
International Journal of Computer Applications (0975 – 8887)

Volume 75 – No.13, August 2013

15

Improving Efficiency of Apriori Algorithm using
Cache Database

Priyanka Asthana
VIth Sem, BUIT, Bhopal
Computer Science Deptt.

Divakar Singh
Computer Science Deptt.

BUIT, Bhopal

ABSTRACT

One of the most popular data mining approach to find

frequent itemset in a given transactional dataset is

Association rule mining. The important task of Association

rule mining is to mine association rules using minimum

support value which is specified by the user or can be

generated by system itself. In order to calculate minimum

support value, every time the complete database has to be

scanned for each item in the transaction. This decreases the

time complexity of the algorithm. Here we proposed a new

algorithm which scan the database once and create a cache

database for each transaction using hash map. This cache

copy is then used to search for frequent item sets. Due to

which the overhead of scaning complete database for each

item is reduced, and efficiency is increased.

Key word: Apriori, cache database, hash map,

scanning time, time complexity.

1. INTRODUCTION

1.1. Association Rule Mining

Association rule mining is the efficient method which is used

in finding the association rules[8]. The key to find the

association rules is to find all the frequent item sets present in

the given transactional record by means of the minimum

support threshold.

Let I={i1, i2,. . ., im} be a set of items and D be a set of

transactions, where each transaction T (a data case) is a set of

items so that T C I. An association rule [12] is an implication

of the form, X --> Y, where X C I, Y C I and X ∩ Y= ϕ. The

rule X-->Y holds in the transaction set T with confidence c,

if c% of transactions in T that support X also support Y. The

rule has support s in T if s% of the transactions in T contains

X υ Y. In a database D, given a set of transactions , the

problem of mining association rules is to discover all

association rules that have support and confidence greater

than the user-specified minimum support (called minsup) and

minimum confidence (called minconf).

The key element that makes association-rule mining practical

is minsup. This is used to prune the search space and to limit

the number of rules generated. However, when only a single

minsup is used, it implicitly assumes that all items in the

database are of the same nature or of similar frequencies in

the database. This is not the case in real-life applications [3,

4]. In the retailing business, customers are suppose to buy

some items very frequently but other items very rarely.

Usually, the necessities, consumables and low-price products

are bought frequently, while the electric appliance, luxury

goods and high-price products infrequently. In this situation,

if minsup is too high, all the observed patterns are concerned

with those low-price products, which only contribute a small

portion of the profit to the business. On the other hand, if

minsup too low, too many meaningless frequent patterns will

be generated and they will overload the decision makers, who

may find it difficult to understand the patterns generated by

data mining algorithms.

The dilemma faced in the above application is called the rare

item problem [5]. In view of this, researchers either (A) split

the data into a few blocks according to the frequencies of the

items and then mine association rules in each block with a

different minsup [6], or (B) group a number of related rare

items together into an abstract item so that this abstract item

is more frequent [6,7]. The first approach is not satisfactory

because rules that involve items across different blocks are

difficult to find. Similarly, second approach is unable to find

rules that involve individual rare items and the more frequent

items. Clearly, both approaches are adhoc and "approximate"

[6].

To solve the above said problem, Liu et al. [3] have extended

the existing association rule model to allow the user to

specify multiple minimum supports to reflect different

natures and frequencies of items. Specifically, user can

specify a different minimum item support for each item.

Thus, different rules may be needed to satisfy different

minimum supports depending on what items are in the rules.

This new model named Apriori with time slice, enables users

to produce rare item rules without causing frequent items to

generate too many meaningless rules. However, the proposed

algorithm named MSapriori algorithm in Liu et al. [3], adopts

an Apriori-like candidate set generation-and-test approach

and it is always costly and time-consuming, especially when

there exist long patterns.

To solve this problem, systematic algorithm [1] was

proposed in which user is not allowed to specify any

minimum support threshold values to find the frequent

patterns; instead the system itself generates the minimum

threshold values, therefore plugging the loophole of other

algorithms. This algorithm also introduces the concept of

timing algorithm along with the systematic algorithm, which

will statically assign a unique value to each record of the

transactional database. This algorithm is mainly used to save

time by scanning through the entire transactional database

only once rather than making multiple scans. The profit of

one scan database leads to better performance and

minimization of time. In this study, we propose a novel cache

database structure, which extends the hashing Apriori

algorithm [2] to store binary sring for each transactional

record in the file as a index. The experimental result shows

that the algorithm is efficient, and that it is about an order of

magnitude faster than the apriori algorithm.

1.2. Hash method

International Journal of Computer Applications (0975 – 8887)

Volume 75 – No.13, August 2013

16

A hash function is any algorithm or subroutine that

maps data sets of variable length to data sets of a fixed

length. Hash functions are mostly used to quicken table

lookup or data comparison tasks such as finding items in

database, discover duplicated or similar records in a

large file and so on.

Hash functions are primarily used in hash tables, to quickly

locate a data record given its search key. Specifically, the

hash function is used to map the search key to an index; the

index gives the place in the hash table where the

corresponding record should be stored. A hash function [9], h

is a function which transforms a key from a set, K, into an

index in a table of size n. Following is the hash function:

 h: K -> {0, 1, ..., n-2, n-1}

1.2.1. Direct Address Tables

If we have a collection of n elements whose keys are unique

integers in (1,m), where m >= n, then we can store the items

in a direct address table, T[m], where either Ti is empty or

contains one of the elements of our collection. Following Fig

1. shows direct access table.

Searching a direct address table is clearly an O(1) operation:

For a key, k, we access Tk,

 if it contains an element, return it,

 if it doesn't then return a NULL.

There are two constraints here:

1. the keys must be unique, and

2. the range of the key must be severely bounded.

Figure 1. Direct Access Table

1.2.2. Mapping Functions

The direct address approach [9] requires that the function,

h(k), should be a one-to-one mapping from each k to integers

in (1,m). Such a function is known as a perfect hashing

function: it maps each key to a distinct integer within some

manageable range and enables us to trivially build an O(1)

search time table.

Unfortunately, finding a perfect hashing function is not

always possible. Let's say that if there is a hash function,

h(k), which maps most of the keys onto unique integers, but

small number of keys are mapped on to the same integer. If

the number of collisions (cases where multiple keys map

onto the same integer), is very small, then hash tables work

quite well and give O(1) search times.

2. RELATED WORK

2.1 Basic Apriori

Apriori is a classic algorithm for frequent itemset

mining and association rule for transactional databases [10].

This algorithm identifies the frequent individual items in the

database and extending them to larger and larger item sets as

long as those item sets appear frequent in the database.

Apriori gives frequent itemsets which can be used to

determine association rules which accent general trends in

the database: this has applications in domains such as market

basket analysis. Apriori is a "bottom up" approach, where

frequent itemsets are considered one item at a time, and

groups of itemsets(candidates) are tested against the

database[13]. The algorithm terminates when further

successful extensions are not found.

Since Apriori algorithm was first introduced and as

experience was accumulated, there have been many attempts

to find more efficient algorithms of frequent itemset mining

[11]. Many of these share the same idea with Apriori in that

they generate candidates.

2.2 Apriori with time slice algorithm

In this algorithm[1], the user is not allowed to specify any

minimum support threshold values to find the frequent

patterns; instead the system itself generates the minimum

threshold values, thus removing the drawback of other

algorithms. This algorithm also introduce the concept of

timing algorithm along with the systematic algorithm, which

will statically assign a unique value to each record of the

transactional database. Mainly this technique is used to

reduce time by scanning through the entire transactional

database only once rather than making multiple scans. This

algorithm takes any dataset as input, and a systematic table is

constructed for every transaction provided in the dataset.

2.2.1 Systematic Algorithm [1]:

The systematic tables for every itemsets involved

in the datasets are calculated by the following conditions:

Supp(A--->B) = supp(A)+ supp(B)+ supp(AUB)

Supp (A--->⌐B) =supp (A) - supp (A UB)

Supp (⌐A--->B) =supp (B) - supp (A UB)

Supp (⌐A---> ⌐B) =1- supp (A) - supp (B) + supp(A UB)

2.2.2 Timing Algorithm [1]:

T: For each of the itemsets in TID do

Find the count of a pattern as

Count (1, TDB) = {(transid, x) (transid, x)}

Milepost of Negative Support:

Supp-n = n /σ ((S n (1)), Where 1≤ n ≤ Count (1)

Milepost of positive support:

Supp+ n = [Count (1) - n) / [TD - σ (S n (I))],

International Journal of Computer Applications (0975 – 8887)

Volume 75 – No.13, August 2013

17

Where 1≤ n ≤ Count (1)

The benefit of one scan database gives better performance

and minimize total time.

2.3 Hash based Apriori method

Hash based Apriori method, uses a data structure that directly

represents a hash table [2]. This algorithm overcome some of

the weaknesses of the Apriori algorithm by reducing the

number of candidate k-itemsets. In particular the 2-itemsets,

since that is the key to improving performance. This

algorithm uses a hash based technique to reduce the number

of candidate itemsets generated in the first pass. It has proved

that the number of itemsets in C2 generated using hashing

can be reduced, so that the scan required to determine L2 is

more efficient.

3. ISSUES IN FINDING ASSOCIATION

RULES

During the process of searching from the database, the entire

database is scanned more than once or only once. This

scanning of the entire database at least once also create

problem.

1. Firstly, searching for items in the database through the

entire database may increase the search space complexity.

A lot of memory is needed for each search of the

database.

2. Secondly, searching through the entire database may

increase the time taken to find the required item also.

3. Security of database.

To overcome above said issues, this paper proposes a new

algorithm called Apriori with cache database in which for

searching it uses Hash Map which uses the Binary String for

the creation of the CahedCopy of the Database.

3.1. Our Contribution

In this paper, there is a algorithm called Apriori with cache

database, which can reduce the time complexity of apriori

algorithm, by scanning the whole database once. This

algorithm creates a cache database which store all frequent

itemsets found by apriori algorithm. Then generate binary

string for each transactional database and store it in a file

which behave as a hash index. So every time now for

candidate generation, we will search this cache database for

itemset instead of the whole database. The experimental

result shows that our method is effective efficient. This

algorithm reduce the scaning time, which in turn increase the

efficiency of the apriori algorithm.

4. PROPOSED WORK

This algorithm "Apriori with Cache Database" (Apriori

CDB) works on the fast Hashing technique. It hashes the

entire database and puts it into a software Cache and from

where the retrieval is very easy. The algorithm uses the naïve

method (Apriori Algorithm) to find the frequent Item set. It

reads the data set over and over in every iteration to find the

frequent item set for string of different lengths. But the

searching method is diferent, which make our algorithm more

efficient. For searching this method use Hash Map which uses

the Binary String for the creation of the CahedCopy of the

Database. By this binary string it can easily search item set

with more accuracy with less time. Another advantage of this

is, if this method is applied on large database that will give

more accurate results with less time complexity in

comparison of existing algorithm. Following is the flow chart

of proposed algorithm(Fig. 2)

Figure 2. Flow chart of proposed algorithm

Proposed Hashing method : Instead of reading the database

again and again it goes through the database once and create

Hash map for the individual element in the database .Hash

map <String,Int> maps the item to an integer. But here it

uses a bit different method to create a hash map. It creates a

Binary string for per line(or per transaction) in the database

so our Cached Database is a database of binary strings .

Consider the following database (Table 1) for the Caching.

First of all Frequent itemsets are found by using basic Apriori

Algorithm. Now this table include the entries of all frequent

itemsets generated by Apriori algorithm. The algorithm for

the creation of the binary string per line is as follows:

Existing Algorithm with

Apriori

Apply Hash Map

Create Cache copy of Database

Using

binary

string

Start

Cached copy used in Searching

if

item=cdb

Result Exit

Put 1 in

the Binary

string

No

Yes

Search is Unsuccessful

Search is

successful

International Journal of Computer Applications (0975 – 8887)

Volume 75 – No.13, August 2013

18

Table 1: Assumed database

TID List of Items

T1 I1, I2, I5

T2 I2, I4

T3 I2, I3

T4 I1, I2, I4

T5 I1, I3

T6 I2, I3

T7 I1, I3

T8 I1, I2, I3, I5

T9 I1, I2, I3

From the above database (Table 1), Then for every line in

database we create a binary string of length N. In our cache

database, we have key values as a index. Now read every line

and then we find the location of the items in the line and put

a "1" in the binary string corresponding to that location.

Below (Table 2) is our Cache Database showing binary

strings generated for each transactions.

Table 2: Our Cached database

Now Every time when we have to search for any item in the

database for generation of 2-itemsets, instead of searching it

in the main database, we will search it from our cache

database. Therefore after each joining step, a hash map is

created from where searching of item is done. While pruning

items are retrieved from cache database. As soon as item is

found, scanning is not required for rest transactions (rows).

Therefore scanning time also reduces here. Thus, there is no

need to scan the original database for searching. The creation

of binary string also provide security.

4.1 Steps of Proposed Algorithm (Apriori

CDB)

 Call procedure of (A-priori)

1. Create Hash Map for individual element in the

database .

2. Apply bit different method in hash map.

3. Create cache copy of data base (CDB) .

4. Apply binary string (BS) for per line in the database.

5. Store binary string(BS) into Cache data base(CDB)

.

6. Arranging item sets on the basis of binary string in

hash table.

7. Use Cache data base (CDB) for item set search.

8. Calculate the value of N (No of records (lines) in

Data base).

9. Initialize variable set Count =0 and item Defines the

records of which you want to search ;

10. While (count <=EOF)

11. Count = count +1;

12. N = count;

13. End

14. If(item = CDB)

15. Search is Successful and put 1 in the binary string

correspond to that location.

16. Store new BS into CDB.

17. Else Unsuccessful.

18. Exit.

5. EXPERIMENTAL RESULT

In order to evaluate the efficiency of the Apriori CDB

algorithm such as times for searching items in transaction

databases we choose several size of databases. Our method

gives efficient result on large dataset. We are comparing our

experimental result with my base paper, Apriori with time

slice algorithm [1].

The database consists of all frequent itemsets generated by

Apriori Algorithm in first iteration, having minimum support

value 1. We are giving experimental results of "Apriori with

time slice algorithm" [1] and my proposed algorithm "Apriori

with cache database" on different-different size of data sets.

Table 3: Comparison of execution time when MS=1

S.

No

Size of

Data

Set(KB)

Execution time

0f Apriori with

time slice algo

(in millisecs)

Execution time

of Apriori with

cache database

(in MilliSec)

1. 1 27371 26178

2. 2 25695 23333

3. 3 27376 24006

4. 4 28383 27296

5. 19 57088 36955

From the above table, we can see that the execution time of

our proposed method (Apriori CDB) takes less time as

compared to Apriori with time slice. As our data size

increases our algorithm takes much lesser time as compared

to Apriori with time slice. This result also shows that our

algorithm gives better result as the size of dataset increased.

The following figures 3 shows the comparison of time of

both algorithms (Apriori CDB and Apriori with time slice)

in millisecond using graph when MS=1. Data size in KB is

taken in X-axis, and time in millisecond is taken in Y-axis.

Time also varies when minimun support value is changed

from 1 to 2. When we set minimum support value=2, instead

of 1, result shows that again execution time of Apriori CDB

is less than the execution time of Apriori with time slice.

Index Binary String

T1 10011

T2 11110

T3 00101

T4 01010

T5 10000

T6 01110

International Journal of Computer Applications (0975 – 8887)

Volume 75 – No.13, August 2013

19

Following is Table 4 shows execution time of both algorithm

when MS=2:

0

10000

20000

30000

40000

50000

60000

1 2 3 4 19

Execution
time(Base
Paper)Mili
Second

Execution
time(Proposed
Algorithm)Mili
Second

Data Size in (KB)

Figure 3. Comparison of time in millisecond when MS=1

Table 4: Comparison of execution time when MS=2

S.No.

Data

set

size in

(KB)

Execution time of

Apriori with time

slice algo (in

millisecs)

Execution time of

Apriori with

cache database

(in MilliSec)

1 2 42459 40914

2 4 73437 72470

3 10 75586 72307

4 19 76280 76859

5 66 116727 97683

6 110 269608 168882

Above table shows, when we set MS value 2, again execution

time of our algorithm is less than the Apriori with time slice

algorithm. As datasize increases, time complexity of our

algorithm reduces as compared to Apriori with time slice

algo.

0

50000

100000

150000

200000

250000

300000

2 4
1

0
1

9
6

6
1

1
0

Execution
time of
Base
Paper (Mili
sec)

Execution
time of
Proposed
Method
(Mili sec)

Figure 4. Comparison of time in millisecond when MS=2

Figures 4 shows the comparison of time of both algorithms

(Apriori CDB and Apriori with time slice) in millisecond

using graph when MS=2. Data size in KB is taken in X-axis,

and time in millisecond is taken in Y-axis.

When we set minimum support value=3, instead of 2, result

shows that again execution time of Apriori CDB is less than

the execution time of Apriori with time slice. Following is

Table 5 shows execution time of both algorithm when MS=3:

Table 5: Comparison of execution time when MS=3

S.No.

Data

set

size in

(KB)

Execution time

of Apriori with

time slice algo

(in millisecs)

Execution time of

Apriori with

cache database

(in MilliSec)

1 2 42509 40964

2 4 73487 72520

3 10 75636 72357

4 19 76330 76909

5 66 116777 97733

6 110 269658 168932

Following figures 5 shows the comparison of time of both

algorithms (Apriori CDB and Apriori with time slice) in

millisecond using graph when MS=2. Data size in KB is

taken in X-axis, and time in millisecond is taken in Y-axis.

0

50000

100000

150000

200000

250000

300000

2 4

1
0

1
9

6
6

1
1

0
Execution
time of
Base Paper

(Mili sec)

Execution
time of
Proposed

Method
(Mili sec)

 Figure 5. Comparison of time in millisecond when MS=3

6. CONCLUSION AND FUTURE SCOPE

Time is the major factor in real life applications. This

algorithm has reduced the time complexity of Apriori

Algorithm using cache database. Table 3 shows execution

time of both the algorithm. Every time for every data size,

my proposed algorithm gives better result as compared to

Apriori with time slice algorithm. Our result also shows, if

we apply our method on large database (bigger data size),

that will give more accurate results with less time

complexity. We presented experimental results, showing that

the proposed algorithm always outperform Apriori with time

International Journal of Computer Applications (0975 – 8887)

Volume 75 – No.13, August 2013

20

slice. The effectiveness of our algorithm is shown

experimentally and practically.
Further research can be done on time and space complexity,

combined with some other techniques to reduce space and

time complexity.

7. REFERENCE

[1] S.Sangeetha, "Verdict of Association Rule Using

Systematic Approach of Time Slicing for Efficient

Pattern Discovery " Proceeding of 2012 International

Conference on Computing, Electronics and Electrical

Technologies [ICCEET].

[2] K.Vanitha and R.Santhi, "Using Hash Based Apriori

Algorithm to Reduce the Candidate 2- itemsets for

Mining Association Rule "Proceeding of H.S.Behera et

al, Journal of Global Research in Computer Science,

Volume 2, No 5, 2011.

[3] B. Liu, W. Hsu, Y. Ma, Mining association rules with

multiple minimum supports, Proceedings of the ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD-99), San Diego, CA,

USA, 1999.

[4] M.C. Tseng, W.Y. Lin, "Mining generalized association

rules with multiple minimum supports", International

Conference on Data Warehousing and Knowledge

Discovery (DaWaK’01), Munich, Germany, 2001, pp.

11 – 20.

[5] H. Mannila, "Database methods for data mining",

Proceedings of the 4th International Conference on

Knowledge Discovery and Data Mining (KDD ’98)

tutorial, New York, NY, USA, 1998.

[6] W. Lee, S.J. Stolfo, K.W. Mok, "Mining audit data to

build intrusion detection models", Proceedings of the

4th International Conference on Knowledge Discovery

and Data Mining (KDD ’98), New York, NY, USA,

1998.

[7] J. Han, Y. Fu, "Discovery of multiple-level association

rules from large databases", Proceedings of the 21th

Very Large DataBases Conference (VLDB’95), Zurich,

Switzerland, 1995, pp. 420– 431

[8] Ya -Han Hu and Yen-Liang Chen, "Mining Association

rules with multiple minimum Supports: a new mining

algorithm and a Support tuning mechanism", Elsevier

B.V. All rights reserved, Decision Support Systems, 42,

(2006) pp.1-24.

[9] http://www.arl.wustl.edu/projects/fpx/cse535/lecture/cse

535_lecture6_Hash_Functions.pdf

[10] http://en.wikipedia.org/wiki/Apriori_algorithm.

[11] XindongWu, Vipin Kumar, J. Ross Quinlan, Joydeep

Ghosh, Qiang Yang, Hiroshi Motoda, Geoffrey J.

McLachlan, Angus Ng, Bing Liu, Philip S. Yu, Zhi-Hua

Zhou, Michael Steinbach, David J. Hand, Dan

Steinberg, "Top 10 algorithms in data mining", ©

Springer-Verlag London Limited 2007.

[12] R. Agrawal. T. Imielinski. and A Swami, "Mining

Association Rules between Sets of Items in Large

Databases", Proc. 1993 ACM SIGMOD Int'I Conf.

Management of Data (SIGMOD '93), pp. 207-216,

1993.

[13] R. Agrawal and R. Srikant, "Fast Algorithms for Mining

Association Rules," Proc. 20th Int'I Conf. Very Large

Data Bases, pp.487-499, 1994.

IJCATM : www.ijcaonline.org

