
International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 21, July 2013

18

Parallelizing and Analyzing the Behavior of Sequence
Alignment Algorithm on a Cluster of Workstations for

Large Datasets

Sathe. S.R and Shrimankar. D.D
Department of Computer Science and Engineering

Visvesvaraya National Institute of Technology
Nagpur, Maharashtra, India

ABSTRACT
An MPI based parallelization technique for improving the

scalability of the global sequence alignment algorithm on

clusters of workstation is presented. We propose the parallel

implementation of the Wavefront algorithm based on a chunk

size transformation to handle large dataset with message

passing model. Molecular biologists frequently align DNA

sequences of entire genomes to detect important matched and

mismatched regions. Even though efficient dynamic

programming algorithms exist for this problem, the required

computing time is still very high due to the size of these

sequences. Because the number of sequenced organisms is

increasing rapidly, fast and accurate solutions are of highest

importance to research in this area. We show that an

appropriate choice of the number of processes and chunk size

has great impact on the overall system performance on cluster

system. We have conducted the experiments on real-life DNA

samples of house mouse mitochondrion and the DNA of

rabbit mitochondrion obtained from the public database

GenBank [GenBank, http://www.ncbi.nih.gov] in our

experiment to measure the algorithm behavior appropriately.

The results obtained from performed experiments,

demonstrate that developed parallel Wavefront algorithm

exposes high speedup and scales linearly with the increasing

number of processes. Also the communication among

processes and memory requirements are kept at minimum to

achieve high efficiency. The experiments were performed on

cluster which consists of two workstations of 12 core each

with multithreading environment.

Keywords: Index Terms--- Sequence Alignment, MPI,

Cluster Computing, Parallel Wavefront algorithm.

1. INTRODUCTION

In the last decade, we have observed an exceptional

development in molecular biology [1,2]. An extremely high

number of organisms have been sequenced in genome projects

and included in genomic databases, for further analysis. These

databases present an exponential growth rate and they are

intensively accessed daily. The biological sequence

comparison is one of the most important problems in

computational biology [3]. It is in fact a problem of finding an

approximate pattern matching between two sequences,

possibly introducing spaces (gaps) into them. The most

important types of sequence comparison problems are global

and local. To solve a global alignment problem is to find the

best match between the entire sequences. Local alignment

algorithms must find the best match (or matches) between

parts of the sequences. In this article, we will treat mainly

global alignments. Needleman and Wunsch in 1970 [4]

proposed an algorithm (NW) based on dynamic programming

to solve the global alignment problem. It is an exact algorithm

that finds the best global alignments between two genomic

sequences of size n in quadratic time complexity and space

complexity O(n2). In genome projects, the size of the

sequences to be compared are constantly increasing, thus an

O(n2) solution is still expensive. For this reason, heuristics

were proposed to reduce time complexity to O(n). NW is the

most sensitive method but also the slowest one for similarity

searches between sequences. One obvious improvement is the

use of parallel processing to speedup the NW computations.

Even in this case, the quadratic space complexity remains a

problem and techniques must be used to reduce it. Biologists

are thus faced with the problem of dealing with large datasets,

in the search of meaningful similarities among biological

sequences [5]. In order to do that, high computing power and

large memory space are necessary. Moreover, sophisticated

algorithms must be used that realistically model the

relationships among the organisms. BLAST [6] is the most

widely used heuristic tool that searches for similarities

between biological sequences. Unlike the exact methods [4, 7]

that present quadratic time and space complexity, BLAST is

often executed quickly for pair wise sequence comparison, in

a small memory space. In order to accelerate the production of

sequence alignment algorithms, many parallel strategies have

been proposed in the literature [8, 9, 10, 11, 12, 13]. Most of

these strategies were implemented in homogeneous clusters

and used message passing interface (MPI). However, nearly

all recent clusters use multicore machines as their building

blocks. Dynamic programming based algorithms can compute

the optimal alignment of a pair of sequences [7]. However,

since their complexities are quadratic with respect to the

length of the two sequences this approach leads to a high

computing time. One frequently used approach to speed up

this time consuming operation is to introduce heuristics to the

alignment algorithm [14, 15]. The main drawback of this

solution is that the more time efficient the heuristics, the

worse is the quality of the result [16]. Another approach to get

high quality results in a short time is to use parallel

processing. The system presented in [17] parallelizes the

dynamic programming calculation and is able to achieve a

speedup of 41 on a 64-node PC cluster for aligning two DNA

sequences of length 816,394 and 580,074. In this study, we

propose and evaluate our developed parallel Wavefront

algorithm based on message passing model to implement NW

algorithm on a cluster of workstation that uses commodity

hardware and operating system. Our algorithm has a time

complexity of O(n). This means that the algorithm scales

linearly with the increasing size of the dataset. One may

conclude that it will be possible to handle very large datasets

with our algorithm, depending on the available hardware,

without having restrictions such as dataset size and other

relevant criteria. Several test studies are performed and

obtained results show that the algorithm possesses high and

linear speedup with minimum communication requirements.

We show that this approach generates high quality alignments

International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 21, July 2013

19

and leads to significant runtime savings on clusters of

workstation. By aggregating the computing power of several

cores in a cluster, this runtime can be reduced even further. To

the best of our knowledge, there has been no previous report

about the development and application of parallel Wavefront

algorithm in the literature. We implemented the global

sequence alignment (GSA) algorithm using C and OpenMPI

library to align sequences of variable data sets on a platform

consisting of two homogeneous workstation of 12 cores each.

In our experimental results, we were able to reduce the

execution time from 3 hour and 30 minutes (single fastest

core) to 9 minutes and 30 seconds (24 homogeneous-core

platform).

The remainder of this paper is structured as follows. In

Section 2, we introduce the basic sequence alignment

algorithm and the extension to compute simple Wavefront

pattern and parallel Wavefront alignment on cluster of

workstation. Section 3 provides description of the cluster

architecture and mapping of application onto the parallel and

distributed cluster architecture. The main results in terms of

performance measurements of our parallel algorithm are

presented in Section 4. Section 5 provides the concluding

remarks.

2. Biological sequence comparison

The first algorithm for comparing biological sequences using

the dynamic programming technique was proposed by

Needleman and Wunsch in 1970 [4]. The algorithm consists

of two parts: the calculation of the total score indicating the

similarity between the two given sequences, and the

identification of the alignment(s) that lead to the score. This

algorithm had a great impact on later sequence alignment

algorithms, such as the well-known Smith-Waterman method

[7] and others [18] [19]. Therefore, speeding up dynamic

programming algorithms for finding optimal solutions to

sequence comparisons is an important problem in

computational biology and bioinformatics. In this paper we

will concentrate on the calculation of the score, since this is

the most computationally expensive part.

Biological sequence comparison is in fact a problem of

approximate pattern matching [20] that consists of finding

which parts of the sequences are alike. To compare two

sequences, we need to find the best alignment between them

that is to place one sequence above the other making clear the

correspondence between similar characters [21]. In an

alignment, spaces can be inserted in arbitrary locations along

the sequences so that they end up with the same size. Given

an alignment between two biological sequences s and t, a

score can be assigned for it as follows. For each column, we

assign, for instance, +1 if the two characters are identical, -1 if

the characters are different and -2 if one of them is a space.

The score is the sum of the values computed for each column.

The maximal score is the similarity between both sequences.

Figure 1 shows the alignment of sequences s and t, with the

score for each column. An exact algorithm (NW) based on

dynamic programming that obtains the best global alignment

between two sequences was proposed by Needleman and

Wunsh [4]. To compute exact local sequence alignments,

Smith and Waterman [7] proposed an algorithm (SW), also

based on dynamic programming, with quadratic time and

space complexity. Hirschberg [22] proposed an exact

algorithm that calculates a local alignment between two

sequences s and t in quadratic time but in linear space. This

approach splits sequence s in the middle, generating

subsequences s1and s{}_{2}, and calculates the corresponding

place to cut sequence t, generating subsequences t{}_{1} and

t{}_{2}, in such a way that the alignment problem can be

solved in a split and merge recursive manner. Usually, one

given biological sequence is compared against thousands or

even millions of sequences that compose genetic data banks.

One of the most important gene repositories is the one that is

part of a collaboration that involves GenBank at the National

Center for Biotechnology Information (NCBI), the EMBL at

the European Molecular Biology Laboratory and DDBJ at the

DNA Data Bank of Japan. These organizations exchange data

daily and a new release is generated every two months. By

now, there are millions of entries composed of billions of

nucleotides. In this scenario, the use of exact methods such as

NW and SW is prohibitive. For this reason, faster heuristic

methods are proposed which do not guarantee that the best

alignment will be produced. Usually, these heuristic methods

are evaluated using the concepts of sensitivity and sensibility.

Sensitivity is the ability to recognize as many significant

alignments as possible, including distantly related sequences.

Sensibility is the ability to narrow the search in order to

discard false positives [23]. Typically, there is a tradeoff

between sensitivity and sensibility. Usually, heuristic methods

use scoring matrices to calculate the mismatch penalty

between two different proteins. In figure. 1, we assigned a

unique value for a mismatch (-1 in the example) regardless of

the parts involved. This works well with nucleotides but not

for proteins. For instance, some mismatches are more likely to

occur than others and can indicate evolutionary aspects [21].

For this reason, the alignment methods for proteins use score

matrices which associate distinct values with distinct

mismatches and reflect the likelihood of a certain change.

G A - C - G

A T T A G

G A T C G G

A A T A G

+1 +1 -2 +1 -2 +1

+1 -1 +1 +1 +1

Σ = 3
Figure 1. Global alignment between s = GACGATTAG

and t = GATCGAATAG

2.1 A simple Wave-front Pattern - Our

Method to Implement the Global Algorithm
The Wavefront algorithm is a very important method used in a

variety of scientific applications. The computing procedure is

similar to a frontier of a wave to fill a matrix, where each

block’s value in the matrix is calculated based on the values of

the previously-calculated blocks. In our implementation, the

term wavefront has been used to describe our parallelizing

strategy. The left part of figure. 2 shows the traditional

wavefront structure for parallelizing the global algorithm,

where the value of each block in the matrix is dependent on

the left, upper, and upper-left blocks. Here the wavefront

rounds which will be executing in parallel are put in same

gray shade. The right part of figure. 3 shows our method to

implement this wavefront pattern. Here in this paper we have

used the term chunk in place of block. As shown in figure.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 21, July 2013

20

3(a) - (b) our wavefront structure executes these chunks in

parallel. Thus core c1 will execute the chunks 1,5,9... , core c2

will excute the chunks 2,6,10... . That is, in time step 1 core 1

will execute chunk 1, in time step 2 core 1 will execute chunk

5 and core 2 will execute chunk 2 parallely, similarly in next

time step core 1,2,3 will parallely execute chunk 9,6,3

respectively and so on. This parallel execution by

corresponding cores are shown with the same gray shade in

figure 3(b).

Figure 2. Wavefront structure of Global Algorithm for Biological Sequence Alignment. The left-hand side of the figure shows

the traditional wavefront process with 4 rows and 4 column, and right-hand side shows our method of executing wavefront

process with 7 rows and 4 column. For the detail of this method, please refer to [24].

Thus in our implementation, we employ a new chunk-based

mechanism into the “Wavefront” method [24] to accelerate

the global algorithm on cluster architecture. In general, our

contribution is, we provide the design, implementation, and

experimental study, of a new chunk-based mechanism based

on the wave-front method to enable the alignment of very

long sequences. For the sake of simplicity instead of using

traditional rows and columns, we used diagonal rows during

computation as shown in figure 2 left part. Each core before

starting computation of a chunk, reads the above row and left

column, and north-west entry, on the corresponding diagonal

row of the matrix. Work is assigned in a column basis, i.e.,

each core calculates only a set of columns on the same

diagonal. When a core finishes calculating a chunk, it writes

its bottom row, and right column, and south-east entry in

buffer space, which will be needed for next chunk calculation

of the next diagonal of a matrix. In figure 2, left part has 4

rows and 4 columns which is a traditional wave front method.

In our algorithm, as shown in right part of figure 2, we

considered our new rows as 7 i.e row+column-1 and 4

columns. The idea behind this technique is that it is possible

to simulate the filling of the original matrix by just using

buffer in memory instead of complete chunk of data, since to

compute chunk [i][j], we just need the finalRow value,

finalColumn value, and entry of north-west corner of

calculated blocks [i-1][j],[i][j-1], and [i-1][j-1] respectively.

2.2. Parallel Wave-front algorithm
In this section, we present our parallel implementation of

Wavefront algorithm. The master–slave model and SPMD

(Single Process, Multiple Data) technique on distributed-

memory multiprocessor system [25] is applied to the

algorithm as the parallelization technique. In this approach,

each copy of the single program (each process) runs on cores

independently and communication is provided by the manner

of sending and receiving messages among cores. The terms of

processor, core and process will be used interchangeably in

the text. In our cluster system, each workstation is connected

with an underlying Ethernet network. Datasets are stored in

I/O (Input/Output) server via network file system, so that each

node in the virtual system can have an access to datasets in a

shared manner. Communication requirements between master

and slave processes are managed by using Message Passing

Interface (MPI) [26]. MPI is a specification rather than an

implementation. OpenMPI [27] implementation is employed

because of its high performance and it is one of the most

widely used MPI implementation. We followed new chunk

based algorithm with diagonal rows in parallel

implementation of Wavefront algorithm. In this approach,

each process works on a specific partition of the dataset and

executes nearly identical code segments of the algorithm.

In the employed algorithm (see Algorithm 1), dataset is

partitioned evenly among cores in a chunk manner as shown

in figure. 2. Each subset of the dataset has a size of N/CS,

where n is the total size of sequence X and CS is the chunk

size, which gives tileXcount. Where tileXcount is the number

of chunks in x direction. Similarly, tileYcount is the number

of chunks in y direction of the matrix.

Algorithm 1 shows the parallel Wavefront algorithm, where

the overhead of communication is little. The algorithm uses a

master-slave parallelization method; the communication

between the master process and the slave process only

comprises chunk sizes of sequences pairs. Typically, the

lengths and count of sequences are in master and slave buffer

space. They are accessed from secondary memory during

actual computation using offset value. Thus, the message in

the communication is small. However, when the number of

tileXcount and tileYcount is large, one can expect that

frequency of communcation between the master and slave

processes become high. So it is reasonable that a MPI

implementation may show superior performance with large

dataset size and large chunk size. In the parallel

implementation the master process schedules the chunks of

International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 21, July 2013

21

sequences pairs on all other slaves. Each core performs the

parallel alignment among chunks of sequence pairs. We

implemented the parallel part using OpenMPI because the

alignment for each pair of sequences for any dataset is the

dynamic programming algorithm, where time complexity is

O(mn), where m and n is the length of two sequences,

respectively. Each dataset alignment takes varying amount of

time. Thus algorithm reduces the memory requirement using

split and merge strategy during execution of chunks in

parallel.

Figure 3. Partition of the similarity matrix. Figure 2(a) shows the processor number on corresponding chunks. Figure 2(b)

executes these chunks in parallel as shown in same color.

Agorithm 1: MPI based Parallel Wavefront algorithm

1. for i = 1 to ndr do parallel /* ndr is the number of

diagonal rows as shown in figure.3 right part*/

2. master node m0 dynamically maps chunks of

sequences to slave nodes, si, 1 ≤ i ≤(r+c-1);

3. slave node si receives its own chunk data through

Master_Buffer;
4. Each node computes alignment scores (as shown in

figure 1), then send the scores to master m0;
5. master m0 stores the result from each slave si and

schedules dynamically for next execution of chunk

for next diagonal row

6. endfor

7. The final Score is received when last slave of last

row (figure. 3 right part) finishes computation

(through parameters finalScoreRowIndex &

finalScoreColIndex)

3. Our Computational Architecture
The computational cluster architecture used in this paper

consists of a cluster of workstations. The driving force and

motivation behind this approach is the price/performance

ratio. Using workstation clusters is currently one of the most

efficient and simple ways to gain supercomputer power for a

reasonable price. Combining several of such clusters in a

computational grid can improve the cost/performance ratio

even further. The architecture of our system is shown in figure

Therefore, executing parallel applications that have been

designed for uniform speed interconnects can lead to severe

performance degradations. However, many of these

applications can increase their efficiency by reducing the

inter-core data transfer. This can be achieved by fitting

communication patterns to the interconnection structure of the

architecture. In the following we describe a parallel

programming environment consisting of two levels of MPI

programs that is used to map the application described in

Section 2 efficiently onto a cluster. The software architecture

can be divided into two layers. The upper layer is an MPICH-

G2 [29, 30] program that runs on the control node of each

cluster. This allows (slow) inter-node communication. The

Figure 4. Architecture of our system consisting of two

Linux based workstation of 12 core each with

multithreading environment (Intel 5650 processor 2.66

GHz). A 1 Gbit Ethernet switch connects each workstation

lower layer consists of an MPICH [31] program that runs on

all cores within a cluster. This allows (fast) intra-node

communication. Data can be exchanged between the MPICH-

G2 program and the MPICH program by reading and writing

to a memory block in the control node (process) of each

cluster that is shared by both programs (see figure 5).

.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 21, July 2013

22

3.1 Mapping the application onto the cluster

architecture
The mapping of long DNA sequence alignment onto the

cluster architecture consists of parallelization of the split and

merge technique to calculate the actual alignments.

Parallelization of the similarity matrix calculation is based on

the Wavefront communication pattern. Figure 3 displays the

dependency relationship: each entry (i,j) of the matrix is

computed from the entries (i−1,j), (i,j−1), (i−1,j−1). The

Wavefront moves in anti-diagonals as shown in figure 3.

Figure 5. The parallel programming environment

consisting of MPICH-G2 and MPICH programs. Both

The shift direction is from north-west to south-east.

Parallelization of the Wavefront computation has been done in

different ways depending on the particular parallel

architecture being used. On fine-grained architectures, the

computation of each cell within an anti-diagonal is

parallelized [32,33]. However, this technique is only efficient

on architectures such as systolic arrays, which have an

extremely fast inter-processor communication. On our

computational architecture like homogeneous clusters of

workstation, it is more efficient to assign an equal number of

adjacent columns to each processor as shown in figure 3.

Figure 2(a) shows an example of the computation for 4

processors, 4 columns and a clunk size of 1×1. The mapping

on our architecture has two levels of partitioning. First the

matrix is divided into parts of adjacent columns equal to the

numbers of nodes. Afterwards the part within each node is

partitioned. The computation is then performed in the same

way as shown in figure 3. This reduces the inter-node data

transfer to a single column per iteration step. In order to avoid

bottlenecks on the homogeneous cluster architecture, the

number of columns assigned to each node depends on its

computational capabilities. Figure 6 displays the partitioning

on our computational architecture.

programs can exchange data in the control core of each

node by means of a shared memory block.d

4. Results and Discussion

The experiments were performed on a cluster system each

with a 2.66 GHz clock speed workstations where each

workstation or node has 24 cores with Gbit Ethernet (1 Gbit/s)

cards as communication infrastructure as shown in figure. 4.

Two different real life DNA samples of house mouse

mitochondrion (0.53MB) and rabbit mitochondrion (1.1MB)

were used in the experiments [GenBank,

http://www.ncbi.nlm.nih.gov]. The aim of selecting two

dataset is to measure the performance of our algorithm on all

types of datasets. The proposed algorithm gives better

performance for very large size database with more number of

autonomous nodes over MPI model. Processing times shown

in our results consider only the core times. The behavior and

performance of the developed parallel algorithm are

investigated and obtained results are presented in terms of

execution times, speedup and efficiency for each source

datasets i.e dataset of mouse (DSM) and dataset of rabbit

(DSR) with respect to varying chunk sizes CS-210

(1024x1024), CS-211 (2048x2048), CS-212 (4096x4096), CS-

213 (8192x8192), CS-214 (16384x16384)). The results for

datasets DSM, DSR were obtained with 2, 4, 8, 12, 16, 24, 32,

40 and 48 core architecture using multithreading environment.

Execution times are obtained by using MPI routine

MPI_Wtime. A shortcoming of dealing with large datasets in

Wavefront approach is that the required I/O operations may

dominate the execution time. This situation can be seen from

table 1. The time spent for I/O operations includes the

required time for loading the large dataset to local memories

of compute

cores from disk during initialization stage and writing the

results back to the disk at the end of the execution

.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 21, July 2013

23

Figure 6. Partitioning of the wavefront computation on the cluster architecture to execute chunks in parallel using MPI.

Table 1

Execution times (in seconds) with (upper) and without (lower) consideration of I/O times for

DSM with varying chunk sizes (210, 211,212,213, 214) and number of processors (np)

Dataset/np 2 4 8 12 16 24 32

DSM_210(I/O) 12023 4319 2783 1207 902 781 646

DSM_212(I/O) 11698 4010 1781 1150 865 693 609

DSM_214(I/O) 10747 3857 1746

DSM_210 277 79.45 53.32 18.06 9.7 4.8 3.5

DSR_212 262 70.23 39.44 15.16 7.6 2.0 1.2

DSR_214 241 67.11 25.03

It could be possible to argue that the improvement with

parallelization may not be beneficial as much as expected due

to the high I/O requirements during the initialization stage.

However, this limitation could be turned into a gain since one

may utilize two aspects that the parallelization may bring

benefits for data processing.

The first benefit is obtained by applying a parallelization

scheme directly to CPU-bound operations and the second one

is that distributing the data for IO-bound operations and

processing in the context of distributed computing. The

benefit obtained from the former one in our study seems to be

relatively small due to the IO-bound nature of the Wavefront

approach. But, it should be mentioned that there is a steady

decrease in execution time without I/O times by increasing

number of cores. The later one brings the capability of

handling larger sizes of datasets that it could not be possible to

process sequentially due to memory limitations. As seen from

table 1, the values for I/O times decreases with increasing

number of cores.

This split and merge type data distribution is achieved in our

algorithm just by sending corresponding global data pointers

to compute nodes/workstations. Each compute node loads

necessary data to local memory from file server via network

file system. Consequently, the time spent for I/O requirements

is divided among processors. This expected benefit is obtained

from gigabit Ethernet. Also, the execution times without

consideration of I/O operations are decreased considerably

because of the fact that communication time decreases in the

merge phase. Execution times with I/O for different chunk

size for DSM is calculated and depicted in figure. 7 for

varying number of processes. Also, it is observed that the time

spent for reading and processing the data is independent of

dataset size and also indicates good load balancing feature of

the developed algorithm on dataset of mouse and rabbit

International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 21, July 2013

24

.

Fig.7.a

Fig.7b.

Figure 7. Execution time with I/O on (a) DSM and (b) DSR

Overall, our conclusion is that the total execution time is

decreased considerably by parallelization of CPU-bound

and/or IO bound operations and applying a parallel algorithm

using Wavefront approach is beneficial. Since I/O time highly

depends on the speed of network infrastructure, this

conclusion may be more applicable in the case of Gbit

Ethernet. As our parallel Wavefront algorithm is executed on

cluster of workstation using faster network infrastructure such

as 1/10 Gigabit Ethernet and/or using faster storage networks,

it is expected that this sort of shortcoming (I/O time

limitation) could be surmounted to some extent.

Although a considerable improvement with parallelization is

obtained by distribution of IO-bound operations, those I/O

times are not considered for the presented figures in the rest of

the text. The reason for this is that the time spent for reading

of dataset and writing of result from/to the disk is highly

dependent on numerous factors including read–write speed of

the disk, speed of the network and format of the input/result

file. Hence, we have only focused on the parallelization

behavior of the developed parallel Wavefront algorithm.

The behavior of execution times by increasing number of

cores for datasets DSM and DSR with different number of

processes and chunk sizes are plotted in figure. 8. The

expectation of decrease in execution time by increasing

number of processes is satisfied for almost all the cases except

some specific cases for both datasets. In figure 8(c) (CS 212),

for DSM and DSR execution time for more than 24 cores and

40 cores respectively are found to be greater. Some more

cases are found, like in figure. 8(d)&(e) (CS 211 and CS 210),

for DSM and DSR execution time for more than 40 processes

and 32 processes respectively are found to be greater. This

International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 21, July 2013

25

case can be explained due to the additional communication

time per cluster of sending master/slave buffer data space,

chunk space and time required for storing scores from all

cores by master to update its own data. But, updating

master/slave data buffer space for each chunk size is the main

reason for this performance degradation. As the number of

cores increases, less time is required in the operation of

updating data in buffer of reduced chunk space per cores.

Accordingly, we obtained very good timing values and linear

speedup in performance. Updating is implemented as

scanning transformed chunk space and replacing all

occurrences of old buffer data with new ones. This procedure

is performed in a fast manner via pointer which directly points

to memory of all associated units.

Fig.8.a.(for chunk size 214x 214) Fig.8.b.(for chunk size 213x 213)

\

Fig.8.c.(for chunk size 212x 212)

International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 21, July 2013

26

Fig.8.d.(for chunk size 211x 211
)

Fig.8.e.(for chunk size 210x 210)

Figure 8. Execution times for both dataset with varying chunk sizes (214,213,212,211,210) and number of processes (2, 4, 8, 16, 24,

32, 40, 48)

International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 21, July 2013

27

Speedup (Sp) is defined as the ratio of computation time on a

single core to the computation time on C cores. The obtained

speedup ratios for DSM, DSR with number of cores and

different chunk sizes are presented in figure. 9(a)–(e),

respectively. It is clearly seen from these figures that our

developed parallel Wavefront algorithm scales almost linearly.

In figure. 9(a), the speedup line for DSR is higher than the

lines for DSM. The number of communications from chunk

size 214 to 210 (figure 9.b to 9.e)is decreasing and hence time

required for internal computation is increasing. This elevation

of the line for both datasets at most time consuming chunk

size value confirms the suitability of our parallel Wavefront

algorithm for huge datasets with large chunk size. The

speedup values for both datasets figure. 9(a) - (e) are almost

same up to 8 processors. The separation of the lines at the

processor size 16 can be explained as the unsustainable

balance between the computed local data and communicated

data. There are comparatively less amount of communication

for 8 cores while less amount of calculation for 16 cores. This

situation changes for cores more than 16 for all chunk sizes

where lines at each processor sizes are not matching. The

small deviations at that processor size are simply due to the

increasing communication requirements. This effect is more

apparent for chunk size 213 on 16 processes. Due to

comparatively less amount of computations at that size, the

time spent for the communication becomes considerable.

For all chunk size values, the slope for speedup values is

reduced from 16 to 32 processors regardless of the dataset

size. It is seen from the figure. 9(a) - (e), the linear behavior of

the algorithm is getting improved as chunk size and dataset

sizes increases. Table 2 shows the obtained efficiency values

for both datasets with different number of cores. The reason of

presenting efficiency results in this table for all chunk size is

that it represents the behavior of our algorithm most

conveniently. Obtained efficiency values for DSM are

considerably high for np = 8 and np = 12, then exhibits a

steady decrease with the increasing number of cores. This

behavior is due to increasing communication requirements.

Updating local buffer from memory by each core increases

hence communication cost per processors increases.

 Fig 9(a) Fig 9(b)

 Fig 9(c) Fig 9(d)

International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 21, July 2013

28

 Fig 9(e)
Figure 9. Speedup vs Number of Processes for all chunk sizes on both data set

Table 2

Efficiency with (upper) and without (lower) consideration of I/O times for DSM with varying chunk sizes and number of

processes

Dataset/np 2 4 8 12 16 24 32 40 48

DSM (1024) 0.59 0.88 0.96 0.96 0.79 0.52 0.69 0.58 0.32

DSM (2048) 0.56 0.83 0.92 0.91 0.86 0.71 0.61 0.49 0.31

DSM (4096) 1.23 0.80 0.87 0.83 0.81 0.67 0.48 0.28 0.23

DSM (8192) 0.55 0.77 0.78 0.72 0.66 0.45

DSM (16384) 0.55 0.72

DSR (1024) 0.57 0.89 0.98 0.99 0.99 0.82 0.70 0.52 0.44

DSR (2048) 0.56 0.82 0.94 0.95 0.94 0.77 0.70 0.58 0.47

DSR (4096) 0.55 0.81 0.91 0.89 0.90 0.69 0.63 0.50 0.35

DSR (8192) 0.55 0.79 0.87 0.83 0.82 0.62

DSR(16384) 0.61 0.76

We have obtained better efficiency values as chunk size

increases. The reason is that the execution time of Wavefront

transform neither depends on the cluster size complexity nor

dataset sizes but depends on the performance of local

component of updating master/slave buffer space which

directly depends upon chunk size. For this reason, as chunk

size increases, finding the local components on that

transformed values is faster compared to small chunk size

values. This implies a relation between chunk size and

memory size related to efficiency for a given dataset. Our

parallel implementation can be further improved such that the

efficiency trend might be better than the present situation. The

present minor restriction is due to the fact that master core

waits all cores before starting new execution of new diagonal

row. A possible solution is broadcasting masters’

local values instead of implementing master–slave model and

thus each processor can decide its start time of new

computation.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 21, July 2013

29

Speedup values with respect to the number of processors for

both datasets are also plotted to understand the algorithmic

behavior as another point of view, see figure. 10(a) & figure.

10(b) each symbols on the data line correspond to number of

processors in datasets DSM & DSR respectively. Figure. 10(a)

shows that speedup values are linearly increasing for all

chunk sizes up to number of cores 16. After that of chunk size

211 speedup decreases from np=8 onwards. This is due to

increasing communication of processors with respect to

increasing chunk sizes.

When DSR is used to show speedup analysis as shown in

figure. 10(b), the speedup values remain almost same for all

chunk sizes up to np = 24. Then same as DSM there is a subtle

decrease for CS 210 and CS 212. The relatively high speedup is

obtained for DSR dataset than DSM for 32, 40 cores that

means system supports the suitability of the algorithm for

larger datasets.

 Fig 10(a) Fig 10(b)

Figure 10. Speedup with varying number 0 chunk sizes and number of processors (2,4,6….. 48) for (a) DSM (b) DSR

6. CONCLUSION

In this study, an efficient parallel implementation of

Wavefront algorithm based on the message passing model for

distributed-memory multiprocessor system is developed. We

have presented obtained execution time, speedup and

efficiency results for varied number of chunk size on different

datasets for different number of processors, to reveal the

performance of developed algorithm. Experiments are

performed on a PC cluster of 2 workstations with 48 cores

(using multithreaded environment) and having gigabit

Ethernets as underlying communication hardware. Results

have shown that our parallel Wavefront algorithm exposes

superior speedup and can be employed to overcome time

complexity, space complexity constraint as well due to low

memory consumption. As a parallel implementation strategy,

we adopted master/slave model and followed our new chunk

based method with diagonal rows in Wavefront approach to

increase the performance and to reduce the amount of

memory consumed at each processor for holding local

datasets. The communications among processors are kept at

minimum to achieve high efficiency, such that each processor

accesses its subset of large dataset directly in a shared manner.

A minor restriction is due to the fact that parent processor

waits all processors before starting new computation to new

processor. When this minor restriction is addressed, the

presented parallel implementation can be further improved.

An another way of improving the parallelization of the

presented Wavefront technique is to feasibly apply the

algorithm on a heterogeneous cluster architecture using thread

programming technique on OpenMP/MPI hybrid model

.

7. REFERENCES
[1] A. Boukerche, Alba Melo, “Bioinformatics applications in

grid computing environments,” Grid Computing for

Bioinformatics and Computational Biology, pp. 301-325,

2007.

[2] A. Boukerche, A.C. de Melo, “Computational molecular

biology,” Parallel Computing for Bioinformatics and

Computational Biology: Models Enabling Technologies,

and Case Studies, pp. 149-166, 2006.

[3] J. C. Setubal and J. Meidanis, Introduction to

Computational Molecular Biology. Brooks/Cole

Publishing Company, 1997.

[4]. Saul B. Needleman and Christian D. Wunsch. “A general

method applicable to the search for similarities in the

amino acid sequence of two sequences,” Journal of

Molecular Biology, pp. 443-453, 1970.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 21, July 2013

30

[5] A. Zomaya, Parallel Computing for Bioinformatics and

Computational Biology: Models, Enabling Technologies,

and Case Studies, 2006.

[6] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W.

Myers, David J. Lipman, “A basic local alignment search

tool,” Journal of Molecular Biology, pp 403-410, 1990.

[7] T.F. Smith, M.S. Waterman, “Identification of common

molecular subsequences,” J. Mol. Biol. Pp. 195-197,

1981.

[8] Chaichoompu K, Kittitornkun S, Tongsima S. “MT-

clustalW: multithreading multiple sequence alignment,”

IPDPS,

[9] Li KB, “ClustalW-MPI: ClustalW analysis using

distributed and parallel computing,” Bioinformatics, pp.

1585–1586, 2006.

[10] Schmollinger M, Nieselt K, Kaufmann M, Morgenstern

B, “DIALIGN P: fast pair-wise and multiple sequence

alignment using parallel processors,” BMC Bioinform,

2004

[11] Tan G, Feng S, Sun N, “Parallel multiple sequences

alignment in SMP clusters,” Highperformance

computing, 2005.

[12] Zola J, Yang X, Rospondek A, Aluru S, “T-Coffee: a

parallel multiple sequence aligner,” PDCS, pp. 248–253,

2007.

[13] Boukerche A, Correa JM, Melo ACMA, Jacobi RP, “A

hardware accelerator for the fast retrieval of DIALIGN

biological sequence alignments in linear space,” IEEE

Trans. Comput, pp. 808–821, 2010.

[14] Altschul, S.F., Gish, W., Miller, W., Myers, E.W.,

Lipman, D.J., “Basic local alignment search tool,”

Journal of Molecular Biology, pp. 403-410, 1990.

[15] Chao, K.M., Zhang, J., Ostell, J., Miller, W., “A local

alignment tool for long DNA sequences,” Computer

Applications in the Biosciences, pp. 147-153, 1994.

[16] Pearson, W.R., “Comparison of methods for searching

protein sequence databases,” Protein Science, pp. 1145-

1160, 1995.

[17] Martins, W.S., del Cuvillo, J.B., Cui, W., Gao, G.R.,

“Whole Genome Alignment using a Multithreaded

Parallel Implementation,” Proceedings 13th Symposium

on Computer Architecture and High Performance

Computing, September 2001.

[18] Osamu Gotoh. “An improved algorithm for matching

biological sequences,” Journal of Molecular Biology, pp.

705-708, 1982.

[19] E.W. Myers and W. Miller, “Optimal alignments in linear

space,” Computer Applications in the Biosciences, pp.

11-17, 1988.

[20] G. Navarro, “A guided tour to approximate string

matching,” ACM Computing Surveys, 2001.

[21] J.C. Setubal, J. Meidanis, “Introduction to Computational

Molecular Biology,” Brooks/Cole Publishing Company,

1997.

 [22] D.S. Hirschberg, “A linear space algorithm for

computing maximal common subsequences,”

Communications of the ACM, pp. 341-343, 1975.

[23] David W. Mount, Bioinformatics: Sequence and Genome

Analysis, Cold Spring Harbor Laboratory Press, 2004.

[24] S. Aji, F. Blagojevic, W. Feng, D.S. Nikolopoulos. “Cell-

SWat: Modeling and Scheduling Wavefront

Computations on the Cell Broadband Engine”

Proceedings of the ACM nternational Conference on

Computing Frontiers, pp. 13-22, 2008

[25] C. Quammen, Introduction to programming shared-

memory and distributed memory parallel computers,

Crossroads 12, 2005.

[26] W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable

Parallel Programming with the Message-Passing

Interface, MIT Press, Cambridge, MA, USA, 1994.

[27] E. Gabriel, G.E. Fagg, G. Bosilca, T. Angskun, J.J.

Dongarra, J.M. Squyres, V. Sahay, P. Kambadur, B.

Barrett, A. Lumsdaine, R.H. Castain, D.J. Daniel, R.L.

Graham,T.S. Woodall, “Open MPI: goals, concept, and

design of a next generation MPI implementation,”

Proceedings, 11th European PVM/MPI Users’ Group

Meeting, Budapest, Hungary, pp. 97–104.

[28] Plaat, A., Bal, H.E., Hofman, R.H.F., “Sensitivity of

Parallel Applications to Large Differences in Bandwidth

and Latency in Two-Layer Interconnects,” Proceedings

5th IEEE HPCA’99, pp. 244-253, 1999.

[29] Foster, I., Geisler, J., Gropp, W., Karonis, N., Lusk, E.,

Thiruvathukal, G., Tuecke S., “Wide-Area

Implementation of the Message Passing Interface,”

Parallel Computing, pp. 1735-1749, 1998.

[30] http://www.niu.edu/mpi

[31] http://www-unix.mcs.anl.gov/mpi/mpich/

[32] Schmidt, B., Schr¨oder, H., Schimmler, M., “Massively

Parallel Solutions for Molecular Sequence Analysis,”

Proc. IPDPS’02, Ft. Lauderdale, Florida, 2002.

[33] Schmidt, B., Schr¨oder, H., Schimmler, M., “A hybrid

architecture for bioinformatics,“ Future Generations

Computer Systems, pp. 855-862, 2002.

IJCATM : www.ijcaonline.org

