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ABSTRACT 
An MPI based parallelization technique for improving the 

scalability of the global sequence alignment algorithm on 

clusters of workstation is presented. We propose the parallel 

implementation of the Wavefront algorithm based on a chunk 

size transformation to handle large dataset with message 

passing model. Molecular biologists frequently align DNA 

sequences of entire genomes to detect important matched and 

mismatched regions. Even though efficient dynamic 

programming algorithms exist for this problem, the required 

computing time is still very high due to the size of these 

sequences. Because the number of sequenced organisms is 

increasing rapidly, fast and accurate solutions are of highest 

importance to research in this area. We show that an 

appropriate choice of the number of processes and chunk size 

has great impact on the overall system performance on cluster 

system. We have conducted the experiments on real-life DNA 

samples of house mouse mitochondrion and the DNA of 

rabbit mitochondrion obtained from the public database 

GenBank [GenBank, http://www.ncbi.nih.gov] in our 

experiment to measure the algorithm behavior appropriately. 

The results obtained from performed experiments, 

demonstrate that developed parallel Wavefront algorithm 

exposes high speedup and scales linearly with the increasing 

number of processes. Also the communication among 

processes and memory requirements are kept at minimum to 

achieve high efficiency. The experiments were performed on 

cluster which consists of two workstations of 12 core each 

with multithreading environment.  

 

Keywords: Index Terms--- Sequence Alignment, MPI, 

Cluster Computing, Parallel Wavefront algorithm. 

 

1. INTRODUCTION 
 

In the last decade, we have observed an exceptional 

development in molecular biology [1,2]. An extremely high 

number of organisms have been sequenced in genome projects 

and included in genomic databases, for further analysis. These 

databases present an exponential growth rate and they are 

intensively accessed daily. The biological sequence 

comparison is one of the most important problems in 

computational biology [3]. It is in fact a problem of finding an 

approximate pattern matching between two sequences, 

possibly introducing spaces (gaps) into them. The most 

important types of sequence comparison problems are global 

and local. To solve a global alignment problem is to find the 

best match between the entire sequences. Local alignment 

algorithms must find the best match (or matches) between 

parts of the sequences. In this article, we will treat mainly 

global alignments. Needleman and Wunsch in 1970 [4] 

proposed an algorithm (NW) based on dynamic programming 

to solve the global alignment problem. It is an exact algorithm 

that finds the best global alignments between two genomic 

sequences of size n in quadratic time complexity and space 

complexity O(n2). In genome projects, the size of the 

sequences to be compared are constantly increasing, thus an 

O(n2) solution is still expensive. For this reason, heuristics 

were proposed to reduce time complexity to O(n). NW is the 

most sensitive method but also the slowest one for similarity 

searches between sequences. One obvious improvement is the 

use of parallel processing to speedup the NW computations. 

Even in this case, the quadratic space complexity remains a 

problem and techniques must be used to reduce it. Biologists 

are thus faced with the problem of dealing with large datasets, 

in the search of meaningful similarities among biological 

sequences [5]. In order to do that, high computing power and 

large memory space are necessary. Moreover, sophisticated 

algorithms must be used that realistically model the 

relationships among the organisms. BLAST [6] is the most 

widely used heuristic tool that searches for similarities 

between biological sequences. Unlike the exact methods [4, 7] 

that present quadratic time and space complexity, BLAST is 

often executed quickly for pair wise sequence comparison, in 

a small memory space. In order to accelerate the production of 

sequence alignment algorithms, many parallel strategies have 

been proposed in the literature [8, 9, 10, 11, 12, 13]. Most of 

these strategies were implemented in homogeneous clusters 

and used message passing interface (MPI). However, nearly 

all recent clusters use multicore machines as their building 

blocks. Dynamic programming based algorithms can compute 

the optimal alignment of a pair of sequences [7]. However, 

since their complexities are quadratic with respect to the 

length of the two sequences this approach leads to a high 

computing time. One frequently used approach to speed up 

this time consuming operation is to introduce heuristics to the 

alignment algorithm [14, 15]. The main drawback of this 

solution is that the more time efficient the heuristics, the 

worse is the quality of the result [16]. Another approach to get 

high quality results in a short time is to use parallel 

processing. The system presented in [17] parallelizes the 

dynamic programming calculation and is able to achieve a 

speedup of 41 on a 64-node PC cluster for aligning two DNA 

sequences of length 816,394 and 580,074. In this study, we 

propose and evaluate our developed parallel Wavefront 

algorithm based on message passing model to implement NW 

algorithm on a cluster of workstation that uses commodity 

hardware and operating system. Our algorithm has a time 

complexity of O(n). This means that the algorithm scales 

linearly with the increasing size of the dataset. One may 

conclude that it will be possible to handle very large datasets 

with our algorithm, depending on the available hardware, 

without having restrictions such as dataset size and other 

relevant criteria. Several test studies are performed and 

obtained results show that the algorithm possesses high and 

linear speedup with minimum communication requirements. 

We show that this approach generates high quality alignments 
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and leads to significant runtime savings on clusters of 

workstation. By aggregating the computing power of several 

cores in a cluster, this runtime can be reduced even further. To 

the best of our knowledge, there has been no previous report 

about the development and application of parallel Wavefront 

algorithm in the literature. We implemented the global 

sequence alignment (GSA) algorithm using C and OpenMPI 

library to align sequences of variable data sets on a platform 

consisting of two homogeneous workstation of 12 cores each. 

In our experimental results, we were able to reduce the 

execution time from 3 hour and 30 minutes (single fastest 

core) to 9 minutes and 30 seconds (24 homogeneous-core 

platform).  

 

The remainder of this paper is structured as follows. In 

Section 2, we introduce the basic sequence alignment 

algorithm and the extension to compute simple Wavefront 

pattern and parallel Wavefront alignment on cluster of 

workstation. Section 3 provides description of the cluster 

architecture and mapping of application onto the parallel and 

distributed cluster architecture. The main results in terms of 

performance measurements of our parallel algorithm are 

presented in Section 4. Section 5 provides the concluding 

remarks. 

 

2. Biological sequence comparison  

 
The first algorithm for comparing biological sequences using 

the dynamic programming technique was proposed by 

Needleman and Wunsch in 1970 [4]. The algorithm consists 

of two parts: the calculation of the total score indicating the 

similarity between the two given sequences, and the 

identification of the alignment(s) that lead to the score. This 

algorithm had a great impact on later sequence alignment 

algorithms, such as the well-known Smith-Waterman method 

[7] and others [18] [19]. Therefore, speeding up dynamic 

programming algorithms for finding optimal solutions to 

sequence comparisons is an important problem in 

computational biology and bioinformatics. In this paper we 

will concentrate on the calculation of the score, since this is 

the most computationally expensive part.  

 

Biological sequence comparison is in fact a problem of 

approximate pattern matching [20] that consists of finding 

which parts of the sequences are alike. To compare two 

sequences, we need to find the best alignment between them 

that is to place one sequence above the other making clear the 

correspondence between similar characters [21]. In an 

alignment, spaces can be inserted in arbitrary locations along 

the sequences so that they end up with the same size. Given 

an alignment between two biological sequences s and t, a 

score can be assigned for it as follows. For each column, we 

assign, for instance, +1 if the two characters are identical, -1 if 

the characters are different and -2 if one of them is a space. 

The score is the sum of the values computed for each column. 

The maximal score is the similarity between both sequences. 

Figure 1 shows the alignment of sequences s and t, with the 

score for each column. An exact algorithm (NW) based on 

dynamic programming that obtains the best global alignment 

between two sequences was proposed by Needleman and 

Wunsh [4]. To compute exact local sequence alignments, 

Smith and Waterman [7] proposed an algorithm (SW), also 

based on dynamic programming, with quadratic time and 

space complexity. Hirschberg [22] proposed an exact 

algorithm that calculates a local alignment between two 

sequences s and t in quadratic time but in linear space. This 

approach splits sequence s in the middle, generating 

subsequences s1and s{}_{2}, and calculates the corresponding 

place to cut sequence t, generating subsequences t{}_{1} and 

t{}_{2}, in such a way that the alignment problem can be 

solved in a split and merge recursive manner. Usually, one 

given biological sequence is compared against thousands or 

even millions of sequences that compose genetic data banks. 

One of the most important gene repositories is the one that is 

part of a collaboration that involves GenBank at the National 

Center for Biotechnology Information (NCBI), the EMBL at 

the European Molecular Biology Laboratory and DDBJ at the 

DNA Data Bank of Japan. These organizations exchange data 

daily and a new release is generated every two months. By 

now, there are millions of entries composed of billions of 

nucleotides. In this scenario, the use of exact methods such as 

NW and SW is prohibitive. For this reason, faster heuristic 

methods are proposed which do not guarantee that the best 

alignment will be produced. Usually, these heuristic methods 

are evaluated using the concepts of sensitivity and sensibility. 

Sensitivity is the ability to recognize as many significant 

alignments as possible, including distantly related sequences. 

Sensibility is the ability to narrow the search in order to 

discard false positives [23]. Typically, there is a tradeoff 

between sensitivity and sensibility. Usually, heuristic methods 

use scoring matrices to calculate the mismatch penalty 

between two different proteins. In figure. 1, we assigned a 

unique value for a mismatch (-1 in the example) regardless of 

the parts involved. This works well with nucleotides but not 

for proteins. For instance, some mismatches are more likely to 

occur than others and can indicate evolutionary aspects [21]. 

For this reason, the alignment methods for proteins use score 

matrices which associate distinct values with distinct 

mismatches and reflect the likelihood of a certain change.

  

 

G  A  -  C  -  G  

A  T  T  A  G 

G  A  T  C  G  G  

A  A  T  A  G 

+1        +1       -2          +1        -2       +1        

+1       -1          +1       +1        +1 

Σ = 3 
Figure 1. Global alignment between s = GACGATTAG   

and  t = GATCGAATAG 

 
 

2.1 A simple Wave-front Pattern - Our 

Method to Implement the Global Algorithm 
The Wavefront algorithm is a very important method used in a 

variety of scientific applications. The computing procedure is 

similar to a frontier of a wave to fill a matrix, where each 

block’s value in the matrix is calculated based on the values of 

the previously-calculated blocks. In our implementation, the 

term wavefront has been used to describe our parallelizing 

strategy. The left part of figure. 2 shows the traditional 

wavefront structure for parallelizing the global algorithm, 

where the value of each block in the matrix is dependent on 

the left, upper, and upper-left blocks. Here the wavefront 

rounds which will be executing in parallel are put in same 

gray shade. The right part of figure. 3 shows our method to 

implement this wavefront pattern. Here in this paper we have 

used the term chunk in place of block. As shown in figure. 
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3(a) - (b) our wavefront structure executes these chunks in 

parallel. Thus core c1 will execute the chunks 1,5,9... , core c2 

will excute the chunks 2,6,10... . That is, in time step 1 core 1 

will execute chunk 1, in time step 2 core 1 will execute chunk 

5 and core 2 will execute chunk 2 parallely, similarly in next 

time step core 1,2,3 will parallely execute chunk 9,6,3 

respectively and so on. This parallel execution by 

corresponding cores are shown with the same gray shade in 

figure 3(b).  

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Wavefront structure of Global Algorithm for Biological Sequence Alignment. The left-hand side of the figure shows 

the traditional wavefront process with 4 rows and 4 column, and right-hand side shows our method of executing wavefront 

process with 7 rows and 4 column. For the detail of this method, please refer to [24].  
 

Thus in our implementation, we employ a new chunk-based 

mechanism into the “Wavefront” method [24] to accelerate 

the global algorithm on cluster architecture. In general, our 

contribution is, we provide the design, implementation, and 

experimental study, of a new chunk-based mechanism based 

on the wave-front method to enable the alignment of very 

long sequences. For the sake of simplicity instead of using 

traditional rows and columns, we used diagonal rows during 

computation as shown in figure 2 left part. Each core before 

starting computation of a chunk, reads the above row and left 

column, and north-west entry, on the corresponding diagonal 

row of the matrix. Work is assigned in a column basis, i.e., 

each core calculates only a set of columns on the same 

diagonal. When a core finishes calculating a chunk, it writes 

its bottom row, and right column, and south-east entry in 

buffer space, which will be needed for next chunk calculation 

of the next diagonal of a matrix. In figure 2, left part has 4 

rows and 4 columns which is a traditional wave front method. 

In our algorithm, as shown in right part of figure 2, we 

considered our new rows as 7 i.e row+column-1 and 4 

columns. The idea behind this technique is that it is possible 

to simulate the filling of the original matrix by just using 

buffer in memory instead of complete chunk of data, since to 

compute chunk [i][j], we just need the finalRow value, 

finalColumn value, and entry of north-west corner of 

calculated blocks [i-1][j],[i][j-1], and [i-1][j-1] respectively.

 

2.2. Parallel Wave-front algorithm 
In this section, we present our parallel implementation of 

Wavefront algorithm. The master–slave model and SPMD 

(Single Process, Multiple Data) technique on distributed-

memory multiprocessor system [25] is applied to the 

algorithm as the parallelization technique. In this approach, 

each copy of the single program (each process) runs on cores 

independently and communication is provided by the manner 

of sending and receiving messages among cores. The terms of 

processor, core and process will be used interchangeably in 

the text. In our cluster system, each workstation is connected 

with an underlying Ethernet network. Datasets are stored in 

I/O (Input/Output) server via network file system, so that each 

node in the virtual system can have an access to datasets in a 

shared manner. Communication requirements between master 

and slave processes are managed by using Message Passing 

Interface (MPI) [26]. MPI is a specification rather than an 

implementation. OpenMPI [27] implementation is employed 

because of its high performance and it is one of the most 

widely used MPI implementation. We followed new chunk 

based algorithm with diagonal rows in parallel 

implementation of Wavefront algorithm. In this approach, 

each process works on a specific partition of the dataset and 

executes nearly identical code segments of the algorithm.  

 
In the employed algorithm (see Algorithm 1), dataset is 

partitioned evenly among cores in a chunk manner as shown 

in figure. 2. Each subset of the dataset has a size of N/CS, 

where n is the total size of sequence X and CS is the chunk 

size, which gives tileXcount. Where tileXcount is the number 

of chunks in x direction. Similarly, tileYcount is the number 

of chunks in y direction of the matrix. 

 

Algorithm 1 shows the parallel Wavefront algorithm, where 

the overhead of communication is little. The algorithm uses a 

master-slave parallelization method; the communication 

between the master process and the slave process only 

comprises chunk sizes of sequences pairs. Typically, the 

lengths and count of sequences are in master and slave buffer 

space. They are accessed from secondary memory during 

actual computation using offset value. Thus, the message in 

the communication is small. However, when the number of 

tileXcount and tileYcount is large, one can expect that 

frequency of communcation between the master and slave 

processes become high. So it is reasonable that a MPI 

implementation may show superior performance with large 

dataset size and large chunk size. In the parallel 

implementation the master process schedules the chunks of 
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sequences pairs on all other slaves. Each core performs the 

parallel alignment among chunks of sequence pairs. We 

implemented the parallel part using OpenMPI because the 

alignment for each pair of sequences for any dataset is the 

dynamic programming algorithm, where time complexity is 

O(mn), where m and n is the length of two sequences, 

respectively. Each dataset alignment takes varying amount of 

time. Thus algorithm reduces the memory requirement using 

split and merge strategy during execution of chunks in 

parallel.

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Partition of the similarity matrix. Figure 2(a) shows the processor number on corresponding chunks. Figure 2(b) 

executes these chunks in parallel as shown in same color. 

 

Agorithm 1: MPI based Parallel Wavefront algorithm 

 

1. for i = 1 to ndr do parallel  /* ndr is the number of 

diagonal rows as shown in figure.3 right part*/ 

2. master node m0 dynamically maps chunks of 

sequences to slave nodes, si, 1 ≤ i ≤(r+c-1); 

3. slave node si receives its own chunk data through 

Master_Buffer;  
4. Each node computes alignment scores (as shown in 

figure 1), then send the scores to master m0;  
5. master m0 stores the result from each slave si and 

schedules dynamically for next execution of chunk 

for next diagonal row   

6. endfor  

7. The final Score is received when last slave of last 

row (figure. 3 right part) finishes computation 

(through parameters finalScoreRowIndex & 

finalScoreColIndex) 
 
3. Our Computational Architecture 
The computational cluster architecture used in this paper 

consists of a cluster of workstations. The driving force and 

motivation behind this approach is the price/performance  

 

ratio. Using workstation clusters is currently one of the most 

efficient and simple ways to gain supercomputer power for a 

reasonable price. Combining several of such clusters in a 

computational grid can improve the cost/performance ratio 

even further. The architecture of our system is shown in figure  

Therefore, executing parallel applications that have been  

designed for uniform speed interconnects can lead to severe 

performance degradations. However, many of these 

applications can increase their efficiency by reducing the 

inter-core data transfer. This can be achieved by fitting 

communication patterns to the interconnection structure of the 

architecture. In the following we describe a parallel 

programming environment consisting of two levels of MPI 

programs that is used to map the application described in 

Section 2 efficiently onto a cluster. The software architecture 

can be divided into two layers. The upper layer is an MPICH-

G2 [29, 30] program that runs on the control node of each 

cluster. This allows (slow) inter-node communication. The  

 

Figure 4. Architecture of our system consisting of two 

Linux based workstation of 12 core each with 

multithreading environment (Intel 5650 processor 2.66 

GHz). A 1 Gbit Ethernet switch connects each workstation 

 

lower layer consists of an MPICH [31] program that runs on 

all cores within a cluster. This allows (fast) intra-node 

communication. Data can be exchanged between the MPICH-

G2 program and the MPICH program by reading and writing 

to a memory block in the control node (process) of each 

cluster that is shared by both programs (see figure 5).

.  
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3.1  Mapping the application onto the cluster 

architecture  
The mapping of long DNA sequence alignment onto the 

cluster architecture consists of parallelization of the split and 

merge technique to calculate the actual alignments. 

Parallelization of the similarity matrix calculation is based on 

the Wavefront communication pattern. Figure 3 displays the 

dependency relationship: each entry (i,j) of the matrix is 

computed from the entries (i−1,j), (i,j−1), (i−1,j−1). The 

Wavefront moves in anti-diagonals as shown in figure 3. 

 

Figure 5. The parallel programming environment 

consisting of MPICH-G2 and MPICH programs. Both 

 
The shift direction is from north-west to south-east. 

Parallelization of the Wavefront computation has been done in 

different ways depending on the particular parallel 

architecture being used. On fine-grained architectures, the 

computation of each cell within an anti-diagonal is 

parallelized [32,33]. However, this technique is only efficient 

on architectures such as systolic arrays, which have an 

extremely fast inter-processor communication. On our 

computational architecture like homogeneous clusters of 

workstation, it is more efficient to assign an equal number of 

adjacent columns to each processor as shown in figure 3. 

Figure 2(a) shows an example of the computation for 4 

processors, 4 columns and a clunk size of 1×1. The mapping 

on our architecture has two levels of partitioning. First the 

matrix is divided into parts of adjacent columns equal to the 

numbers of nodes. Afterwards the part within each node is 

partitioned. The computation is then performed in the same 

way as shown in figure 3. This reduces the inter-node data 

transfer to a single column per iteration step. In order to avoid 

bottlenecks on the homogeneous cluster architecture, the 

number of columns assigned to each node depends on its 

computational capabilities. Figure 6 displays the partitioning 

on our computational architecture.

programs can exchange data in the control core of each 

node by means of a shared memory block.d 

 

4. Results and Discussion 

 
The experiments were performed on a cluster system each 

with a 2.66 GHz clock speed workstations where each 

workstation or node has 24 cores with Gbit Ethernet (1 Gbit/s) 

cards as communication infrastructure as shown in figure. 4. 

Two different real life DNA samples of house mouse 

mitochondrion (0.53MB) and rabbit mitochondrion (1.1MB) 

were used in the experiments [GenBank, 

http://www.ncbi.nlm.nih.gov]. The aim of selecting two 

dataset is to measure the performance of our algorithm on all 

types of datasets. The proposed algorithm gives better 

performance for very large size database with more number of 

autonomous nodes over MPI model. Processing times shown 

in our results consider only the core times. The behavior and 

performance of the developed parallel algorithm are 

investigated and obtained results are presented in terms of 

execution times, speedup and efficiency for each source 

datasets i.e dataset of mouse (DSM) and dataset of rabbit 

(DSR) with respect to varying chunk sizes CS-210 

(1024x1024), CS-211 (2048x2048), CS-212 (4096x4096), CS-

213 (8192x8192), CS-214 (16384x16384)). The results for 

datasets DSM, DSR were obtained with 2, 4, 8, 12, 16, 24, 32, 

40 and 48 core architecture using multithreading environment. 

Execution times are obtained by using MPI routine 

MPI_Wtime. A shortcoming of dealing with large datasets in 

Wavefront approach is that the required I/O operations may 

dominate the execution time. This situation can be seen from 

table 1. The time spent for I/O operations includes the 

required time for loading the large dataset to local memories 

of compute 

cores from disk during initialization stage and writing the 

results back to the disk at the end of the execution

. 
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Figure 6. Partitioning of the wavefront computation on the cluster architecture to execute chunks in parallel using MPI. 

 

 
Table 1 

Execution times (in seconds) with (upper) and without (lower) consideration of I/O times for  

DSM with varying chunk sizes (210, 211,212,213, 214) and number of processors (np) 

 

Dataset/np 2 4 8 12 16 24 32 

                

DSM_210(I/O) 12023 4319 2783 1207 902 781 646 

DSM_212(I/O) 11698 4010 1781 1150 865 693 609 

DSM_214(I/O) 10747 3857 1746         

DSM_210 277 79.45 53.32 18.06 9.7 4.8 3.5 

DSR_212 262 70.23 39.44 15.16 7.6 2.0 1.2 

DSR_214 241 67.11 25.03     

 
It could be possible to argue that the improvement with 

parallelization may not be beneficial as much as expected due 

to the high I/O requirements during the initialization stage. 

However, this limitation could be turned into a gain since one 

may utilize two aspects that the parallelization may bring 

benefits for data processing. 

 

The first benefit is obtained by applying a parallelization 

scheme directly to CPU-bound operations and the second one 

is that distributing the data for IO-bound operations and 

processing in the context of distributed computing. The 

benefit obtained from the former one in our study seems to be 

relatively small due to the IO-bound nature of the Wavefront 

approach. But, it should be mentioned that there is a steady 

decrease in execution time without I/O times by increasing 

number of cores. The later one brings the capability of 

handling larger sizes of datasets that it could not be possible to 

process sequentially due to memory limitations. As seen from 

table 1, the values for I/O times decreases with increasing 

number of cores. 

 

This split and merge type data distribution is achieved in our 

algorithm just by sending corresponding global data pointers 

to compute nodes/workstations. Each compute node loads 

necessary data to local memory from file server via network 

file system. Consequently, the time spent for I/O requirements 

is divided among processors. This expected benefit is obtained 

from gigabit Ethernet. Also, the execution times without 

consideration of I/O operations are decreased considerably 

because of the fact that communication time decreases in the 

merge phase. Execution times with I/O for different chunk 

size for DSM is calculated and depicted in figure. 7 for 

varying number of processes. Also, it is observed that the time 

spent for reading and processing the data is independent of 

dataset size and also indicates good load balancing feature of 

the developed algorithm on dataset of mouse and rabbit
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. 

 

 

 
 

Fig.7.a 

 
Fig.7b. 

 
Figure 7. Execution time with I/O on (a) DSM and (b) DSR 

 
Overall, our conclusion is that the total execution time is 

decreased considerably by parallelization of CPU-bound 

and/or IO bound operations and applying a parallel algorithm 

using Wavefront approach is beneficial. Since I/O time highly 

depends on the speed of network infrastructure, this 

conclusion may be more applicable in the case of Gbit 

Ethernet. As our parallel Wavefront algorithm is executed on 

cluster of workstation using faster network infrastructure such 

as 1/10 Gigabit Ethernet and/or using faster storage networks, 

it is expected that this sort of shortcoming (I/O time 

limitation) could be surmounted to some extent.  

 

Although a considerable improvement with parallelization is 

obtained by distribution of IO-bound operations, those I/O 

times are not considered for the presented figures in the rest of 

the text. The reason for this is that the time spent for reading 

of dataset and writing of result from/to the disk is highly 

dependent on numerous factors including read–write speed of 

the disk, speed of the network and format of the input/result 

file. Hence, we have only focused on the parallelization 

behavior of the developed parallel Wavefront algorithm. 

 

The behavior of execution times by increasing number of 

cores for datasets DSM and DSR with different number of 

processes and chunk sizes are plotted in figure. 8. The 

expectation of decrease in execution time by increasing 

number of processes is satisfied for almost all the cases except 

some specific cases for both datasets. In figure 8(c) (CS 212 ), 

for DSM and DSR execution time for more than 24 cores and 

40 cores respectively are found to be greater. Some more 

cases are found, like in figure. 8(d)&(e) (CS 211 and CS 210 ), 

for DSM and DSR execution time for more than 40 processes 

and 32 processes respectively are found to be greater. This 
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case can be explained due to the additional communication 

time per cluster of sending master/slave buffer data space, 

chunk space and time required for storing scores from all 

cores by master to update its own data. But, updating 

master/slave data buffer space for each chunk size is the main 

reason for this performance degradation. As the number of 

cores increases, less time is required in the operation of 

updating data in buffer of reduced chunk space per cores. 

Accordingly, we obtained very good timing values and linear 

speedup in performance. Updating is implemented as 

scanning transformed chunk space and replacing all 

occurrences of old buffer data with new ones. This procedure 

is performed in a fast manner via pointer which directly points 

to memory of all associated units. 

 

 

 

                 
 

Fig.8.a.(for chunk size 214x 214)                                                                    Fig.8.b.(for chunk size 213x 213) 

 

 

 

\ 

 
Fig.8.c.(for chunk size 212x 212) 
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Fig.8.d.(for chunk size 211x 211
) 

 

 
 

Fig.8.e.(for chunk size 210x 210) 

 
Figure 8. Execution times for both dataset with varying chunk sizes (214,213,212,211,210) and number of processes (2, 4, 8, 16, 24, 

32, 40, 48)  
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Speedup (Sp) is defined as the ratio of computation time on a 

single core to the computation time on C cores. The obtained 

speedup ratios for DSM, DSR with number of cores and 

different chunk sizes are presented in figure. 9(a)–(e), 

respectively. It is clearly seen from these figures that our 

developed parallel Wavefront algorithm scales almost linearly. 

In figure. 9(a), the speedup line for DSR is higher than the 

lines for DSM. The number of communications from chunk 

size 214  to 210 (figure 9.b to 9.e)is decreasing and hence time 

required for internal computation is increasing. This elevation 

of the line for both datasets at most time consuming chunk 

size value confirms the suitability of our parallel Wavefront 

algorithm for huge datasets with large chunk size. The 

speedup values for both datasets figure. 9(a) - (e) are almost 

same up to 8 processors. The separation of the lines at the 

processor size 16 can be explained as the unsustainable 

balance between the computed local data and communicated 

data. There are comparatively less amount of communication 

for 8 cores while less amount of calculation for 16 cores. This 

situation changes for cores more than 16 for all chunk sizes 

where lines at each processor sizes are not matching. The 

small deviations at that processor size are simply due to the 

increasing communication requirements. This effect is more 

apparent for chunk size 213 on 16 processes. Due to 

comparatively less amount of computations at that size, the 

time spent for the communication becomes considerable. 

 

For all chunk size values, the slope for speedup values is 

reduced from 16 to 32 processors regardless of the dataset 

size. It is seen from the figure. 9(a) - (e), the linear behavior of 

the algorithm is getting improved as chunk size and dataset 

sizes increases. Table 2 shows the obtained efficiency values 

for both datasets with different number of cores. The reason of 

presenting efficiency results in this table for all chunk size is 

that it represents the behavior of our algorithm most 

conveniently. Obtained efficiency values for DSM are 

considerably high for np = 8 and np = 12, then exhibits a 

steady decrease with the increasing number of cores. This 

behavior is due to increasing communication requirements. 

Updating local buffer from memory by each core increases 

hence communication cost per processors increases.  
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                                                                                                Fig 9(e) 
Figure 9. Speedup vs Number of Processes for all chunk sizes on both data set 

 

 

 

 
Table 2 

Efficiency  with (upper) and without (lower) consideration of I/O times for DSM with varying chunk sizes and number of 

processes  
 

 

Dataset/np 2 4 8 12 16 24 32 40 48 

          

DSM (1024) 0.59 0.88 0.96 0.96 0.79 0.52 0.69 0.58 0.32 

DSM (2048) 0.56 0.83 0.92 0.91 0.86 0.71 0.61 0.49 0.31 

DSM (4096) 1.23 0.80 0.87 0.83 0.81 0.67 0.48 0.28 0.23 

DSM (8192) 0.55 0.77 0.78 0.72 0.66 0.45    

DSM (16384) 0.55 0.72        

DSR (1024) 0.57 0.89 0.98 0.99 0.99 0.82 0.70 0.52 0.44 

DSR (2048) 0.56 0.82 0.94 0.95 0.94 0.77 0.70 0.58 0.47 

DSR (4096) 0.55 0.81 0.91 0.89 0.90 0.69 0.63 0.50 0.35 

DSR (8192) 0.55 0.79 0.87 0.83 0.82 0.62    

DSR(16384) 0.61 0.76        

 

 
We have obtained better efficiency values as chunk size 

increases. The reason is that the execution time of Wavefront 

transform neither depends on the cluster size complexity nor 

dataset sizes but depends on the performance of local 

component of updating master/slave buffer space which 

directly depends upon chunk size. For this reason, as chunk 

size increases, finding the local components on that 

transformed values is faster compared to small chunk size 

values. This implies a relation between chunk size and 

memory size related to efficiency for a given dataset. Our 

parallel implementation can be further improved such that the 

efficiency trend might be better than the present situation. The 

present minor restriction is due to the fact that master core 

waits all cores before starting new execution of new diagonal 

row. A possible solution is broadcasting masters’ 

local values instead of implementing master–slave model and 

thus each processor can decide its start time of new 

computation.
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Speedup values with respect to the number of processors for 

both datasets are also plotted to understand the algorithmic 

behavior as another point of view, see figure. 10(a) & figure. 

10(b) each symbols on the data line correspond to number of 

processors in datasets DSM & DSR respectively. Figure. 10(a) 

shows that speedup values are linearly increasing for all 

chunk sizes up to number of cores 16. After that of chunk size 

211 speedup decreases from np=8 onwards. This is due to 

increasing communication of processors with respect to 

increasing chunk sizes.  

When DSR is used to show speedup analysis as shown in 

figure. 10(b), the speedup values remain almost same for all 

chunk sizes up to np = 24. Then same as DSM there is a subtle 

decrease for CS 210 and CS 212. The relatively high speedup is 

obtained for DSR dataset than DSM for 32, 40 cores that 

means system supports the suitability of the algorithm for 

larger datasets.

 

 

                              
                             Fig 10(a)                                                                                                                 Fig 10(b)   

Figure 10. Speedup with varying number 0 chunk sizes and number of processors (2,4,6….. 48) for (a) DSM (b) DSR 

 

6. CONCLUSION 

 
In this study, an efficient parallel implementation of 

Wavefront algorithm based on the message passing model for 

distributed-memory multiprocessor system is developed. We 

have presented obtained execution time, speedup and 

efficiency results for varied number of chunk size on different 

datasets for different number of processors, to reveal the 

performance of developed algorithm. Experiments are 

performed on a PC cluster of 2 workstations with 48 cores 

(using multithreaded environment) and having gigabit 

Ethernets as underlying communication hardware. Results 

have shown that our parallel Wavefront algorithm exposes 

superior speedup and can be employed to overcome time 

complexity, space complexity constraint as well due to low 

memory consumption. As a parallel implementation strategy, 

we adopted master/slave model and followed our new chunk 

based method with diagonal rows in Wavefront approach to 

increase the performance and to reduce the amount of 

memory consumed at each processor for holding local 

datasets. The communications among processors are kept at 

minimum to achieve high efficiency, such that each processor 

accesses its subset of large dataset directly in a shared manner. 

A minor restriction is due to the fact that parent processor 

waits all processors before starting new computation to new 

processor. When this minor restriction is addressed, the 

presented parallel implementation can be further improved. 

An another way of improving the parallelization of the 

presented Wavefront technique is to feasibly apply the 

algorithm on a heterogeneous cluster architecture using thread 

programming technique on OpenMP/MPI hybrid model

. 
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