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ABSTRACT 
 In this paper a stochastic model for a single unit repairable system with 

Preventive Maintenance (PM) under warranty is analyzed in details by 

using supplementary variable technique.The cost of repair during 

warranty is born by the manufacturers, but warranty does not apply to 

product failure due to user-induced damage such as cracked screen or 

cracked casing, accident, misuse, physical damage, damage due to 

liquid and unauthorized modifications etc. within warranty period. Unit 

goes under PM during warranty and works as new after PM. There is a 

single server who always remains with the system. The time to failure 

of the system follows negative exponential distribution while PM and 

repair time distributions are taken as arbitrary. The expressions for 

some economic measures such as reliability, mean time to system 

failure (MTSF) and availability have been derived.A particular case is 

considered to highlight the behaviour of reliability and profit function.  

Keywords: Stochastic model, Single-Unit System, Warranty, 

Preventive Maintenance and Reliability.  

1. INTRODUCTION 
Single-unit systems have been widely studied in the literatue of 

reliability due to their frequent use in mordern bussiness and industries. 

Many researchers including Arekar et al. [1], Kadyan et al. [3], Kadyan 

and Promila [4], Kharoufeh J.P. et al. [5], Malik et al. [6], Proctor and 

Singh [7], Shakuntla et al. [8] and Uematsu and Nishida [9] have 

analysed single-unit sysytems under a common assumption that the unit 

works continuously till failure without undergoing PM. 

The continued operation of the systems may reduce performance and 

reliability of the system.Therefore, PM of the unit is necessary after a 

specific period of time at any stage of operation to improve the 

reliability and availability of the system because the cost to repair the 

system after its failure is greater than the cost of maintaining the system 

before its failure. Jin et al. [10] have studied reliability models with PM 

and without considering any warranty and service contract. But, 

warranty acts as an insurance in the event of an early failure of the 

product. Better warranty terms serve as an indicator of the reliability of 

the product and may increase sales.  

 

 

 

 

 

 

 

 

 

However, the concept of single-unit system with PM under warranty 

has not appeared in the literature so far 

Thus, in view of the above observations here we analyzed a single unit 

repairable system with PM under warranty by using supplementary         

variable technique.The cost of repair during warranty is born by the 

manufacturers, but warranty does not apply to product failure due to 

user-induced damage such as cracked screen or cracked casing, 

accident, misuse, physical damage, damage due to liquid and 

unauthorized modifications etc. within warranty period. Unit goes 

under PM during warranty and works as new after PM. There is a 

single server who always remains with the system. The time to failure 

of the system follows negative exponential distribution while PM and 

repair time distributions are taken as arbitrary. The expressions for 

some economic measures such as reliability, MTSF and availability 

have been derived. A particular case is considered to highlight the 

behaviour of reliability and profit function. 
 

2. MODEL ASSUMPTIONS 

(1)  The system has a single unit 
(2) There is single server, which is always available with the system. 
(3)  The repair of the unit within warranty is born by the manufacturer. 

(4) Warranty does not apply to product failure due to user-induced     

damage within warranty period. 

(5)  PM is made during warranty period. 

(6)  The unit works as new after repair and PM. 

(7) The distribution of failure time is taken as negative exponential 

while the PM and repair time are considered as arbitrary. 

(8)  Switching is perfect. 
 

3. MODEL DEVELOPMENT 

3.1. State-Specification 

0 1/s s   The unit is operative under warranty period/ beyond warranty 

period. 

3 4/s s   The unit is in failed state under warranty period/ beyond       

warranty period. 
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2s       The unit is under PM. 

3.2. Notations 

1/        Constant failure rate of the unit within warranty 

period/beyond warranty period. 

                Constant rate of completion of warranty period. 

m           Transition rate which  transits the operative unit under PM. 

1 1( ), ( ) / ( ), ( )x s x x s x    Repair rate of the unit and probability density   

function, for the elapsed repair time ‘x’ in 

warranty period/ beyond warranty period. 

2 2( ), ( )y s y                      PM rate of the unit and probability density 

function, for the elapsed PM time ‘y’. 

0 1( ) / ( )p t p t                       The Probability that at time t the system is in 

good state in warranty period/ beyond 

warranty period. 

3 4( , ) / ( , )p x t p x t       The Probability that at time t the system is in 

failed state in warranty period/ beyond 

warranty period, the repair time lies in the 

interval (x,x+∆). 

 
2( , )p y t                          The Probability that at time t the system is         

                                         under PM, the elapsed PM time is ‘y’. 

 ( )p s                                Laplace transform of function ( )p t  

2( )s y                            
2

0
( )

2( )

y

y dy

y e



 
 
 

 

1( )s x                             
1

0
( )

1( )

x

x dx

x e



 
 
   

( )s x                              0
( )

( )

x

x dx

x e



 
 
 

 


                                     

Definite integral from 0 to ∞ 

Using the probabilistic arguments and limiting transitions, we have the 

following difference-differential equations (Cox D.R. [2]): 

0 3 2 2( ) ( ) ( , ) ( ) ( , )m p t x p x t dx y p y t dy
t

    
 
      

          (1) 

1 1 0 1 4( ) ( ) ( ) ( , )p t p t x p x t dx
t

  
 
    

                                       (2) 

3( ) ( , ) 0x p x t
t x


  
     

                                                   (3) 

2 2( ) ( , ) 0y p y t
t y


  

   
  

                                                          (4)                                                                                            (4) 

1 4( ) ( , ) 0x p x t
t x


  
     

                                                   (5) 

The boundary and initial conditions to be satisfied are given below 

Boundary conditions 

3 0(0, ) ( )p t p t                                                                    (6)                                                                                                                  

2 0(0, ) ( )mp t p t                                                                               (7)                                                                                                 (7) 

4 1 1(0, ) ( )p t p t                                                                                (8)                                                                                                 (8) 

Initial conditions 

(0) 1;ip   when 0i   

(0) 0;ip  when  0i                                                                         (9)

 

 

 

 

 

 

 

 

                                                                           1              

     

      1( )x   

m           
2 ( )y              ( )x             

                                                                

S2                                
S3

                                                    : Up state 

                                                                      : Failed state 

                                             Fig 1: Transition diagram of the model 
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       4. MODEL ANALYSIS 

4.1. Solution of the equations 
Taking Laplace transforms of equations (1)-(8) and using (9) we obtain   

  0 3( ) 1 ( ) ( , )ms p s x p x s dx           

                                    2 2( ) ( , )y p y s dy                                (10)                                                                                

 1 1 0 1 4( ) ( ) ( ) ( , )s p s p s x p x s dx                                    (11)                                                                                                                                     

3( ) ( , ) 0s x p x s
x


 
    

                                                          (12)                                                                                                                                       

2 2( ) ( , ) 0s y p y s
y


 

   
 

                                                       (13)                                                                                                                                  

1 4( ) ( , ) 0s x p x s
x


 
    

                                                       (14)                                                                                                          

3 0(0, ) ( )p s p s                                                    (15)                                                                                        

2 0(0, ) ( )mp s p s                         (16)                                                                                                          

4 1 1(0, ) ( )p s p s                    (17)                                                                                                          

Integrating equation (12) and further using (15) we get 

0
( )

3 3( , ) (0, )

x

sx x dx

p x s p s e


 
  
 

                    (18)                                                                                        

Similarly integrating equation (13) and further using (16) we get 

2
0

( )

2 2( , ) (0, )

y

sy y dy

p y s p s e


 
  
 

                                  (19)                                                                                                           

Similarly integrating equation (14) and further using (17) we get 

1
0

( )

4 4( , ) (0, )

x

sx x dx

p x s p s e


 
  
 

                                  (20)                                                                                                          

Using equations (16) and (19), equation (10) yields 

  0
( )

0 3 3( ) 1 (0, ) ( ) ( , )

x

sx x dx

ms p s p s x p x s e dx


   
 
  
 

       

2
0

( )

2 2 0(0, ) ( ) 1 ( ) ( )

x

sy y dy

p s e y dy p s S s


 
 
  
 

    

0 2( ) ( )m p s S s                                                        (21) 

0

1
( )

( )
p s

T s
                   (22)                                                                                                           

where    2( ) 1 ( ) 1 ( )mT s s S s S s                             (23)                                                                                                            

Using equations (16)-(17) and (19)-(20), equation (11) yields 

 
1

0
( )

1 1 0 4 1( ) ( ) (0, ) ( )

x

sx x dx

s p s p s p s x e dx


  
 
  
 

        

     
0 1 1 1( ) ( ) ( )p s p s S s                  (24)                                                                                                                                                            

1

( )
( )

( )

A s
p s

T s
                        (25)                                                                                                          

where  
 1 1 1

( )
( )

A s
s S s



 


 
                  (26)                                                                                                            

Now, the Laplace transform of the probability that the system is in the 

failed state is given by 

 
3 3 0

1 ( )
( ) ( , ) ( )

S s
p s p s x dx p s

s



   

3

( )
( )

( )

B s
p s

T s


                         (27)                                                                                                          

where   
 1 ( )

( )
S s

B s
s


                         (28)                                                                                                                    

Similarly   
 2

2 2 1

1 ( )
( ) ( , ) ( )m

S s
p s p s y dy p s

s



   

 
2

( ) ( )
( )

( )

m A s C s
p s

T s


                     (29)                                                                                                         

where   
 21 ( )

( )
S s

C s
s


                    (30)                                                                                                               

Similarly  
 1

4 4 1 1

1 ( )
( ) ( , ) ( )

S s
p s p s x dx p s

s



   

 1

4

( ) ( )
( )

( )

A s D s
p s

T s


                     (31)                                                                                                          

where   
 11 ( )

( )
S s

D s
s


                       (32)                                                                                                          

It is worth noticing that 

0 1 2 3 4

1
( ) ( ) ( ) ( ) ( )p s p s p s p s p s

s
                          (33)                                                                                                          

4.2. Evaluation of Laplace transforms of up 

anddown state probabilities 
The Laplace transforms of the probabilities that the system is in up (i.e. 

good) and down (i.e. failed) state at time “t” are as follows 

( )Av s or 0 1( ) ( ) ( )upP s p s p s   

 1 ( )
( )

( )

A s
Av s

T s


                        (34)                                                                                                           

2 3 4( ) ( ) ( ) ( )downP s p s p s p s    

 1( ) ( ) ( ) ( ) ( )
( )

( )

m

down

B s A s D s A s C s
P s

T s

   
      (35) 

4.3. Steady-State Probabilities  
Using Abel’s Lemma in Laplace transforms, viz. 

   
0

lim ( ) lim ( ) ( ),
s n

s Z s Z t Z say
 

   

Provided the limit on the right hand side exists, the following time 

independent probabilities have been obtained. 

 '

1 1

1

1 (0)
Av

S



        (36)                                                                                                          

 
 

'

1 1

'

1 1

(0)

1 (0)
down

S
P

S









                      (37)                                                                                                         

4.4. Reliability Indices  
In order to obtain system reliability, consider repair rates  

 1. ., ( ), ( )i e x x   and PM rate  2( )y  equal to zero. Using the method 

similar to that in section 3, the differential–difference equations are: 

0( ) 0m p t
t

  
 
     

                                                            (38)                                                                                                         

1 1 0( ) ( )p t p t
t

 
 
   

                    (39)                                                                                                          
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Theorem 1. The reliability of the system is given by 

   

 
1

1

( ) m t m

m

R t e
     

   

  
  

  
    

 

           

 
1

1

t

m

e
 

   


 
 

    

 

Proof. Taking Laplace transforms of (38) and (39) and using (9) we 

get 

  0( ) 1ms p s          

 1 1 0( ) ( )s p s p s    

Using the initial conditions, the solution can be written as 

 
0

1
( )

m

p s
s   


  

     

  
1

1

( )
m

p s
s s



   


   
     

0 1( ) ( ) ( )R s p s p s   

    1

1

m ms s s



      
 

      
  

Taking inverse Laplace transform, we get 

   

   
 11

1 1

( ) m t tm

m m

R t e e
      

       

   
    

    
           

      

Corollary 1.The mean time to system failure (MTSF) is:  

 

  
1

1

m

m m

MTSF
  

      

  
  

      

 

            
  1 1m



    

 
  

    

 

Proof. Calculating 
0

( )MTSF R t dt


    

   

   
 11

0
1 1

m t tm

m m

MTSF e e dt
      

       

    
      

                  
  

 

  
1

1

m

m m

MTSF
  

      

  
  

      

 

  1 1m



    

 
  

    

 

 

5. THE WARRANTY COST FOR THE 

MANUFACTURER AND COST FOR 

THE USER 
Suppose that the useful life of the system is L and the warranty 

period [0, W) includes the second and third state, in this case we 

compute the warranty cost for the manufacturer and cost for the 

user as follows. 
 

(1)  The warranty cost for the manufacturer can be represented by  

 
0

W

M RC C failure rate for the third state dt      

 
0

sec
W

PMC failure rate for the ond state dt   

 
0 0

W W

M R PM m PM m RC C dt C dt W C C                             (40)                                                                                                      

where
MC  is the cost for the manufacturer, 

RC  is the repair cost and 

PMC  is the PM cost. 

 

(2) Cost for the user can be represented by  

 
L

B R
W

C C failure rate for the fourth state dt   

 1 1

L

B R R
W

C C dt C L W                                (41)                                                                                                          

where 
BC  is the cost for the user. 

 

6. SPECIAL CASES 

6.1. Availability 
When repair follows exponential time distribution 

Setting 
   

1
1

1

( ) , ( )S s S s
s s

 

 
 

 
 and 

 
2

2

2

( )S s
s







  

where   and 
1  are constant repair rates and 

2  is constant PM rate. 

Putting these values in equations (22)-(26) we get  

0

1
( )

( )
p s

I s
                                                                                     (42)                                                                                                         

where  

    
  

3 2

2 2 2 2 2

2

( )
m ms s s

I s
s s

            

 

          


 

     (43)                                                                                  

1

( )
( )

( )

E s
p s

I s
                                                 (44) 

where  
 

 
1

1 1

( )
s

E s
s s

 

 

 
  

   

                                                         (45)         

( )Av s or 0 1( ) ( ) ( )upP s p s p s   

 
 

  

4 3 2

3 2 1 0

3 2

1 1 2 1 0

s b s b s b s b

s s s s a sa a 

    
 

      

                 (46)                                                                                          

Where   3 1 1 2b          ,   

 2 1 1 1 2 2 1 1 2 2b                    ,  

 1 1 1 2 1 2 1 2 2b               

and  0 1 2b    

and  2 2ma           

 1 2 2 2ma            and  0 2a   

Taking inverse Laplace transforms of equations (46) we get 
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1 2,z z  and 
3z  are three roots of the equation   3 2

2 1 0s s a sa a    

 

6.2. Cost-benefit analysis of the user 

If K1is revenue cost per unit time and expected profit H (t) during the 

interval (0, t] is given by 
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7. NUMARICAL ANALYSIS 

Table-1: Effect of failure rate (  ) on Reliability (R(t)) 

  Time 

in days 
1  

m    
     R(t) 

for λ=0.01 

     R(t) 

for λ=0.02 

      R(t) 

for λ=0.03 

1 0.02 0.04 0.003 0.951273 0.941822 0.932465 

2 0.02 0.04 0.003 0.905003 0.887139 0.869627 

3 0.02 0.04 0.003 0.861066 0.835738 0.811158 

4 0.02 0.04 0.003 0.819342 0.787422 0.75675 

5 0.02 0.04 0.003 0.779718 0.742002 0.70612 

6 0.02 0.04 0.003 0.742086 0.699302 0.659001 

7 0.02 0.04 0.003 0.706345 0.659158 0.615148 

8 0.02 0.04 0.003 0.672398 0.621414 0.574332 

 

 

Table-2: Effect of failure rate (
1 ) on Reliability (R(t)) 

Time 

in days 
  m       

      R(t) 

for
1 =0.01 

      R(t) 

for
1 =0.03 

     R(t) 

for
1 =0.05 

1 0.01 0.04 0.003 0.951287 0.951258 0.951229 

2 0.01 0.04 0.003 0.90506 0.904947 0.904837 

3 0.01 0.04 0.003 0.86119 0.860944 0.860708 

4 0.01 0.04 0.003 0.819557 0.819133 0.818731 

5 0.01 0.04 0.003 0.780045 0.779402 0.778801 

6 0.01 0.04 0.003 0.742544 0.741646 0.740818 

7 0.01 0.04 0.003 0.706952 0.705767 0.704688 

8 0.01 0.04 0.003 0.67317 0.671668 0.67032 
 

Table-3: Effect of transition rate (
m ) on Reliability (R(t)) 

Time  

in days 
  1    

R(t) 

for
m =0.04 

R(t)  

for
m =0.05 

R(t)  

for
m =0.06 

1 0.01 0.02 0.003 0.951273 0.941822 0.932465 

2 0.01 0.02 0.003 0.905003 0.887139 0.869627 

3 0.01 0.02 0.003 0.861066 0.835738 0.811158 

4 0.01 0.02 0.003 0.819342 0.787422 0.75675 

5 0.01 0.02 0.003 0.779718 0.742002 0.70612 

6 0.01 0.02 0.003 0.742086 0.699302 0.659001 

7 0.01 0.02 0.003 0.706345 0.659158 0.615148 

8 0.01 0.02 0.003 0.672398 0.621414 0.574332 
 

Table-4: Effect of rate ( ) of completion of warranty period on 

Reliability(R(t)) 

Time 

 in days 
  1  

m        R(t) 

for α=0.007 

      R(t)  

for α =0.005 

      R(t)  

for α =0.003 

1 0.01 0.02 0.04 0.95133 0.951301 0.951273 

2 0.01 0.02 0.04 0.905223 0.905113 0.905003 

3 0.01 0.02 0.04 0.861541 0.861304 0.861066 

4 0.01 0.02 0.04 0.82015 0.819747 0.819342 

5 0.01 0.02 0.04 0.780927 0.780324 0.779718 

6 0.01 0.02 0.04 0.743754 0.742923 0.742086 

7 0.01 0.02 0.04 0.70852 0.707437 0.706345 

8 0.01 0.02 0.04 0.67512 0.673766 0.672398 
 

Table-5: Effect of repair cost (CR) on Profit of the user (H(t)) 

Time  

in days 

λ =0.01, λ1=0.02, λm=0.04,α=0.003,μ=0.1, 
1 =0.1, 

2 =0.3     

K1 L W 
      H(t) 

For CR=150 

      H(t) 

For CR=100 

     H(t) 

For CR=50 

1 500 10 3 467.7027 474.7027 481.7027 

2 500 10 3 937.9105 944.9105 951.9105 

3 500 10 3 1394.481 1401.481 1408.481 

4 500 10 3 1840.975 1847.975 1854.975 

5 500 10 3 2280.044 2287.044 2294.044 

6 500 10 3 2713.703 2720.703 2727.703 

7 500 10 3 3143.52 3150.52 3157.52 

8 500 10 3 3570.747 3577.747 3584.747 
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8. INTERPRETATION OF THE RESULTS 
Tables 1, 2, 3 and 4 show the behavior of system reliability. Tables 1, 2 

and 3 indicate that the reliability of the system decreases with the 

increase of failure rates (λ), (λ1) and transition rate (λm) with respect to 

(w.r.t.) time and for fixed values of other parameters. From table 4 it is 

analyzed that the reliability of the system increases with the decrease 

of rate of completion of warranty (α) w.r.t. time. Table-5 shows that 

expected profit H (t) during the interval (0, t] increase with the 

decrease of repair cost (CR) from 150 to 50.  

9. CONCLUSION 
From tables 1, 2, 3 and 4, it is concluded that a single unit system with 

PM under warranty can be made more reliable and profitable to use by 

the following ways: 

1)  By decreasing the rate of completion of warranty.  

2)  By decreasing the repair cost. 

Also, PM during the warranty may provide the consumer better product 

service in the postwarranty period and reduce the cost of repairing the 

deteriorated product. 
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