
International Journal of Computer Applications (0975 – 8887)

Volume 75 – No.13, August 2013

30

A New Method to Compute Dynamic Slicing using

Program Dependence Graph

Lipika Jha,
Department of Computer Science

and engineering,
Birla Institute of Technology,

Mesra, Ranchi (India)

K.S.Patnaik, PhD
Department of Computer Science

 and engineering
Birla Institute of Technology

Mesra, Ranchi (India)

ABSTRACT

Program slicing is one of the techniques of program analysis

that allows an analyst to automatically extract portions of

programs relevant to the program being analyzed. It is an

alternative approach to develop reusable components from

existing software. It is a very important part of software

development and maintenance. It is used in a number of

applications such as program analysis, program debugging,

reverse engineering, software testing, software maintenance,

program understanding etc. In 1984, Weiser has introduced

the concept of slicing. Earlier, static slices were used but now

mainly dynamic slices are being used which further reduces

the program size. In static slicing, only statically available

information is used for computing slices whereas in dynamic

slicing it includes all statements that affect the value of the

variable occurrence for the given program inputs, not all

statements that did affect its value. In this paper we have

proposed a new method for computing dynamic slicing.

Keywords

Control flow graph, program dependence graph, dynamic

slicing criteria, executable dynamic slicing, non-executable

dynamic slicing, dynamic dependence graph, execution

history

1. INTRODUCTION

Program slicing means reducing the given program to a

minimal number of statements with respect to a given criteria

 (n,v),where n is the variable and n the number of statement

in the program. In other words finding all statements in a

program that directly or indirectly affect the value of a

variable occurrence is referred to as static slicing [5].Dynamic

slicing should evaluate the variable occurrence identically to

the original program for all test cases. Program slicing is used

for a large number of computer applications such as

debugging, maintenance, testing, etc. Slicing is concerned

with finding all statements that could influence the value of

the variable occurrence for any inputs. The size of a static

slice may approach the original program, and the usefulness

of a slice tends to diminish as the size of the slice increases.

Therefore, in this paper we examine a dynamic slice,

consisting only of statements that influence the value of a

variable occurrence for specific program inputs. A dynamic

slice of a program is constructed by analyzing an execution

history of the program to discover data and control

dependences.

This paper describes the earliest approach and the new

approach to compute dynamic slicing. However, the emphasis

of this paper is primarily of a theoretical rather than of a

practical. The goal of this paper is to develop more precise

dynamic slicing algorithm.

The rest of the paper is organized as follows. First section

defines the basic concepts of types of slicing, control and data

dependence and different graph used for computing slicing.

Next defines related work. Then defines new method to

compute dynamic slicing and finally future work.

2. BASIC CONCEPTS

Some basic terms and notations related to slicing in the

following sections.

Types of Slices.

Static Slice. The slice which is computed for a general set of

variables is called static slices i.e., static slices are the slices of

all the values of the variables involved in the program.

Dynamic Slicing. It includes all statements that affect the

value of the variable occurrence for the given program inputs,

not all statements that did affect its value. Dynamic slicing

criterion consist of a triple (n, V, I) where I is an input to the

program.

Quasi Slicing. It is a hybrid of Static and Dynamic Slicing.

Static slicing is computed during compile time, without

having any information about the input variables of the

program. Dynamic slicing analyses the code by giving input

to the program. It is constructed at runtime with respect to a

particular input. In Quasi slicing the value of some variables

are fixed and the program is analyzed while the value of other

variables vary. The behavior of the original program is not

changed with respect to the slicing criterion.

Conditioned Slicing. It is a technique to compute program

slices with respect to a subset of program executions.It is an

extension of the static slicing. It includes the set of values in

which the program is to executed, allowing the programmer to

specify, not only the variables of interests, but also the initial

conditions of interest. Any statements, which we know it will

not execute, may be omitted afterwards. This shows the initial

awareness of knowledge about the condition in which the

program is to be executed and also has the advantage that it

allows for additional simplification during slice construction.

Backward Slicing. It includes all parts of the program that

might have influenced the variable at the statement under

International Journal of Computer Applications (0975 – 8887)

Volume 75 – No.13, August 2013

31

consideration. The backward approach can be used in locating

the bug by examining all previously executed statements with

respect to a variable v at statement n, where n is the statement

no. where error is found.

Forward Slicing. Contains all those statements of P which

might be influenced by the variable.

Amorphous slice. All approaches to slicing discussed so far

have been ‘syntax preserving’, That is, they are constructed

by the sole transformation of statement deletion. The

statements which remain in the slice are therefore a syntactic

subset of the original program from which the slice was

constructed. Amorphous slices are constructed using any

program transformation which simplifies the program and

which preserves the effect of the program with respect to the

slicing criteria.

Dependency. Each statement of a code is dependent on other

statement in some way, this is known as dependency. It is of

two types:

Data Dependency. When a statement or a variable is

dependent on some other statement for some data it is known

as data dependency.

Control Dependency. When the execution of a statement is

dependent on some other statement it is called as control

dependency.

Visualisation of Slices. Visualisation of slices is a very

efficient technique for analysing understanding and

developing slices. It is done in following ways:

Control Flow Graph. It is simple representation of control

flows and thus the flow in which statements are executed

[10].It is used for data flow analysis. It consists of nodes,

directed edges, unique exit node STOP and unique entry node

START. It is an intermediate representation for slicing.

Program Dependence Graph. The program dependence graph

of a program has one node for each simple statement and one

node for each control predicate expression. It has two types of

directed edges: data dependence edges and control

dependence edges.

2.1 Dynamic Slicing

It is a technique for program debugging and understanding.

The concept of dynamic program slicing was first introduced

by Korel and Laski [5].It includes all statements that affect

variable occurrence for the given program inputs, not all

statements that did affect its value. It consists of a triple

(n,V,I) where I is an input to the program. In static slicing

only statically available information is used for computing

slices. Whereas in dynamic slicing all possible inputs is used

for computing slices. By taking a particular program

execution in consideration, dynamic slicing may significantly

reduce the size of the slice as compared to static slicing. Most

of the existing dynamic slicing techniques have been proposed

for sequential programs [6 and 8]. Two major types of

dynamic slicing have been proposed: executable dynamic

slicing and non-executable dynamic slicing. An executable

dynamic slice is a set of statements that can be executed and it

preserves a value of a variable of interest. On the other hand, a

non-executable slice is a set of statements that influence the

variable of interest and, it cannot be executed.

Executable Dynamic Program Slicing. A dynamic slicing

criterion of program P executed on program input x is a triplet

C=(x, y,q) where y is a variable at execution position q. An

executable dynamic slice of program P on slicing criterion C

is any syntactically correct and executable program P’ that is

obtained from P by deleting zero or more statements, and

when executed on program input x produces an execution

trace Tx for which there exists the corresponding execution

position q’ such that the value of y in Tx equals the value of y’

in Tx. A dynamic slice P’ preserves the value of y for a given

program input x. The goal in dynamic slicing is to find the

slice with the minimal number of statements, but, in general,

this goal may not be achievable. However, it is possible to

determine a safe approximation of the dynamic slice that

preserves the computation of the value of a variable of

interest.

Non-executable dynamic program slicing. For a given

slicing criterion C=(x,), a non-executable dynamic slice

contains statements that "influence" the variable of interest

during program execution on input x. Non-executable

dynamic slices cannot be executed. Most of the existing

methods of computation of dynamic slice use the notion of

data and control dependencies to compute non-executable

dynamic program slices.

3. REVIEW OF RELATED WORK

Weiser first introduced the idea of slicing in 1984 [5]. He

introduced the idea of static slicing using control flow graph.

The major disadvantage of his approach was that each slice

was computed from beginning i.e., during computation of

slices nothing was saved or stored for future use. Then

Ottenstein introduced the idea of PDG (program dependency

graph) and used it to compute intraprocedural slices [10].

Horwitz took his idea further to SDG (System Dependency

Graph) and computed interprocedural slices.

However static slice reduce the size of the program but it was

not precise one. The concept of dynamic slicing was

introduced by the Korel and Laski using Weiser CFG [6]. The

method used by Korel and Laski becomes useless when there

are many loops in the program. The transaction history

becomes very long and difficult to find the dependence

relation. For the first time Agrawal and Horgan used

dependence graphs to compute dynamic slices. They also

introduced the idea of precise dynamic slices and proposed

DDG (Dynamic Dependency Graph) for computing precise

dynamic slices. In this a new node is created for each

executed node and its associated nodes. Mund proposed the

concept of stable and unstable edges and use them to create

dynamic slices. They further improved their algorithm and

proposed an edge marking and unmarking algorithm and also

node marking and unmarking algorithm. They proved that

their algorithms are better than others in terms of precision,

time complexity and space complexity. Most of these

algorithms calculate backward slices. Much of the literature

on program slicing is concerned with improving the

algorithms of slicing keeping in mind reduction of the size of

the slice and improvement the efficiency of computation. All

the works focus on computation of precise dependence

information and the accuracy of the computed slices.

Here in this method program dependency graph is used to

compute dynamic slicing. In this PDG is independent of the

input value, if the slicing variable is same the number of

dynamic slicing can be computed with different input value.

International Journal of Computer Applications (0975 – 8887)

Volume 75 – No.13, August 2013

32

4. NEW METHOD

Steps to compute dynamic slicing

Step 1: Construct PDG (Program Dependency Graph) of the

program.

Step 2: Compute static slicing of the program using vertex

reach ability problem. Mark the nodes as it reach.

Step 3: Execute the sliced program by taking any input value

and store the logical value of the conditional statement and

loop statement and the number of times as the statement

executes

Step 4: Create the modify PDG based on static slicing

computed using PDG.

Step 5: Start from the marked vertex and check whether it is

conditional or loop statement, depending upon its logical

value left or right vertex will be included in dynamic slice.

Example 1:

integer a,b,c;

1.read(a)

2.b = 1

3.c = 4

4.while(b <= a) do

5. if((b mod 2) > 0) then

6. c = c + 9

else

7. c = 10

8.write(c)

9.b = b + 1

endwhile

Dynamic Slicing Criteria (8,c,5)

 Compute the static slicing (8,c) using vertex

reachability problem.

 Static slicing of program 1 will be

{1,2,3,4,5,6,7,8,9}

 Execute the sliced program and store the logical

value.

a) If a=2 then

First iteration

 statement 4: true,1

1
2

4

5

3

9

7
6

8

Figure 1: PDG of Example 1

International Journal of Computer Applications (0975 – 8887)

Volume 75 – No.13, August 2013

33

 statement 5:false,1

Second iteration

 statement 4: true,2

 statement 5:true,2

Third iteration

 statement 4:false

 Modify PDG to reduce its size.

Start computing the slice from first vertex if it is loop control

statement and iteration is more than one include current vertex

and right vertex in the slice and if it is conditional control

statement and its logical value is true include it in the slice

and go to left vertex else right vertex or else go to the next

vertex. Continue till it further cannot traverse the vertex of the

modified graph.

If a=2 then

Include vertex1 in slice it is not a control statement go to next

vertex 4.Include vertex 4 in slice it is loop control statement

and its logical value is true and number of statement is more

than once include both left(5) and right(9) vertex in slice and

go to left vertex(5). Vertex 5 is conditional statement and its

logical value is true go to left vertex.

dslice={1,2,3,4,5,7,8,9}

If a=0 then

Include vertex1 in slice it is not a control statement go to next

vertex 4.Include vertex4 in slice it is loop control statement

and its logical value is false it cannot be further traverse. So

dynamic slice will be

dslice={1,2,3,4}.

If a=1 then

Include vertex1 in slice it is not a control statement go to next

vertex 4.Include vertex 4 in slice it is loop control statement

and its logical value is true and number of iteration is one

include left(5) vertex in slice and go to left vertex(5). Vertex 5

is conditional statement and its logical value is false go to

right vertex.

dslice={1,2,3,4,5,7,8}.

Example program 2:

integer m,a,i,b,x,y,z;

1.read(m);

1

4

5

7 6

(1,2,3)

(5,8)

Figure 2: Modified PDG of Example 1

9

International Journal of Computer Applications (0975 – 8887)

Volume 75 – No.13, August 2013

34

2.a = 0;

3.i = 1;

4.b = 2;

5.while(i <= m) do

6.read(x);

7.if(x <= 0) then

8.y = x + 5;

else

9.y= x - 5;

10.z= y + 4;

11.if(z>0) then

12.a= a + z;

else

13.b= a + 5;

14.i= i + 1;

endwhile

15.write(a);

16.write(b);

Dynamic Slicing Criteria (15,a,m,x)

 Compute the static slicing (15,a) using vertex

reachability problem.

 Static slicing of program 2 will be

{1,2,3,,5,6,7,8,9,10,11,12,14,15}

 Execute the sliced program and store the logical

value.

b) If m=2 &

 x=5 then

1

3

14

5

7

10

6

9

12 16

13 11

15 2
4

8

Figure 3 : PDG of Example 2

International Journal of Computer Applications (0975 – 8887)

Volume 75 – No.13, August 2013

35

First iteration

 statement 5: true,1

 statement 7:true,1

x=-1

Second iteration

 statement 5: true,2

 statement 7:false,2

Third iteration

 statement 5:false

 Modify PDG to reduce its size.

Figure 4: Modified PDG of Example 2

Start computing the slice from first vertex if it is loop control

statement and iteration is more than one include current vertex

and right vertex in the slice and if it is conditional control

statement and its logical value is true include it in the slice

and go to left vertex else right vertex or else go to the next

vertex. Continue till it further cannot traverse the vertex of the

modified graph.

If m=2 & x=5

Follow the steps for computing dynamic slicing.

dslice={1,2,3,,5,6,7,9,10,11,12,15}

If m=2 &x=-1

dslice={1,2,3,,5,6,7,8,10,11,12,15}

If m=-1

dslice={1,2,3,,5,15}

5. COMPARATIVE ANALYSIS
The above proposed method is more efficient for the input

values which have the same slicing criteria. But for the

different slicing criteria the different modified PDG will be

created. Whereas in earlier approach for dynamic slicing the

separate DDG is created for each input value independent of

the slicing criteria. The proposed method is very useful for

performing all possible test cases in same criteria using only

one PDG.

Tabular representation for comparative analysis using the

above two examples:

 No. of PDG in

old method

No. of PDG in

new method

Example1 3 1

Example2 3 1

From the above tabular representation we can conclude that

the method which takes more no. of PDG requires more time

and space to compute the slices.

6. CONCLUSION
Since in this we have to create a new PDG and modified PDG

if the slicing variable changes which consume a lot of space

and time. Thus, there is a lot of scope for further development

w.r.t space and time complexity.

7. ACKNOWLEDGEMENT
I wish to convey my sincere gratitude and appreciation to each

and every person who helped me in writing this paper. I am

grateful to my institution, Birla Institute of Technology and

my colleagues. I would especially like to thank Dr. K. S.

Patnaik, my guide for his advice and guidance.

8. REFERENCES

[1] David W. Binkley and Keith Brian Gallagher (1996),

"Program Slicing", Advances in Computers, Volume 43,

page 1-45.

[2] G. B. Mund, R. Mall, S. Sarkar (2002), "An efficient

dynamic program slicing technique", Department of

Computer Science and Engineering, IIT Kharagpur,

pages 23-132.

[3] G. B. Mund, R. Mall, S. Sarkar (2003), "Computation of

intraprocedural dynamic program slices", Department of

Computer Science and Engineering, IIT Kharagpur,

pages 123-132.

1

2

3

5

6

7

8

12

11

15

10

9

International Journal of Computer Applications (0975 – 8887)

Volume 75 – No.13, August 2013

36

[4] M. Weiser (1982), “Programmers use slices when

debugging”, Communication of the ACM 25,

 pages 446-452.

[5] M. Weiser (1984), “Program Slicing”. IEEE Transactions

on Software Engineering, pages 352-357.

[6] B. Korel, S. Laski (1988) “Dynamic Program Slicing”,

Information Processing letters, pages 155-163.

[7] K Ottenstein and L. Ottenstein (1984), “The Program

Dependence Graph in Software Development

Environment”, Procedings of the ACM

SIGSOFT/SIGPLAN Software Engineering

environments, SIGPLAN Notices, pages 177-184.

[8] H. Agrawal and J. Horgan (1990) “Dynamic Program

Slicing”, Proceedings of ACM SIGPLAN 90 conference

on Programming Language Design and implementation,

pages 246-256.

[9] Korel B. and Yalamanchili S. (1994), “Forward

Derivation of Dynamic Slices”. Proceedings of the

International Symposium on Software Testing and

Analysis, pages 66-79.

[10] Korel B. (1995), “Computation of dynamic slices for

programs with arbitrary control-flow”. The 2nd

International Workshop on Automated and Algorithmic

Debugging, St. Malo, France, pages 1-41.

[11] Korel B. (1997), “Computation of dynamic slices for

unstructured programs”. IEEE Transactions on Software

Engineering, pages 17-34.

[12] Korel B. and Rilling J. (1997), “Dynamic Program

Slicing in Understanding of Program Execution”.

Proceedings of the 5th International Workshop on

Program Comprehension, pages 80-90.

[13] Korel B. and Rilling J. (1997), “Application of Dynamic

Slicing in Program Debugging”. Third International

Workshop on Automated Debugging.

[14] Shimomura T. (1992), “The program slicing technique

and its application to testing, debugging and

maintenance”. Journal of IPS of Japan, pages 1078-1086.

[15] Tip F. (1995), “A survey of program slicing techniques.

Journal of Programming Languages”, pages 121-189.

IJCATM : www.ijcaonline.org

