
International Journal of Computer Applications (0975 – 8887)

Volume 74– No.5, July 2013

6

Design and Development of a

Programmable Meta Search Engine

Manoj M*

Senior Research Fellow
CSIR - National Institute for Interdisciplinary

Science and Technology,

Thiruvananthapuram - 695019, India.

Elizabeth Jacob
Scientist

CSIR - National Institute for Interdisciplinary
Science and Technology,

Thiruvananthapuram - 695019, India.

ABSTRACT

To the web user, a Meta Search Engine (MSE) appears much

like a regular search engine (SE). MSE, unlike an SE does not

have an index. Instead, it dynamically queries multiple search

engines; extracts, fuses and re-ranks results and presents to

users. Generally, an MSE is developed from scratch even if

the focus is on improving fusion ranking, query modification

or domain specific search. This paper proposes a

programmable MSE with the help of a LISP-like language

called T! for interfacing search sources and for modifying

fused results. This enables easy construction and deployment

of an MSE service. The Programmable-Meta Search Engine

(P-MSE) provides, but is not limited to the following new

features: construction of a domain specific vertical or general

MSE by addition of dynamic web pages as front-end; a tool

for fully automated test-run of various fusion algorithms and

query modification schemes using a program or script capable

of http-querying as front-end on real-time web; a

programmable service where account holders can upload

scripts and deploy meta search engines. The concept of P-

MSE developed here, is showcased by the MSE called SSIR

(SSIR for the Savvy Information Retriever).

General Terms

Information Retrieval, Internet Search, Meta Search Engine,

IR research tool.

Keywords

Information Retrieval, Programmable Meta Search Engine,

Embedded Script, T! language, Programmable software.

1. INTRODUCTION
In recent years, excessive use of Internet is posing the

challenge of an information explosion both in stored form as

well as in real-time. Research in Information Retrieval (IR)

needs to find new improved ways to mine data with user

targeted query modification, improved fusion, ranking

techniques and IR spam filtering. Meta Search Engines (MSE)

were proposed and built as data mining tools. A Meta Search

Engine appears much like a regular search engine (SE). MSE,

unlike an SE does not have an index. Instead it dynamically

queries multiple search engines; extracts, fuses and re-ranks

results and presents it to users.

Vertical MSEs were developed for domain specific

Information Retrieval (Nano-Spider [1], Cancer-Spider [2]).

Developing a vertical MSE from scratch requires

collaboration between computational scientists and the

domain expert. A customizable MSE can save much time

spent for such specialized engines to be designed. It can also

be used for conducting experiments on the real web, while

focusing on a specific area of IR like ranking. On the other

hand, web experiments with collections like Text REtrieval

Conference (TREC) [3] or Forum for Information Retrieval

Evaluation (FIRE) [4] that create a controlled environment

and differ from the real dynamic web can also benefit from

such a tool.

2. RELATED WORK
There are numerous Meta Search Engines available on the

web. Basically, they operate by collection fusion [5]. Due to

their commercial nature, the exact implementation details of

most engines are often not available. Details of search engines

implemented as part of academic research like MetaCrawler

[6], Inquirus-2 [7], and vertical MSE for Human Resource

domain [8] are some of the publicly available documented

MSE implementations.

Studies on Meta-Searching or fusion [9 10, 11, and 12] are

more often done with data collection like TREC or FIRE data.

It is shown that automatic IR frameworks on real web can be

used as an alternative to data collections [13, 14, 15, and 16].

Open source engines available on the net have many

limitations. Myriad and Chalipa [17, 18] are PHP scripts

without any parallelism. An earlier version of Scroogle (a self

advertised privacy aware third party proxy for Google) source

code which is publicly available is a CGI-C script [19]. Helios

[20] though an impressive MSE, and implemented by its

developers as SnakeT [21], has only limited flexibility.

A flexible MSE calls for clean, simple easily re-

programmable software. A programmable search engine

system [22] designed by Google, uses context files to fine

tune various search parameters.

However, it was observed that these systems have many

limitations.

 MSE cannot handle consecutive page URLs for more

results or for HTML pages having frames.

 Pages with inconsistent format need patterns with

conditional processing.

 Primitive pattern extraction languages used in these

MSEs [20] are inadequate to handle JSON, SOAP etc.

 Most of these MSEs run as a CGI-process (has

associated process creating overhead) and use plain text

files for storage.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.5, July 2013

7

 A configuration file even with a web-page interface

never offers the power and flexibility of a program script.

P-MSE was designed to overcome these limitations and make

a developer friendly tool for IR applications.

Section 3 briefly describes the T! scripting language and gives

a detailed description of the architecture of the

Programmable-Meta Search Engine (P-MSE) and how the

programming interface is implemented. Section 4 shows how

P-MSE has been used to implement a typical MSE. Section 5

concludes this work on meta search and its prospects as an IR

tool.

3. DESIGN OF P-MSE
The Programmable - Meta Search Engine is a MSE which can

be programmed with scripts to create custom fusion (search)

services.

The P-MSE is designed to be a standalone web server. It can

handle HTTP request from any other program and work as a

typical Unix daemon. So, it does not need C++/CGI based

web servers like apache. It uses an embedded scripting

language interpreter called T!, to provide programming

capability. Multiple independent T! scripts, one corresponding

to each search source, running in parallel queries and collect

the results.

3.1 Architecture of P-MSE
Figure 1 shows the logical architecture of a MSE

implementation using the P-MSE server.

The server module listens in an HTTP port (8080) or other

ports as pre-configured. Upon receiving a request (based on

the virtual file path in the request), either an html file is served

or an instance of Query handler is created. The ASIO with

BOOST C++ library seemed to be easy to use with C++

streams, but they are unable to handle complete page output

(~ > 80 KB). So a custom-made printf style function, capable

of writing to sockets was used. Unlike their C function

counterparts, extra facility to handle C++ strings via pointers

were also added. When a new search request is received, an

additional thread of execution with a new instance of query

handler object is created.

For adding scripting capability, a LISP-like language called

T! is developed. Its source code is based on symbolic

expression (s-expressions) which have parenthesized syntax.

At source level, it is exactly like LISP but with a different

internal representation.

Fig 1: Logical architecture of the implementation of

Programmable - Meta Search Engine

Though any language like Lua can be used, T! is selected

because it is :

 Light weight, minimal, Turing complete and extendable

comparable only to LISP among popular embeddable

languages.

 Uses an easy to create and manage data structure instead

of link list.

3.2 Scripting with T! language
The T! language is designed around a data-structure called T

named after the arrangement of tea bags in a teabox. Though

designed for P-MSE, it can be embedded as a scripting

language in any application software.

In T!, s-expressions are converted into the array-based T data

structure instead of link list as shown in Figure 2. T-bags and

T-boxes form basic homo-iconic data types. T-bags are strings

and T-boxes contain any number of T-bags or T-boxes

recursively. Names of T-boxes are the variable names. A set

of t-boxes is called a t-table.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.5, July 2013

8

Fig 2: Representation of a typical s-expression in LISP

and T!

In T!, a user defined function is just another variable whose

contents must be in a specific format :

(FUNCTION::- parameter-type (formal-arguments) (single-

function)).

e.g. SQR <- (FUNCTION::- EVAL_PARAM (x) (* x x)).

The function is invoked just as any built-in primitive function

or operator. All functions are interpreted by a single

subroutine which forms the T! interpreter. Functions support

recursion as in LISP. In addition, a special predefined

primitive function proc is available to support iteration.

T! scripts have very good pattern extraction capabilities along

the lines of SNOBOL. The meta-information can be either

stored as plain text file as done in this implementation or can

be stored in a database like MySQL/Hypertable in s-

expression format.

The use of T! language allows easy sandboxing of scripts in

the P-MSE. Interaction of scripts with the code in external

environment is restricted to the APIs provided by the script

engine. The security can be enhanced, for example, remote

file (or URL) access can be restricted to a black-list or white-

list. T! language details and P-MSE APIs implemented as

callback functions by the P-MSE are available at

http://ssir.in/doc/pmse-sm.pdf.

3.3 Implementation of P-MSE
When the program is executed, the core T! libraries are loaded

and initialization T! script is run.

Listing 1. Initialization T! script

(

((// msed.t - MSED main configuration)

msed-main

(FUNCTION::- EVAL_PARAM ()

(proc (($res_tmp 0) $a $b $tmp_buff)

(- (load-script 4ONQRY-DOPARALLEL google-handler

google.t) (- : -))

(- (load-script 4ONQRY-DOPARALLEL yahoo-handler

yahoo.t) (- : -))

(- (load-script 4ONQRY-DOPARALLEL bing-handler

bing.t) (- : -))

(- (load-script 4ONQRY-DOPARALLEL dmoz-handler

dmoz.t) (- : -))

...

(- (set-reset-global-value CACHE_ENABLE TRUE) (- : -)

)

(- (set-reset-global-value DO_PARALLEL_SERACH TRUE

) (- : -))

...

(- (load-script PRE-PROCESSOR pre-proc-handler pre-

proc.t)(- : -))

...

(- (set-reset-global-value PROXY_ADDR NO-PROXY) (- :

-))

)

))

)

The T! script snippet shown in Listing one calls the P-MSE

API ‘load-script’ to define the script name (e.g. google.t) and

the callback function (e.g. google-handler) to be called in

parallel, when a query arrives.

Listing 2. Initialization of the service in C++ (in P-MSE).

T_TABLE t_table1;

LoadTLib(&t_table1,FLAVOR_LIB_FILE,"msed-flvrlib-

bag");

...

t_table1.exec_t(t_table1.t_parsed_readr("(msed-main

)","tmp_main_var")) ;

...

listen(msed.srv_socket,50);

do{

int client_socket;

if ((client_socket = accept (msed.srv_socket, NULL,

NULL)) > 0){

QUERY_HANDLER *qh = new

QUERY_HANDLER();

...

qh->serve_request_in_thread(); // Thread from here;

}else MSED::error_log("Accept Failed");

}while(!is_exit);

...

 Listing two C++ code snippet loads the ‘flavor libraries’ and

executes the T! script for initialization. Then the P-MSE

server listens for new HTTP connection. Upon receiving a

search request, a new instance of query handler object is

created. Rest of query handling is done in a new thread of

execution.

Figure 3 shows a typical instance of the query handler. The

query handler does pre-processing (e.g. query modification)

by calling the appropriate T! script through the script

interpreter library. Then cache hit verification is done. If a

cache hit is found, its query id (Qid) is passed along with rest

of the data for the scripts to process.

A T-table object is created as a local object and the

corresponding T! script is loaded. The pre-defined callback

function corresponding to each script is executed using the

interpreter function. This is done in parallel using host thread

mechanism. In the implementation, the C language pthread is

used for P-MSE.

The P-MSE creates t-variables BROWSER-VARIABLE and

SEARCH-RESULT which function as a virtual t-table. A

virtual t-table is a T! variable which acts as a t-table.

BROWSER-VARIABLE is populated by the P-MSE using

HTTP request parameters. Each script is supposed to

populate SEARCH-RESULT using results (title, url, search

result snippet, rank position and engine name) parsed from

collected search engine pages.

Algorithm 1 is a typical search script that checks for cache hit

and loads data from cache if a hit is found in the cache hit

variable passed by the P-MSE. Upon a cache miss, it

constructs typical http request and collects the result in a t-bag

(which is a string buffer). It then extracts the results using

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.5, July 2013

9

string pattern recognition function and populates a virtual t-

table named RESULTS.

Algorithm 1. Routine for interfacing with a typical SE

(Implemented via T! script).

SubRoutine: Generate-Query

$SE-query-url ← 'Absolute URL'

for each $query-phrase, $connect-operator in BROWSER-

VARIABLE

do

$SE-query-url ← concatenate $SE-query-url $query-

phrase 'Engine specific Boolean operator'

End-for

SubRoutine: Parse-Results

Input-parameter:: $result-page

$Text-body ← Call Library-Function Extact-String-Pattern

($result-page,'page pattern')

Repeat

{$url,$title,$stub} ← Call Library-Function Extract-

String-Pattern (Text-body, 'pattern')

Append {$url,$title,$stub} to global variable $RESULTS

Until ($url is Empty)

MainRoutne: Query-Handler

Global-variable: $BROWSER-VARIABLE, $RESULTS

$query ← Call Generate-Query

$result-page ← Call API http-get-file query

Call Parse-Results $result-page

Call API save-file $result-page to 'Cache Fle'

In the given implementation, the Open Directory Project (also

called DMOZ) is used as one of the search sources. A T!

script of Algorithm 1 is used. When a query arrives, ‘dmoz-

handler’ in the script is called. It can use its copy of

BROWSER-VARIABLE to create the query. It then uses the

P-MSE provided API ‘http-get-file’ to get the search result

page in a t-bag. Then the script uses the function ‘parse-

results’ to extract results. Using the library function ‘tbag-

find-replace’, the contents of t-bag (the HTML result page)

are parsed; and URL, title and stub are extracted. It then

populates the virtual t-table RESULTS.

Fig 3: The logical architecture of a single instance of query handler

The results from all scripts using respective t-table object’s

RESULTS variable are fused with removal of duplicates.

After simple re-ranking, it is passed to an optional post-

processor T! script. The post-processor can do further

processing like downloading actual documents and

supplementing URL information. The result is passed to the

program which issued the search query in the form of table of

text encoded as s-expression or URL-Encoding which in turn

passes to the user interface PHP script.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.5, July 2013

10

The host P-MSE adds a predefined callback script interpreter

function, which is called when the ‘call-extern’ function is

executed. It is used to implement various API functions used

by the script. Any host program can use this call-back

function to implement necessary APIs.

Algorithm 2. Running the T! scripts from P-MSE.

SubRoutine Run_T_Script:

Input-parameter:: $engine-N

create T-Table object

T-Table ← load T! script for $engine-N

create variable BROWSER-VARIABLE and RESULTS in T-

Table

for each $Variable in 'list of Browser/HTTP variables'

do

create variable in virtual t-table BROWSER-VARIABLE

end-do

call script interpreter function with T-Table object and script

for $engine-N

for each $Variable in ' virtual t-table RESULTS '

do

lock search-result array

add variable in search-result array with $Variable

unlock search-result array

end-do

MainRoutine Do_Search

for each $Engine in 'list of engine'

do in parallel

Run_T_Script $Engine

end-do

The main routine, for each SE registered in the initialization,

calls the subroutine to execute the corresponding T! script. All

scripts are executed in parallel. The subroutine initializes T!

environment variables, loads and parses the script and calls

the interpreter to run the script. On completion of the script,

the environment variables are read and the search result array

is updated (Algorithm 2).

4. APPLICATION OF P-MSE
The P-MSE developed in C++, with T! scripts for

communication with SEs has been used to implement a

general MSE called SSIR. Figure 4 illustrates the architecture

of SSIR with a user interface developed in PHP running on an

Apache web server.

Fig 4: SSIR Meta search engine using P-MSE

The Meta Search Engine named SSIR, recursive acronym:

SSIR for the Savvy Information Retriever, searches the

popular SEs. Specific scripts for each search source page have

been written. Engines like MS-Bing provide free API to get

results in the form of XML. For other sources, raw HTML

result pages are parsed. The live implementation can be

accessed at http://ssir.in. Figure 5 is a screenshot of SSIR.

Fig 5: SSIR web site

It searches Yahoo, Bing, Google, Yandex and ODP taking a

maximum of 10 phrases connected by boolean operators

AND, OR or NOT. After fusion, duplicate URLs are merged

and re-ranked using a ranking algorithm that fine tunes

various fusion effects. The original position of the URL in the

respective engines is also displayed with each result.

P-MSE can be used to create vertical MSEs and as an IR tool

for studies like overlapping of Search Engines [23]. The query

log and result cache from P-MSE based system can provide

real web search data for IR studies, either as complementary

or as an alternative to traditional data sets like TREC or FIRE.

Interested readers can contact the authors to get a copy of P-

MSE for non commercial purpose.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.5, July 2013

11

5. CONCLUSION
P-MSE addresses the limitations highlighted in Section 2 by

adding the programmability concept through lightweight

concurrent embedded scripting, making it a powerful tool for

MSE building. P-MSE has been created with a homoiconic,

minimalistic LISP- like language called T!. This can make the

creation of vertical MSEs much easier, helping the area

specific information seeker to focus on his domain without

having to surf through the general web.

P-MSE can be used as an IR tool to study new techniques by

testing hypothesis on the real web in a fully automated way.

Custom MSE/portal can be developed for institutions to

search both their intranet as well as the web with features like

censoring filters for educational institutions.

User querying can be simulated from the researcher’s desktop

using P-MSE with a front-end program for IR studies even

without a live MSE implementation.

Apart from the MSE domain, the concepts described here can

be used to embed scripting language in application software

or web services to create customized, value added

redistributable software products for secondary developers.

6. ACKNOWLEDGMENTS
The authors acknowledge the use of facilities at National

Institute for Interdisciplinary Science and Technology,

Thiruvananthapuram, Kerala, a constituent laboratory of CSIR

(Council of Scientific and Industrial Research), India where

this research has been carried out.

7. REFERENCES
[1] Chau, M., Chen, H., Qin, J., Zhou, Y., Qin, Y., Sung W.,

and McDonald, D. 2002. Comparison of Two

Approaches to Building a Vertical Search Tool: A Case

Study in the Nanotechnology Domain. In Proceedings of

JCDL’02, Portland, OR, USA (July 2002)

[2] Chen, H., Fan, H., Chau M., and Zeng, D. 2003. Testing

a Cancer Meta Spider; International Journal of Human-

Computer Studies (IJHCS). 59(5), 755-776.

[3] http://trec.nist.gov/, Text REtrieval Conference Home

Page, (Accessed 20 Feb. 2013).

[4] Majumder, P., Mitra, M., Pal, D., Bandyopadhyay, A.,

Maiti, S., Mitra, S., Sen A., and Pal, S. 2008. Text

collections for FIRE. In Proceedings of the 31st annual

international ACM SIGIR conference on Research and

development in information retrieval (SIGIR '08). ACM,

New York, NY, USA, 699-700.

[5] Manoj, M., and Jacob, E. 2008. Information retrieval on

Internet using meta-search engines: A review, Journal of

Scientific & Industrial Research. 67(10), 739-746.

[6] Selberg, E. W. 1999. Towards Comprehensive Web

Search. Ph.D. thesis, University of Washington.

[7] Glover, E. J. 2001. Using Extra-Topical User Preferences

to Improve Web-Based Metasearch. Ph.D. thesis,

University of Michigan.

[8] Naz, T. 2009. Configurable Meta-search in the Human

Resource Domain. PhD thesis, Vienna University of

Technology.

[9] Voorhees, E. M., Gupta, N. K. and Johnson-Laird, B.

1995. The Collection Fusion Problem. In Proceedings of

the Third Text Retrieval Conference (TREC-3); 95-104.

[10] Vogt, C. C. 1999. Adaptive Combination of Evidence for

Information Retrieval. Ph.D. Thesis, University of

California, San Diego.

[11] Montague, M. 2002. Metasearch: Data Fusion for

Document Retrieval. Ph.D. thesis, Dartmouth College.

[12] Nassar M. O., and Kanaan, G. 2009. fCombMNZ: an

Improved Data Fusion Algorithm. In Proceedings of the

International Conference on Information Management

and Engineering, Kuala Lumpur, Malaysia April 03-

April 05, 461-464.

[13] Chowdhury, A. and Soboroff, I. 2002. Automatic

evaluation of World Wide Web search services, In

Proceedings of SIGIR-2002. 421-422.

[14] Jensen, E. C. 2006. Repeatable Evaluation of

Information Retrieval Effectiveness in Dynamic

Environments. Ph.D Thesis, Illinois Institute of

Technology, Chicago, Illinois.

[15] Jensen, E. C., Beitzel, S. M., Chowdhury A., and Frieder,

O. 2007. Repeatable evaluation of search services in

dynamic environments, ACM Transactions on

Information Systems (TOIS). 26(1), 1-38

[16] Nuray R., and Can, F. 2006. Automatic ranking of

information retrieval systems using data fusion,

Information Processing and Management. 42(3), 595-

614.

[17] http://tools.seobook.com/authority-finder/myriad.txt,

Myriad Meta Search Engine Source Code, (Accessed 20

Feb. 2013).

[18] http://sourceforge.net/projects/chalipa/, Chalipa Meta

Search Engine - Open Source Project, (Accessed 20 Feb.

2013).

[19] http://web.archive.org/web/20070927230954/http://fravia

.com/nbbw.c, Scroogle Source Code, (Accessed 20 Feb.

2013).

[20] Gulli A., and Signorini A. 2005. Building an Open

Source Meta Search Engine. In Proceedings of 14th

International World Wide Web Conference, (Chiba,

Japan), 1004–1005.

[21] Ferragina P., and Gulli, A. 2008. A personalized search

engine based on Web-snippet hierarchical clustering.

Software: Practice and Experience, 38 (2), 189-225.

[22] Guha, R. V. 2005. Programmable search engine. U.S.

patent (10 Aug 2005).

[23] Manoj, M., and Jacob. E. 2010. Analysis of Meta-Search

engines using the Meta-Meta-Search tool SSIR.

International Journal of Computer Applications. 1(6),

10–16

IJCATM : www.ijcaonline.org

