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ABSTRACT 

In this paper, we have obtained existence, uniqueness, best 

error bound and convergence properties of C2 Deficient 

Quartic Spline Interpolation. 

Classification Code 

 Ø 41A05, 65D07. 

1. INTRODUCTION 
Higher Degree Splines are still popular for best approximation 

(See DeBoor [1]).  In the study of higher degree piecewise 

spline function it advantage that we do not have corners at 

joint of two higher degree pieces and therefore to achieve a 

prescribed accuracy less data than lower order method needed.  

These types of advantage do not appear in the use of 

piecewise linear splines (lower order splines).  Rana and 

Dubey [8] generalized result of Garry and Howell [3] and 

obtained best error bound for quartic spline interpolation.  

Various aspects of cubic, quartic, quintic and spline of degree 

six reference maya be given Meir and Sharma [9], Hall and 

Mayer [2], Gemlling-Meyling [6], Rana and Dubey [7], and 

Dubey [5].  In this paper we have investigated existence 

uniqueness, error bounds and convergence properties of 

deficient quartic spline interpolation which matches the given 

function of mesh points and mid points, second derivative at 

boundary points. 

2.  EXISTENCE AND UNIQUENESS 
Consider a mesh P of [0, 1] given by 

1,0 10  nxxx  such that iii hxx 1  i=0, 

1......n-1.  Let S(4,P) denote the set of all real algebric 

polynomial of degree not greater than 4.  We denote is  is the 

restriction of s over ],[ 1ii xx  for a function defined 

over ]1,0[ .  The class of deficient quartic spline functions 

over [0, 1] with mesh P is defined by 

 

 }1,..,2,1),,4(],1,0[:{),4( 2  niPSsCssPS i

 

which is S*(4, P) denotes the class of all deficient quartic 

splines S(4, P) which satisfy the boundary conditions 

  )()(" 00 xfxs n  

  )()(" n

n

n xfxs   (2.1) 

 We shall prove the following. 

THEOREM 2.1: Let f ', f " exist, then there exist a unique 

deficient quartic spline in S* (4, P) which satisfies the 

interpolatory conditions. 

 nixfxs i ,...1,0)()( 1   (2.2) 

 1,...1,0)()(  nizfzs ii   (2.3) 

 

PROOF: Consider a quartic polynomial P (z) on [0, 1], we 

can easily verify that 

 

)((½))()1()()0()( 321 zqPzqPzqPzP   

)()1(")().0(" 54 zqPzqP   (2.4) 

Where, 

 43

1 48967830
30

1
)( zzzzq   

 43
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30

1
)( zzzzq   

 43

3 9619296
30

1
)( zzzzq   

 432

4 617154
30

1
)( zzzzzq   

 43

5 67
30

1
)( zzzzq   

Now writing )( ii xxth   (2.4) may be expressed in 

terms of restriction is of s as follows 

 

)()()()()()()( 3211 tqzftqxftqxfxs iiii    

 )()(")()(" 514 tqxstqxs ii         (2.5) 

Which clearly satisfies the conditions (2.1) - (2.3) and 

)(xs i is quartic in ][ 1ii xx  for i=0,n since ]1,0[2cs .  

Therefore, applying continuity conditions of first derivative of 

s in (2.5) we have 
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Clearly the coefficient matrix of the system of equation (2.6) 

is diagonally dominant and hence invertible.  This complete 

proof of theorem (2.1). 

3. ERROR BOUNDS 

Following the method of Hall and Meyer [2] in this section, 

we shall obtain bounds of error function, 

)()()( xsxfxe  for the spline interpolant of Theorem 

2.1 which are best possible.  Let s(x) is the second time 

continuously differentiable quartic spline function satisfy the 

condition of theorem 2.1.  Now considering 

]1,0[5Cf  and writing ],[ xfM i  for the unique 

quartic which agree with 

)(")("),(),(),( 11  iiiii xfandxfzfxfxf  we see 

that for  1,  ii xxx  we have 

 )()()()( 1 xsxfxsxf   

 )(],[],[)( xsxfMxfMxf iii 

 (3.1) 

 First, we have to obtain bounds of right hand side of 

(3.1). 

 By Cauchy theorem Davis [4], we have obtain 

 )
2

1
()1(

!5
],[)( 22

5

 ttt
h

xfhnf i

     (3.2) 

 Where 

i

i

h

xx
t


 and )(max )5(

10
xfF

n
  

 To get the bounds of )(],[ xsxfM ii   

 We have from (2.4) 

  )(")(")(],[ 11

2

  iiiii xsxfhxsxfM   

  )()(")(")( 5

2

4 tqxsxfhtq iii   (3.3) 

 Thus 

|)(],[| xsxfM ii 

)()(")()(" 5

2

41

2

1 tqxehtqxeh iiii    (3.4) 

 Thus we have 

)()()()( 5454 tqtqtqtq   

 
2

1
0)()21()1(

6
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    )(121
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 When 1
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 Let the )(max
10

i
t

xe


 exists for i=j then the equation (3.5) 

may be written as 

 )()(")(],[ 2

1 tkxehxsxfM iii         (3.6) 

 Now, we proceed to obtain )( ixe  replacing )( ixs  by 

)( ixe  in equation (2.6), we have 
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      Say (3.7) 

 In view of that L(f) is linear functional which is zero for 

polynomials of degree 4 or less, we can apply the Peano 

Theorem Davis [4] to obtain 
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 Thus, from (3.8), we have  
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 Further it can be observed that from (3.9) that in 

11   ji xxx   
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     (3.10) 
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 In order to estimate the interval of r.h.s. of (3.10), we rewrite 

the above expression in the following symmetric form about 

xi, to get 

     222
32

6
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i
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 Thus its clear from above expression that  4)(  yxL  is 

non negative for 11   ii xyx  
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 Combining (3.10) and (3.11), we have  
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 Thus from (3.8) and (3.11) 
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Now, using (3.2), (3.7) along with (3.13) in (3.1), we have 
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 Thus we prove the following: 

 

 THEOREM 3.1: Suppose )(xs  is the quartic spline of 

Theorem 2.1 interpolating a function 

)(xf and  1,05Cf  , then  
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 Further more, it can be seen easily that K in (3.17) be 

improved for an equally spaced partition.  Inequality (3.18) is 

also best possible. Also, we have  

)(max
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 Where K1 is positive constant Equation (3.14) proves 

inequality (3.17) whereas inequality (3.18) is direct 

consequence of (3.13).   

 Now we turn to see that the inequality (3.17) is best possible 

in the limit.  Considering 
!5

)(
5x

xf  and using Cauchy 

formula Davis [4] we have 
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 Moreover, for the function under consideration (3.7) the 

following relation holds for equally spaced knots 
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 Considering for a moment 
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 We have from (3.4)  

    )()(
)!5(96

31
,)( 54

5

tqtq
h

xfMns i   



International Journal of Computer Applications (0975 – 8887)  

Volume 75– No.1, August 2013 

47 
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 Now combining (3.20) and (3.23) we get, for 

1 ii xxx  
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 From (3.24) it is clearly observed that (3.17) is best 

possible, provided we could prove that 
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 In fact (3.25) is attained only in the limit, the 

difficulty will appear in the case of boundary 

conditions i.e. 0)()( 11

0

11  nxexe . However, 

it can be shown that as we were many subintervals 

away from the boundaries
)!5(96

31
)(

3
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For that, we shall apply (3.20) inductively to move 

away from the end 

conditions 0)()( 11

0

11  nxexe . 

 The first step in this direction is to establish that 

0)(11 ixe  for some i, i = 1,2,....n, which can be 

shown by contradictory result.  Let 0)(11 ixe  

for some i=1,2,...n-1. Now making use of (3.18), we 

get 
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 This is the contradiction, hence 
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 Now from (3.21) 
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 Now again using (3.26) in (3.21) we have 
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 Repeated use of (3.21) follows that 
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Now it can be seen easily that right hand side of (3.28) 

)!5(96

31 3h
  and hence in the limiting case 

)!5(96

31
)(

3
11 h

xe j   which verify proof the inequality 

(3.19). 

Thus corresponding to the function
!5

)(
5x

xf  , (3.27) and 

(3.28) tends to 
)!5(96

31 3h
  in the limit for equally spaced 

knots. This complete proof of theorem 3.1. 
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