix microcracking in composite laminates. 

The Meshless Local Petrov-Galerkin method (MLPG) was 

used by Ching and Batra [23] for determining of crack tip 

fields in linear elastostatics. They shown that the MLPG 

method augmented with the enriched basis functions and 

either the visibility or diffraction criterion successfully 

predicts the singular stress fields near a crack tip. 

H. N. Azuz [24] presents an efficient numerical Meshless 

method in the formulation of the local weak form by Meshless 

Local Petrov-Galerkin "MLPG" method who is shape function 

derived using the Moving Least Squares "MLS" 

approximation. The modified MLPG formulation was 

employed for problems in Linear Elastic Fracture Mechanics 

"LEFM". He calculated the stress intensity factors for the 

mode-I and mode-II depending on the potentiality of the 

MLPG. 

3. THE MFee METHOD 

FORMULATION REQUIREMENTS 
Eight regular nodal configurations will be formed for a 

quarter model of the problem. For the sake of illustration, Fig. 

(1) exhibits the nodal distribution for one model where the 

width of the plate is (52 mm) and the height is (20 mm). 

 

Fig. (1): MFree Modeling for Composite Material ( The Nodal Distribution  

for the Global Domain). 
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The Meshless Local Petrov-Galerkin (MLPG) method  

formulation requirements for each of the predefined 

configurations involves the following: 

For the Moving Least Squares (MLS) approximation and for 

each influence node, it is suggested to use the linear basis and 

the quartic spline weight function over a circular local support 

domains (Ωw) [24]. 

The test function constructed over a local sub-domain (Ωt)  of 

size equals to the nodal spacing using the same quartic spline 

weight function. 

 of Gaussian integration points are used in each local 

sub-domain for the domain integral, and  Gaussian 

integration points are used for the boundary integral.  

The essential boundary conditions are enforced using  

  as the penalty factor [21]. 

More details about theoretical formulation of the MLPG 

method can be seen in the literatures.  

    The total number of nodes for each quarter discretized 

model of  are listed 

below in Table (1). 

Table (1) Nodal Number for Each Model. 

Model 
Crack length (2a) 

(mm) 

Total number of 

nodes (N) 

1 3 2200 

2 8 2411 

3 16 2522 

4 24 2534 

5 32 2534 

6 40 2534 

7 48 2534 

8 56 2534 

It is important here to mention that MFree formulation 

technique has the potentiality to assemble/glue the two 

materials (Matrix& Fiber) of the plate respectively through 

the implicit using local support domains in the formulation 

which takes the account to coalescence the whole strips as one 

domain, however, each strip still has its own properties. 

4. THE CALCULATION TECHNIQUE 

OF STRESS INTENSITY FACTOR 
In this work,  the calculation of SIF using MLPG method had 

been accomplished using a special technique which is very 

adequate with general Meshless methods, and here is a deep 

explanation about it: 

It is suggested to take a segment started exactly on the crack 

tip and outstretched   straightly a head of the crack line 

 having  length less than of 2% of the crack length 

, then, a sufficient number of nodes will spread  

along this segment i.e. divided it to a sub-segments ( here the 

potentiality of Meshless methods appears). In order to 

calculate SIF, an investigation of the stress field near/ahead of  

the crack tip will be done through calculating the stress at 

each node on the gone segment, subsequently, plot on 

logarithmic scale these stresses against the effective radii    

to the crack tip which have the singular value of stress. 

Afterward, a linear curve fitting on the got data will be 

achieved which absolutely represent the behavior of stress 

field nearly around/ahead of the crack tip, hence, its easily to 

get the singular stress at the crack tip  from which it 

possible to use the ASTM E399 equations to estimate SIFs, 

see Fig.(2).  Theoretically, It's known that the slop of the fitted 

line equals to (-0.5) where  .   

 

Fig.(2): SIFs Calculation Technique Where; the Fitted 

Line Represent the Behavior of the Singular Stress Field 

Which Theoretically Have a Slope of (-0.5). 

Now it is important to explain that the calculated SIF for 

composite materials near/on interface line between two 

materials is not affected and it depends on the stress field 

near/around the influence node position since, in MFree 

Methods, the calculation technique depends on the size of the 

local support domain for each influence node which has the 

mutual-effect of a sufficient number of neighboring nodes 

included inside it which also provide the coalescence of the 

two materials, see Fig.(3). 
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Fig.(3): MFree Handling for Interface Line in Composite Material  

With Cracks near/on it. 

 

5. CASE STUDY 
Several parameters are important in fracture of composite 

materials study like properties of fiber, properties of matrix, 

volume fraction of fiber, dimensions of fiber, dimensions of 

matrix, crack dimensions and dimensions of plate. In this 

work, the following parameters are used: 

(1) Properties of composite Plate: 

In this work, eight types of composite plate are used and 

their properties are maintained in Table (2). 

Table (2): Required Properties of Composite Plate 

No. 

Properties of Fiber Properties of Matrix 

Name 

Modulus of 

Elasticity 

(MPas.) 

Spacipifi

c 

Gravity 

Poisson 

Ratio 
Name 

Modulus of 

Elasticity 

(MPas.) 

Spacipific 

Gravity 

Poisson 

Ratio 

1. Glass 83.5 2.5 0.3 Epoxy 3.3 1.25 0.4 

2. Carbon (HS) 300 1.75 0.32 Epoxy 3.3 1.25 0.4 

3. Boron 405 2.25 0.33 Epoxy 3.3 1.25 0.4 

4. Carbon (HM) 850 1.78 0.34 Epoxy 3.3 1.25 0.4 

5. Glass 83.5 2.5 0.3 Nylon 2.65 1.23 0.41 

6. Carbon (HS) 300 1.75 0.32 Nylon 2.65 1.23 0.41 

7. Boron 405 2.25 0.33 Nylon 2.65 1.23 0.41 

8. Carbon (HM) 850 1.78 0.34 Nylon 2.65 1.23 0.41 

 

(2) Dimensions of Plate: 

The Dimensions of composite plate are (104 mm) width and 

(40 mm) height. But the dimensions of the ANSYS model and 

MFree model are (52 mm) width and (20 mm) height as 

maintained before because the plate contains central crack 

(i.e. symmetry condition). In other words, we take the quarter 
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plate only. While the thickness of plate is negligible because 

the two dimensional models were assumed. But  the plate 

must be thin in order to apply the plane strain criteria. 

(3) Volume Fraction of Fiber and Matrix: 

The volume fraction of fiber (Vf) is (0.375) or (37.5%) and 

the volume fraction of matrix (Vm) is (0.625) or (62.5%). This 

volume fraction were chosen because the effect of fiber 

distribution on the stress intensity factor (SIF) appears 

significantly. 

(4)Dimensions of Fiber and Matrix: 

At the beginning, the diameter of fiber was assumed as (3 

mm).The dimensions of fiber are (3 mm) diameter and (40 

mm) height or length. The number of fibers can be calculated 

using the volume fraction of fiber and it was (13) fiber 

(Nfiber=13). Also, the number of matrices and  width of matrix 

can be calculated using volume fraction of matrix. The 

number of matrices was (14) (Nfiber=14) and the width of 

matrix was (4.643 mm) and height or length of matrix was (40 

mm).Table (3) is summarized the dimensions of fiber and 

matrix. 

Table (3): The Dimensions of Fiber and Matrix. 

 Fiber Matrix 

Number 13 14 

Diameter or Width 3 mm 4.643 mm 

Height or Length 40 mm 40 mm 

Volume Fraction 37.5% 62.5% 

(5) Crack Length (2a): 

In this paper, eight crack length (2a) values were used (i.e. 

eight different configurations of ANSYS model and MFree 

model). The crack lengths (2a) were (3, 8, 16, 24, 32, 40, 48 

and 56 ) mm. 

(6) The Applied Load: 

The constant displacement in y-direction, that is applied on 

the upper edge of the composite plate, is used in this paper. 

6. RESULTE AND DISCUSSION 
(1) SIF (Mode I) of Composite Plate: 

Figures (4 – 11) show the comparison between the MFree 

method and FEM method (using ANSYS) for different 

materials and for different crack length. From these figures  

the SIF (Mode I) will increase and decrease according to the 

position of crack tip. If the crack tip is in fiber region the SIF 

will be larger than that was in the matrix region. That happens 

because the properties of fiber (specially Modulus of 

Elasticity) is larger than that of matrix. Also, when the 

materials of the composite plate (i.e. fiber and matrix) change, 

the curves will be similar in shape but different  in the values. 

Also in MFree method, the SIF generally decreases slightly 

when the crack length increases. But in FEM, SIF increases 

slightly when the crack length increases. Therefore, the FEM 

is more accurate than MFee method because the calculation 

technique of SIF used in MFree method was not accurate like 

J-Integral method used in FEM. 

(2) Effects of Crack Length and Modulus of Elasticity of 

Fiber on SIF (Mode I): 

Figures (12 – 13) show the comparison between the values of 

SIF at crack length (0.006 m) for the two matrices that are 

used in composite plate (i.e. Epoxy matrix and Nylon matrix) 

when  the fiber type changes. In FEM (ANSYS) (i.e. 

Fig.(12)), when the matrix material is Epoxy the SIF will be 

larger than that of Nylon. Also, the SIF increases when the 

modulus of elasticity of fiber increases. But in MFree method 

(i.e. Fig.(13)), the SIF is the same for the two types of matrix 

material. But the SIF increases when the modulus of elasticity 

of fiber increases too. In the same way,  

Fig. (14) to Fig.(27)  can be divided into two groups 

depending on the behavior of the increasing. The first group 

contains figures (14,15, 18,19,22,23, 26 and 27). In other 

words, the first group contains figures when the crack length 

(2a) is (0.008, 0.024, 0.04 and 0.056) m. Generally in FEM 

(ANSYS), when the matrix material is Epoxy the SIF will be 

larger than that of Nylon and the SIF increases when the 

modulus of elasticity of fiber increases. Also, in MFree 

method, when the Modulus of Elasticity of fiber increases, the 

SIF be constant for the two types of matrix material. But the 

SIF, when the matrix is Epoxy, is larger than that when the 

matrix is Nylon. The second group contains figures (16,17, 

20,21, 24 and 25). In other words, the second group contains 

figures when the crack length (2a) is (0.016, 0.032and 0.048) 

m. The  SIF values are congruent when the matrix material is 

Epoxy or Nylon and for FEM or MFree method. But, the SIF 

increases when the Modulus of Elasticity of fiber increases.  

This differences between the previous figures happened 

because the difference in the calculation method between the 

FEM (ANSYS) and MFree method and the position of crack 

tip. For example, when the crack length is (0.016)m, the crack 

tip is in matrix region and the region before the crack tip is 

fiber region. In Mfree method (as mentioned before), the 

calculation procedure  takes (2%) of crack length after the 

crack tip (or ahead of crack tip) and that means the points 

used in calculation are still near the neighboring fiber region. 

Since the applied load is constant displacement on the upper 

edge, the stress in fiber region is greater than that in matrix 

region due to difference in Modulus of Elasticity. Therefore, 

SIF increases when the  Modulus of Elasticity of  fiber 

increases. In the FEM (ANSYS), three points are used to 

calculate SIF. These points are crack tip and two points in the 

region before the crack tip [17,18]. Therefore, SIF increases 

when the  Modulus of Elasticity of  fiber increases. 

When the crack length is (0.024)m, the crack tip is in matrix 

region and the region before the crack tip is matrix region too 

but the region after crack tip is approximately fiber region. 

The stress in the region before the crack tip is smaller than the 

that in the region after the crack tip. Therefore the SIF is 

constant when the Modulus of Elasticity of  fiber increases. In 

the FEM (ANSYS), three points in the region before the crack 

tip is in matrix region. The SIF increases slightly when the  

Modulus of Elasticity of  fiber increases. This increasing 

happens because number of nodes around the crack tip in 

FEM is greater that than used in MFree method and this make 

the FEM is more sensitive than MFree method in calculating 

the stresses around the crack tip.  

(3) Comparison Between FEM and MFree Method: 

Fig.(28) and Fig.(29) show the  comparison between the SIF 

of four composite plates that matrix are Epoxy calculating by 

finite element method (ANSYS) and MFree method 

respectively. In Fig.(28), the value of SIF, calculating by 

finite element method, increase when the modulus of 

elasticity of fiber increases and the maximum SIF increase 

when the crack length increases. But in Fig.(29), the value of 

SIF, calculated by MFree method, increases when the 

modulus of elasticity of fiber increases and the maximum SIF 

decreases when the crack length increases. The same behavior 

shown in Fig.(30) and Fig.(31) when the matrix of composite 

plates is Nylon. 

From the all figures, there is a good agreement between the 

finite element method and MFree method for calculating SIF 

of central crack in composite plate. 
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7. CONCLUSION 
From previous discussion, the following points can be 

concluded: 

1- The SIF in longitudinal composite  plate changes , 

depending on the position of crack tip,  when the crack length 

increases. In other words, when the crack length increases, the 

value of SIF may be increase or decrease depending on the 

position of crack tip.    

2- The changing of SIF, when the crack length increase, gives 

a good explanation for  the fracture in composite materials 

and gives the answer for the question " why the crack cannot 

growth through the fiber and matrix in composite material". 

3- The changing in Modulus of Elasticity of fiber and/or 

matrix does not effect on the shape of changing the SIF but it 

effects the values of SIF. 

4- The FEM is more accurate than the MFree method because 

of its ability to describe the interaction between the fiber and 

matrix properties and the calculation technique of SIF used in 

each method. The accuracy of MFree method can be increased 

by increasing the number of nodes, generally in the model and 

specially around the crack tip. 

5- For the same Modulus of Elasticity of matrix, the SIF 

increases when the Modulus of Elasticity of fiber increases at 

any position of crack tip. 

Finally, the volume fraction of fiber, crack orientation and 

type of applied load in longitudinal composite plate can be 

studied in future work to describe their effects in the SIF. 

 

  

Fig.(4): Comparison Between SIF (Mode I) for Glass 

– Epoxy Composite Plate Calculating by MFree and 

FEM (Using ANSYS) With Varying Crack Length. 

Fig.(5): Comparison Between SIF (Mode I) for Carbon 

(HS) – Epoxy Composite Plate Calculating by MFree 

and FEM (Using ANSYS) With Varying Crack Length. 

  
Fig.(6): Comparison Between SIF (Mode I) for 

Boron – Epoxy Composite Plate Calculating by 

MFree and FEM (Using ANSYS) With Varying 

Crack Length. 

Fig.(7): Comparison Between SIF (Mode I) for Carbon 

(HM) – Epoxy Composite Plate Calculating by MFree 

and FEM (Using ANSYS) With Varying Crack Length. 

  

Fig.(8): Comparison Between SIF (Mode I) for Glass 

– Nylon Composite Plate Calculating by MFree and 

FEM (Using ANSYS) With Varying Crack Length. 

Fig.(9): Comparison Between SIF (Mode I) for Carbon 

(HS) – Nylon Composite Plate Calculating by MFree 

and FEM (Using ANSYS) With Varying Crack Length. 
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Fig.(10): Comparison Between SIF (Mode I) for 

Boron – Nylon Composite Plate Calculating by 

MFree and FEM (Using ANSYS) With Varying 

Crack Length. 

Fig.(11): Comparison Between SIF (Mode I) for 

Carbon (HM) – Nylon Composite Plate Calculating by 

MFree and FEM (Using ANSYS) With Varying Crack 

Length. 

  
Fig.(12): Comparison Between The SIF (Mode I) for 

Composite Plate Calculating by FEM (Using ANSYS) 

With Varying Fiber's Modulus of Elasticity When the 

Crack Length is (0.003)m. 

Fig.(13): Comparison Between The SIF (Mode I) for 

Composite Plate Calculating by MFree With Varying 

Fiber's Modulus of Elasticity When the Crack 

Length is (0.003)m. 

  
Fig.(14): Comparison Between The SIF (Mode I) for 

Composite Plate Calculating by FEM (Using ANSYS) 

With Varying Fiber's Modulus of Elasticity When the 

Crack Length is (0.008)m. 

Fig.(15): Comparison Between The SIF (Mode I) for 

Composite Plate Calculating by MFree With Varying 

Fiber's Modulus of Elasticity When the Crack 

Length is (0.008)m. 

  
Fig.(16): Comparison Between The SIF (Mode I) for 

Composite Plate Calculating by FEM (Using ANSYS) 

With Varying Fiber's Modulus of Elasticity When the 

Crack Length is (0.016)m. 

Fig.(17): Comparison Between The SIF (Mode I) for 

Composite Plate Calculating by MFree With Varying 

Fiber's Modulus of Elasticity When the Crack 

Length is (0.016)m. 
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Fig.(18): Comparison Between The SIF (Mode I) for 

Composite Plate Calculating by FEM (Using ANSYS) 

With Varying Fiber's Modulus of Elasticity When the 

Crack Length is (0.024)m. 

Fig.(19): Comparison Between The SIF (Mode I) for 

Composite Plate Calculating by MFree With Varying 

Fiber's Modulus of Elasticity When the Crack 

Length is (0.024)m. 

  

 

  
Fig.(20): Comparison Between The SIF (Mode I) for 

Composite Plate Calculating by FEM (Using ANSYS) 

With Varying Fiber's Modulus of Elasticity When the 

Crack Length is (0.032)m. 

Fig.(21): Comparison Between The SIF (Mode I) for 

Composite Plate Calculating by MFree With Varying 

Fiber's Modulus of Elasticity When the Crack 

Length is (0.032)m. 

  
Fig.(22): Comparison Between The SIF (Mode I) for 

Composite Plate Calculating by FEM (Using ANSYS) 

With Varying Fiber's Modulus of Elasticity When the 

Crack Length is (0.04)m. 

Fig.(23): Comparison Between The SIF (Mode I) for 

Composite Plate Calculating by MFree With Varying 

Fiber's Modulus of Elasticity When the Crack 

Length is (0.04)m. 

  
Fig.(24): Comparison Between The SIF (Mode I) for 

Composite Plate Calculating by FEM (Using ANSYS) 

With Varying Fiber's Modulus of Elasticity When the 

Crack Length is (0.048)m. 

Fig.(25): Comparison Between The SIF (Mode I) for 

Composite Plate Calculating by MFree With Varying 

Fiber's Modulus of Elasticity When the Crack 

Length is (0.048)m. 
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Fig.(26): Comparison Between The SIF (Mode I) for 

Composite Plate Calculating by FEM (Using ANSYS) 

With Varying Fiber's Modulus of Elasticity When the 

Crack Length is (0.056)m. 

Fig.(27): Comparison Between The SIF (Mode I) for 

Composite Plate Calculating by MFree With Varying 

Fiber's Modulus of Elasticity When the Crack 

Length is (0.056)m. 

  
Fig.(28): Comparison Between the SIF (Mode I) for 

Composite Plate for Different Fiber Modulus of Elasticity  

Calculating by FEM (Using ANSYS) With Varying Crack 

Length When the Matrix is Epoxy. 

Fig.(29): Comparison Between the SIF (Mode I) for 

Composite Plate for Different Fiber Modulus of Elasticity  

Calculating by MFree Method With Varying Crack Length 

When the Matrix is Epoxy. 

  
Fig.(30): Comparison Between the SIF (Mode I) for 

Composite Plate for Different Fiber Modulus of Elasticity  

Calculating by FEM (Using ANSYS) With Varying Crack 

Length When the Matrix is Nylon. 

Fig.(31): Comparison Between the SIF (Mode I) for 

Composite Plate for Different Fiber Modulus of Elasticity  

Calculating by MFree Method With Varying Crack Length 

When the Matrix is Nylon. 
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