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ABSTRACT 

Principal component analysis (PCA) guided clustering 

approach is widely used in high dimensional data to improve 

the efficiency of K- means cluster solutions. Typically, 

Pearson correlation is used in PCA to provide an eigen-

analysis to obtain the associated components that account for 

most of the variations in the data. However, PCA based 

Pearson correlation can be sensitive on non-Gaussian 

distributed data, which involve skewed observations such as 

outlying values. Thus, applying PCA based Pearson 

correlation on such data could affect cluster partitions and 

generate extremely imbalanced clusters in a high dimensional 

space. In this study, Tukey's biweight correlation based on M-

estimate approach in PCA is used as an alternative to Pearson 

correlation. This approach is more resistant to outlying values 

as it examines each observation and down weight those that 

lie far from the center of the data. In particular two major 

features are highlighted: (1) fewer components are retained 

and imbalanced clusters at the recommended cumulative 

percentage of variation threshold is avoided; (2) the cluster 

quality with respect to external, internal and relative criteria as 

shown in Rand, Silhouette and Davies-Bouldin indices, 

outperform that of the clusters from PCA based Pearson 

correlation. 
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1. INTRODUCTION 
Cluster analysis has been used in various disciplines such as 

biology, marketing and hydrology to partition observations of 

similar patterns to the same cluster and dissimilar patterns to 

different clusters[1]. Principal component analysis (PCA) is a 

reduction dimension technique which is often used as a pre-

processing method to guide the process of grouping items in 

order to improve the efficiency and accuracy of cluster 

solutions [2][3]. The main idea of PCA is to reduce the 

dimensionality of data set consisting of a large number of 

interrelated variables, while retaining as much as possible the 

variation present in the data set. 

A typical approach in PCA requires the use of configuration 

points of entities between the rows and column of the data 

based on Pearson correlation matrix. Pearson correlation 

matrix is calculated by finding the covariance of variables and 

dividing it by the square root of the product of the variances. 

As each pair of observations is equally weighted, Pearson 

correlations can be sensitive on non-Gaussian distributed data, 

which could involve skewed observations such as outlying 

values [4]. Thus, applying PCA based Pearson correlation on 

such data could affect cluster partitions and generate 

extremely imbalanced clusters in a high dimensional space.  

In this paper, weighting on the observations is used as a 

resistant measure by introducing a Tukey's biweight 

correlation matrix as an alternative to Pearson correlation 

matrix in PCA to provide a robust cluster partitions with 

respect to cluster validity indices.  

 

2. METHODOLOGY 

2.1 K-Means Clustering Algorithm 
K- means is a method in cluster analysis to partition 

observations into k pre-determined number of disjoint 

clusters. This algorithm consists of two separate steps run 

iteratively until convergence. The first step is to define k 

centroids for each cluster and the next step is to assign each 

data object to the nearest centre. Euclidean distance method is 

generally used to determine the distance between each data 

points and the cluster centres. The k means clustering 

algorithm works as follows: 

Step 1: Choose k randomly from the data set as initial cluster 

centre 

Step 2: Calculate the distance between each data points and 

assign each item to the cluster which has the closest centroid. 

Recalculate the cluster centre for each cluster until 

convergence criterion is met. 

2.2 Principal Component Analysis 
PCA is designed to reduce the dimension of large data matrix 

to a lower dimension by retaining most of the original 

variability in the data [5]. This is achieved by converting a set 

of observations of possibly correlated variables into a set of 

linearly uncorrelated variables called principal components. 

The first principal component accounts for as much of the 

variation in the original data. Then each succeeding 

component accounts for as much of the remaining variation 

subject to being uncorrelated with the previous component. 

Covariance or correlation matrix derived from the data matrix 

plays an important role in PCA to calculate its eigenvalues 

and eigenvectors to obtain the associated components that 
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account for most of the variations in the data. [6]. For the 

purpose of this study, correlation matrix is used. It is generally 

recommended taking at least 70% of cumulative percentage of 

total variation as a benchmark to cut off the eigenvalues in a 

large data set for extracting the number of components [7]. 

The reduced matrix is the component matrix of eigenvector 

“loadings” which defines the new variables consisting of 

linear transformation of the original variables that maximizes 

the variance in the new axes.  

 The steps involved in PCA algorithm are as follows: 

Step 1 : Obtain the input matrix. 

Step 2 : Calculate its correlation matrix. 

Step 3 : Calculate the eigenvectors and eigenvalues of the 

 correlation matrix. 

Step 4 : Select the most important principal components  

   based on cumulative percentage of total variation. 

Step 5 : Derive the new data set 

 

2.2.1 Pearson correlation matrix 
In applications such as environmental sciences and 

climatology, Pearson correlation is typically used in PCA for 

calculating its eigenvectors and eigenvalues [8],[9],[10],[11]. 

Pearson correlation coefficient between two variables is 

defined as the covariance of the two variables divided by the 

product of their standard deviations. Typically, Pearson 

correlation is used to measure the distance (or similarities) 

before implementing a clustering algorithms. The Pearson 

correlation coefficient between two vectors of observations is 

as follows : 

         
                 

 
   

          
          

  
   

 
   

                                           

  

where    and     refer to the vectors of  observations in matrix 

data   with   observations, with      and      refer to the mean 

of the vectors. 

 

2.2.1 Tukey's biweight correlation 
Tukey's biweight correlation is based on Tukey's biweight 

function that relies on M-estimators used in robust correlation 

estimates. M-estimate has a derivative function,   which 

determines the weights assigned to the observations in the 

data set. It has the ability to down weight observations to 

reflect its influence from the centre of the data [12]. The 

derivative function is derived as follows: 

 

      
                                    

                                          
               

 

It can be seen that if    is large enough, then      reduces to 

zero. One of the important aspects to measure the resistance to 

outlying data values of M-estimators is its breakdown point. A 

breakdown point is the smallest fraction of contamination that 

can cause an inaccurate result [13]. In this study, Tukey's 

biweight with breakdown points at 0.0, 0.2, 0.4 and 0.5 are 

compared and breakdown point of 0.4 performs the best. 

According to [14], typically a breakdown point of 0.4 

performs better in most situation and the result is more 

accurate and efficient when compared to a lower breakdown 

point. 

 The biweight estimate of correlation is produced by 

first calculating the location estimate,    and then updating the 

shape estimate,   . The (i,j)th element of   , i.e.      acts as a 

resistant estimate of the covariance between the two vectors, 

   and   . The biweight correlation of these two vectors is 

calculated as follows : 

     
    

         
                                                      

with 

  
     

 
            

   

          
   

                                        

 

  
     

 
                                 

   

               
 
    

           

where   
     

is a location vector and   
     

is a shape matrix 

such that          . 

Thus, a PCA based Tukey’s biweight correlation for K-means 

cluster analysis is more likely to produce a better cluster 

partition that is more resistant to outlying values than Pearson 

correlation in PCA.  

3. PROPOSED METHOD 
As Pearson correlation is likely to be more sensitive to non-

Gaussian distributed data, Tukey's biweight correlation in 

PCA on the original data set in a PCA guided clustering 

setting is proposed. Before proceeding, the original data 

matrix is standardized by a robust location and scale estimator 

to avoid any masking or swamping effect [15].  

 The reduced data set is then applied to K-Means 

cluster analysis to obtain cluster partitions. K means method 

requires specifying the number of clusters before the 

algorithm is applied. To overcome this problem, Calinski and 

Harabasz Index [16] is used as a measure to determine the 

optimal number of cluster partition for the input data. This is 

indicated by the maximum value of the index. 

The steps involved in the proposed algorithm are as follows : 

Step 1 : Obtain the input matrix. 

Step 2 : Standardize the observation with median and  

   mean absolute deviation (MAD), i.e. 

  

   
  

      

                         
              

   such that     refer to elements in the input matrix. 

Step 3 : Set the breakdown point for the Tukey's biweight 

   correlation at 0.4  

Step 4 : Calculate the Tukey's biweight correlation matrix. 

Step 5 : Calculate the eigenvectors and eigenvalues of the 

   correlation matrix. 

Step 6 : Select the most important principal components  

   based on cumulative percentage of total variation. 

Step 7 : Derive the new data set 

http://en.wikipedia.org/wiki/Covariance
http://en.wikipedia.org/wiki/Standard_deviations
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Step 8 : Calculate Calinski and Harabasz index in new data 

   set to determine the best number of cluster 

Step 9 : Apply K-means method to new data set 

4. EXPERIMENTAL RESULTS  
The proposed algorithm is evaluated on a set of daily rainfall 

data, which is known to have a non-Gaussian distribution and 

is likely to be skewed [17].  The data is obtained from the 

Department of Irrigation and Drainage, Malaysia, i.e. Jabatan 

Pengairan dan Saliran (JPS) for the period 1975-2007. The 

daily rainfall data from 75 stations over Peninsular Malaysia 

are located at different geographical coordinates on four 

regions, east, southwest, west and northwest. In this study, the 

occurrence of episodes on extreme rainfall event described as 

torrential rainfall is focused on. It was therefore necessary to 

choose some criteria that would lead to the establishment of a 

threshold, in order to allow for a clear distinction between 

what constitutes a day of torrential rainfall in the Peninsular 

Malaysia region and what does not. The most common 

threshold applied for this purpose in a tropical climate is an 

amount of 60 mm/day. The filtered days with rainfall that 

exceeds 60 mm in at least 2% of the stations are used. This 

criterion yielded 250 days and 15 rainfall stations, which is an 

adequate number to represent the main torrential centers. In 

this study, clustering results achieved by the PCA based 

Pearson correlation and PCA based Tukey's biweight 

correlation are compared.  

 

Table 1. Number of components retained in PCA and the 

number of clusters based on Pearson and Tukey’s 

Biweight Correlation 

 

  

 Table 1 shows the relationship between cumulative 

percentage of variance and number of clusters obtained using 

two different approaches in PCA based correlation matrix. 

From Table 1, it can be seen that the number of components 

between two different approaches in correlation matrix differ 

at the same level of cumulative percentage of variation. It 

appears that Tukey's biweight correlation requires less number 

of components to extract in order to achieve at least 70% of 

cumulative percentage of variation compared to Pearson. For 

instance, 28 components is retained with Tukey’s as 

compared to 35 with Pearson’s at 80% cumulative percentage 

of variation. In climate data, extracting too many components 

is not favorable as it may reflect variations of low frequency 

or spatial scale that are not important [8][18].  

In terms of cluster partitions, Table 1 also shows that in 

contrast to Pearson’s, Tukey's biweight correlation is more 

sensitive to the number of clusters according to the number of 

components retained. The number of clusters as a result of 

PCA-based Pearson correlation, appear to stabilize at only 

two clusters regardless of the cumulative percentage of 

variation used. In climatology studies particularly in 

identifying rainfall patterns, it is more reasonable to obtain 

more than two cluster partitions to explain the various types of 

rainfall patterns. Thus, two clusters clearly is not appropriate 

as it mask the true structure of the data. 

 

Table 2. Indices to measure the quality of clustering 

results 

 

 In order to evaluate the cluster solutions, the 

clustering output at 70% cumulative percentage of variation 

on PCA-based Tukey’s biweight correlation (10 clusters) and 

Pearson correlation (2 clusters) are chosen respectively. These 

clusters are evaluated based on three fundamental criteria of 

quality cluster as prescribed by [19]: external criteria, internal 

criteria and relative criteria using Rand Index, Silhouette 

Index, Davies-Bouldin Index respectively. As a guideline, a 

higher value of Rand and Silhouette index and a lower value 

of Davies-Bouldin index should indicate a good quality 

cluster. Table 2 illustrates that Tukey's biweight correlation 

show a relatively better clustering results in terms of the three 

indices when compared to Pearson correlation. Figure 1 

illustrates the cluster partitions for both approaches, set at 5 

clusters on a two-dimensional scatter plot matrix. The figure 

shows a much clearer partition of membership clusters based 

on PCA based Tukey’s biweight correlation when compared 

to that of Pearson. 

5. CONCLUSION 
In this paper, PCA based Tukey's biweight correlation has 

been proposed to guide the cluster solution of K-means 

clustering method. The purpose is to introduce an alternative 

correlation matrix due to the issues when dealing with non-

Gaussian distributed data particularly when the data is skewed 

in nature. This study shows a substantial improvement in the 

cluster partition with PCA based Tukey’s biweight correlation 

than Pearson’s to avoid inaccurate imbalanced clusters in high 

dimensional space. The quality of clustering results has been 

proven by the validity indices to indicate better internal, 

external and relative cluster quality. 

 

 

 

 

 

 

 

 

Cum.

% 

Number of 

components 

Number of 

cluster, k 

Tukey's 

biweight 

Pearson Tukey's 

biweight 

Pearson 

60 

65 

70 

75 

80 

11 

13 

15 

22 

28 

12 

14 

19 

26 

35 

12 

12 

10 

6 

2 

2 

2 

2 

2 

2 

Correlation 

Rand 

Index 

Silhouette 

Index 

Davies-Bouldin 

Index 

Tukey's 

biweight  0.55 0.1 2.02 

Pearson  0.53 0.04 4.78 
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                                                      (i)                                                                                                   (ii) 

                      

Figure 1 : Scatter plot of the data with respect to their clustering features based on (i) Tukey's biweight correlation matrix and 

(ii) Pearson correlation matrix 
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