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ABSTRACT 
In this paper we discuss our attempts to find an approximation 

for the optimal wiring on rectangular structure. Here we are  

given a rectangle partitioned into smaller rectangles by axis-

parallel line segments. Find a subset of the segments such that 

the resulting structure from these segments is connected and it 

touches every smaller rectangles. Although these attempts 

have not yielded any satisfactory result but gives direction to 

solve this  problem need a very different approach. 
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1. INTRODUCTION 
Given a rectangle partitioned into smaller rectangles by 

horizontal and vertical line segments, find a set of the line-

segments which touches each rectangle at least at one point on 

its boundry and these segments are connected (i.e., there is a 

path between any two points of these segments ). The 

optimization criterion is to minimize the sum of lengths of 

these segments. 

2. APPROXIMATION BY REDUCING 

TO STEINER TREE PROBLEM 
The trivial solution for the problem is to include the entire 

graph in the solution. The cost of this solution is (L + W) + 
    I + wi) where li and wi are the length and the width of the i-

th rectangle, and L and W are the length and the width of the 

entire floorplan. 

Here we present a simple strategy that gives us a first solltion 

to the wiring problem. 

For convenience treat it as a graph where the vertex set is the 

collection of the corners of all the rectangles and edges are the 

line segments between the vertices in the floor plan. A side is 

a line segment which connects two corners of the same 

rectangle. In general a side may contain more than one edge. 

The edges are weighted by their lengths. Enhance this graph 

to G’ where add a vertex ui to G for each face fi. Connect ui to 

each vertex on the boundry of fi and weight each of these 

edges with 0.5 (li + wi), see figure 1. Now compute an 

approximation for steiner tree for { ui}i. Let its cost be c. Note 

that each leaf vertex of the steiner tree must be a ui vertex 

(converse may not be true). Further, modify the tree as 

follows. If any ui has degree greater than 1, then replace ui 

and include the sides of that rectangle to maintain the 

connectivity. Observe that the cost of the solution will not 

exceed since two of the new edged cost (li + wi). The resulting 

tree is a subgraph of G and it must touch all the faces 

therefore it is a potential solution. 

Let t is the optimal cost of the wiring solution. By adding an 

edge from each ui to one of the vertices in the solution gives a 

candidate for the steiner tree for {ui}i. Robins and Zelikovsky 

[1] have offered a 1.55-factor approximation for the steiner 

tree problem. Thus c≤ 1.55t +0.5    I + wi). 

 

Figure 1: Transformed graph for rectangular wiring 

problem 

3. PRIMAL-DUAL APPROACH 
Goemans and Williamson [2] discussed generic problem, 

called constrained forest problem. It is the generalization of 

several problems such as steiner tree, T-join, perfect 

matching, exact-partitioning etc. It is described as follows. 

Given a graph (V, E) and a proper function f : 2V→ {0, 1}. 

The function is said to be proper if (i) f(A) = f(V –A)   A   

2V, and (ii) if f(A) = f(B) =0 then f (A  B) = 0 for all A, B    

2V s.t. A  B = . The objective is to find a minimum cost 

forest H in the given graph such that for each A    2v, if f(A) 

= 1 then there is an edge in the forest between A and V-A.  
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The problem is states as an integer program as follows. 

Min         exe 

Subject to 

                               x( (S)) f(S),   S s.t.   ≠S   V 

                               xe   {0,1 },   e  E 

where   (S) denotes the set of edges having exactly one end 

point in S and x(F) =        e. .  

The forest is given by { e: xe = 1}. 

The Williamson and Goemens algorithm produces a 2 factor 

approximation for the problem by an ingenious method called 

primal-dual method. First they consider the LP-relaxation of 

this problem 

Min         exe 

Subject to 

                               x( (S)) f(S),   S s.t.   ≠S   V 

                               xe   ,   e  E 

and also consider its dual 

                                          Max           S 

Subject to 

                                        S   ≤ ce : e   E 

                          YS   0,   S s. t.  .   ≠S   V. 

The algorithm computes a greedy solution of the dual 

problem and in the process it build an approximation of the 

IP. The greedy algorithm wants to maximize the value of yS 

for each S such that f(S) = 1. During the computation a partial 

solution is a collection of the edges, F, of the graph. Let the 

connected components of the graph defined by these edges be 

C1, C2,……..those Ci are called active if its f()- value is 1. 

Observe that if any S V has f(s) = 1, then properness of f 

requires that at least one active Ci is a subset of S. The greedy 

algorithm considers all edges which connect an active 

component to another component. One of these edges is 

selected and added to F base on the following criterion. 

Let edge e  = (ab) connects two components C1 and C2. Then 

yc1 and yc2 together can be increased by ϵ=ce -           S . 

Select such edge which yields minimum ϵ to ensure that the 

first condition of the dual program remains satisfied for all 

edges. The final F is the desired approximation of the IP. 

Goemans and Willianson show that this gives a 2- 

approximation for some NP-hard problems. 

4. APPLICATION TO THE WIRING 

PROBLEM AND ITS FAILURE 
In order to solve the wiring problem using primal-dual 

method we define f as follows. Let f(S) = 1 iff there are 

rectangles I and j such that Ri   S and Rj   V – S, where Ri, 

Rj denote the vertices on the boundry of the respective 

rectangles. Following result show that the constrained forest 

problem subject to this f gives the solution of the wiring 

problem. 

Theorem 1 Let F be a solution of constrained forest 

problem subject to        V, if there exists rectangle Ri and 

Rj such that Ri   S and Rj   V-S, then f(S) = 1, then there 

exists a connected solution of cost less than or equal to the 

cost of F. 

Proof We consider two cases. If there is a rectangle which 

touches all the remaining rectangles, then the shortest section 

of its boundry is the optimal solution. Therefore the non-

trivial case the one in which each rectangle is separable from 

at least one other rectangle (i.e., this rectangle does not share 

any vertex with another rectangle).In the remainder of this 

proof we will assume this case. 

Suppose F is not connected. Then there must be a cut through 

the floorplan, separating its vertices. We will discuss all 

different kinds of possible partitions to the floorplan one by 

one. Let a partition divides the whole structure into two sets R 

and S. We call an edge e orthogonal to a box T if and only if 

e    (T), i.e. e has exactly one end point in T. Two boxes are 

called separable if they don’t share any vertex between them. 

 When there is one full box in both sets R and S, the 

problem definition itself ensures one connection 

across the partition connecting both components on 

either sides. This case is shown in figure 2(a) 

 When there is at least one full box in one set R but 

not in S. S has got one connected component of 

wiring. Please note that each and every box shuld 

have at least one edge orthogonal to it. Since any 

box is contained only partially in S, it may have an 

edge orthogonal to it in R. There should be at least a 

box partially contained in S not having orthogonal 

edge in R otherwise optimal wiring will lie 

completely in R. Let T be such a box. If there is a 

box separable from T in R as shown in figure 2(b), 

we can redefine partition as R’ = R  T and S’ = S- 

T. Now an edge  will be forced between R’ and S’. 

Let us consider the case when R contains no box 

completely which is separable from T. Please note 

that since T has no edge orthogonal to it in R, so T 

will be connected to any box separable from it 

completely through S. Please note that in this case 

any box completely contained in R shares at least 

one vertex with T. We do have one component of 

wiring completely in S and now we look for edges 

satisfying requirements for boxes in R. By geometry 

it should be noted that solution for them can be 
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modified without increasing the cost by having all 

orthogonal edges for these boxes on the boundry of 

T as shown in figure 2(c). So now the solution 

includes component in S and edges on boundry of 

T. If both these components are not connected, we 

have to ensure connectivity between them. A 

component of wiring not on the boundry of T will 

exist in S if and only if there is a box separable from 

it in S, let us call this box T1. Now there should be 

one box separable from it contained in R and 

ofcourse touching T, otherwise it will be special 

case 2 where a box touches all other boxes. Let T2 

be such a box. In this case another partition can be 

created as shown in figure 2(d) with both 

components on opposite sides and each set will 

contain one of T1 and T2 completely. Thus this 

partition will now ensure connectivity between both 

sides. Only problem can occur if T itself is a corner 

box, i.e. having two edges on the boundry of 

floorplan. But according to assumption R contains a 

box completed so T can’t be on a corner. 

 When no set of the partition contains a box 

completely, then wiring components on both sets 

should touch all boxes which isn’t possible in case 

of optimal wiring. Component on one side will be 

completely redundant in this case. If wiring on R 

doesn’t touch T, we can define a new partition S’ = 

S-T and now one set contains one box completely, 

and thus connectivity can be ensured across this 

partition. These cases are shown in figure 2(f). 

The primal –dual method solves the problem by picking edges 

so that the sets having f-value equal to 1 grow into larger sets. 

This approach fails in the wiring problem because f of every 

vertex is zero. This gives no starting point to build the 

solution. This reflects in the fact that f function defined above 

is not proper. While f(Ri) = 1, f(x) = 0 for all x  Ri. 

5. VARIATION PRIMAL-DUAL 

TECHNIQUE AND THEIR FAILURE IN 

WIRING PROBLEM 

Goemans and Williamson[2] have also discussed 

approximation algorithms where f is not required. This was 

the motivation for looking into this algorithm since we had 

the difficulty with f in the first attempt. One of these is for 

prize-collecting steiner tree problem. In this case each vertex 

has an associated penalty. The objective is to compute a tree 

such that its cost plus the sum penalties of all the vertices not 

on the tree is minimum. Unfortunately this approach does not 

serve us in solving the wiring problem since there is no 

appropriate penalty function available. To elaborate on this 

point consider a vertex x. If a tree covers at least one vertex 

from each rectangle to which x belongs, then there is no need 

to cover x and no penalty should be charged [5] [6]. On the 

other hand if all vertices of one such rectangle are missed by a 

tree, then there should be an infinite penalty. 

Blum et.al. [3] have proposed an approximation for minimum 

steiner tree connecting k vertices. Naveen Garg[4] has 

improved the approximation factor. These algorithms are also 

variants of primal-dual algorithm. Once again this approach 

does not serve well in solving the wiring problems since these 

do not guarantee which k vertices will be connected by the 

algorithm [7] [8] [9] [10]. In our problem we must connect( at 

least) one vertex from each rectangle. 

     
(a)                                   (b) 

 

      
(c)     (d) 

 

     
(e)     (f) 

Figure 2: (a) connection is ensured; (b) partition can be 

redefined to contain one box completely on either side; (c) 

wiring for boxes in R can be done on boundary of T; (d) 

connectivity can be enforced between both components; 

(e) partition can be readjusted to have a box completely on 

a side if it is not touched by component; (f) wiring will be 

completely on either side  

6. CONCLUSION 
These approaches have not yielded any satisfactory method to 

find an approximation solution to the wiring problem. It 

appears that a very different approach is required to solve this 

problem. A generalized form of this problem can be stated as 

follows. Given an edge weighted graph (V, E, W) and a 

collection of subsets of its vertices K. Find a minimum weight 

subgraph (V’, E’) such that F  V’ ≠   for all F   K. The 

steiner tree problem is a special case where each set in K is a 

singleton. 
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