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A Distribution based Approach of 
Outlier Removal for Software Effort Data 

 
ABSTRACT 
There are unavoidably a few outliers in the software 

measurement data. When software effort estimation models 

are made using the data samples with outliers, these models 

reduce the effort estimation precision for future planning. 

Therefore, this work investigated the influence of outlier 

upon the accuracy of prediction and proposed a distribution 

based outlier elimination method for effort estimation. The 

proposed work shows that the applied outlier elimination 

method improves the estimation accuracy of the software 

effort estimation process. In contrast, the effects of outlier 

elimination on the accuracy of effort estimation may differ 

depending on the characteristics of the data set, the effort 

estimation method.  
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1. INTRODUCTION 
To estimate an accurate software cost, many organizations 

use a software effort estimation model built upon their 

project history data. However, these project history data 

contain outliers that can degrade project data quality. The 

outlier is defined as a set of data to be an observation that 

appears to be inconsistent with the remainder of the set of 

data [1]. It is caused by: 

 The instable project environment such as frequent 

turnover of developers.  

 The rare event such as performance of large- scaled 

project in the software organization that mainly 

performed small-scaled projects. 

 The measurement mistake such as human collector‟s 

confusion between LOC and KLOC. 

Outliers can distort the linear regression model, affecting 

the accuracy and stability of the model. Unfortunately, 

software data sets often contain outliers. This problem is 

caused by inconsistency and ambiguity in the definition of 

software terms (i.e., size and effort), imprecision in the 

data collection process, and the lack of standardized 

software processes [2, 3, 4]. To handle possible outliers in 

software data sets, several techniques has been used often, 

including building robust regression models, transforming 

the data, and identifying and eliminating outliers from the 

rest of the data set [2, 5, 6]. 

The remainder of this paper is organized as follows. 

Section II briefly reviews existing work for uncertainty in 

software estimation datasets. In Section III, the proposed 

work is discussed, IV gives experimental results and V 

draws the conclusions. 

2. LITERATURE SURVEY 
Musilek et al. [7] have demonstrated that small errors in 

the COCOMO II model can lead to large changes in the 

estimate. Clearly, to get an accurate effort estimate, 

relevant project metrics must be measured carefully and 

consistently. 

Size and effort multipliers are very important and adequate 

time and resources should be devoted to their accurate 

evaluation. The scale factors are much less important and 

could be neglected (set to their nominal values) if 

necessary. 

The sensitivity issue shown by Musilek highlights a 

symptom of the larger problem of uncertainty. Indeed, 

software effort estimation is widely recognized as an 

inherently uncertain task. Assessing the uncertainty of the 

estimate is one of Jorgensen‟s twelve best practice 

guidelines for effort estimation. This uncertainty may be a 

contributing factor to the deviance problem. 

Beyond carefully collecting metrics, Musilek et al. 

proposed using fuzzy sets for the input variables, and 

finished that the administrator should, “no longer missing 

with a solitary number estimate that could be very 

confusing.” This means that the imprecision of the input 

variables is gathered. This is an important task too often 

ignored by the effort estimation research community. 

Jorgensen [8, 9, 10] has investigated the psychology of 

gathering metric ranges from developers, and found that 

merely changing the phrasing of the question changing the 

metric ranges. 

Instead of asking the estimators to provide the minimum 

and maximum effort values based on given assurance 

levels, e.g., “almost sure” or “90 % sure”, it looks to be 

better to inquire them to assess the probability of the 

actual effort being higher or lower than a definite value. 

e.g., outcomes recommend that it is better to ask the 

estimator, “How expected is it that the development will 

need further 1.700 work-hours?” more readily than, “What 

is the highest cost of the development? Be 90 % sure.” 

In addition, Jorgensen found that the developers might 

have other motives than realism when providing ranges of 

uncertainty. The developer had somewhat less real values 

inside the minimum-maximum interval, and then given 

those insignificant, wide effort intervals. This is an 

unfortunate reality, especially considering that; “low 

estimation accuracy is not necessarily an indicator of low 

estimation skills when the software development project 

work is highly uncertain.” 

Kitchenham and Linkman [5] have described four sources 

of estimation uncertainty. 

• Measurement error is an error from accuracy limitations 

in the input variables of the model. 

• Model error is an error due to the model‟s abstractions 

from reality. 

• Assumption error is error from making incorrect 

assumptions about a model‟s input parameters. 

• Scope error is an error from estimating outside the 
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model‟s domain. 

Another source of error mentioned by Dosban and 

Pataricza [11] is a, “statistically insufficient number or 

representativeness of the basic data set serving for 

extrapolation.” This is a important feature that is simply 

ignored. Tuned models should be given a sufficient 

amount of data for calibration. 

Boehm recommends a minimum of 5 records for local 

calibration of his COCOMO model. Ideally there should 

be many more records. 

Many models have adapted to incorporate measurement 

error. This is done by representing both the input variables 

and the output estimate as a range instead of point values. 

For example, Tian and Noore [12] warn that the 

discretization of effort multipliers used in COCOMO into 

six category results in an inherent uncertainty in the 

historical data, and thus methods such as fuzzy logic 

should be used to account for this inherent ambiguity. This 

has been accomplished for effort estimation using fuzzy 

logic, Bayes algorithm, and through Monte-Carlo 

simulation. Fuzzy logic and Bayes algorithm require 

developing an estimation model to work directly with their 

distributions, but the Monte-Carlo simulation does not. 

This is because it simply samples discrete instances from a 

distribution and calls an existing model used for discrete 

input. Thus, Monte-Carlo simulation is better suited for 

use with pre-existing models, while the other two methods 

should be considered if developing a new model. 

A more severe source of measurement error is an 

estimation with incomplete data. Although techniques 

exist for estimating effort with incomplete data, it is still 

advised to use complete data sets. In an impressive display 

of ability despite incomplete data, Menzies et al. [13, 14] 

considered uncertainty from a more positive angle and 

realized that if you can describe all of your model‟s input 

parameters using ranges found from the industry, then it is 

possible to make estimates without calibration data at all. 

Further evidence of uncertainty in software effort 

estimation is the attribute instability problem identified by 

Menzies et al. [15] regarding Boehm‟s delta estimation 

method. The delta estimation method proposed by Boehm 

works by basing the estimate off of similar previous 

projects and adjusting for the delta between the new and 

the old using the COCOMO cost drivers. Each of 

Kitchenham‟s [16] uncertainty operators can potentially 

explain this instability. The most unsettling potential cause 

is that of scope error in the case in which the true 

correlation between the attributes and the target variable 

has indeed changed due to the different domain. 

Jorgensen found experts tend to be overconfident about 

the uncertainty of their estimates. A study by Gruschke 

and Jorgensen [17] investigated the ability of experts to 

improve at uncertainty estimation using a feedback 

mechanism. They found some experts could improve, 

however, they also found, and “that we cannot expect 

uncertainty assessments to improve when they are 

dominantly intuition-based.” This result suggests that 

additional controlled methods for uncertainty assessment 

should be used. Model-based effort estimation 

methodologies have the potential to excel at representing 

this uncertainty [18, 19]. One of the goals of this work is 

to represent estimation uncertainty by accounting for 

Kitchenham‟s sources of estimation error. In addition, a 

goal of this work is to reduce estimation uncertainty. A 

brief review given by Khatibi et. al. [20] and Sinhal et. al. 

[21] on effort estimation methods. Data Mining [23] and 

Soft Computing techniques [24] improves the estimation 

accuracy and reduce uncertainty in data. 

3. PROPOSED METHOD 
The COCOMO 81 model is a regression based model 

derived by collecting data from a large number of 

software projects [4]. It is considered to be one of the most 

cited, well-known and most plausible effort and cost 

prediction model.  This dataset consists of 63 software 

projects and 17 features. The features include Size, Actual 

Effort and 15 Effort Multipliers (EM). 

The estimated effort in person-months (PM) for the 

intermediate COCOMO is given as: 

EAF   [Size] A  =Effort B    

 (1) 

Effort Adjustment Factor (EAF) is: 





15

1i

i EM  EAF

   
 (2) 

Since SizeEffort   and EAFEffort   

Hence Effort is dependent on Size and EAF. 

Now we can calculate Ratio of Effort and Size * EAF as 

ER (Effort Ratio): 

EAF) * (Size

Effort 
 = ER    

 (3) 

Relative Error (RE), Magnitude of Relative Error (MRE) 

is computed as follows: 

AE

 AE -EE
 = RE     

 (4) 

Where EE is Estimated Effort & AE is Actual Effort. 

 

AE

 | AE -EE |
 = MRE    

 (5) 

One way to represent the uncertainty in a variable is to use 

a distribution. The distributions used here are triangular 

for their simplicity and ability to skew the median. 

Triangular distributions are often used in business 

simulations or project management simulations when 

there is only limited sample data (e.g. the relationship 

between variables is known but data is scarce). 

Formally, a triangular distribution is a continuous 

probability distribution with lower limit a, mode c and 

upper limit b with the ranges 

bcaaba  ,),,(   
 (6) 

and probability density function (PDF): 
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The proposed method will have following steps: 

 

 Calculate the Effort Ratio (ER) and Magnitude of 

Relative Error (MRE) of all the projects in the dataset. 

 

 Sort the projects in ascending order with respect to 

ER. 

 

 Considering the triangular distribution, to calculate the 

lower limit „a‟ of ER, the MRE is compared with a 

threshold value from top of the list, when MRE is 

found lower than threshold, the value of ER is 

assigned to „a‟. 

 

 Similarly, to calculate the upper limit „b‟ of ER, the 

MRE compares with a threshold value from the 

bottom of the list, when MRE is found lower than 

threshold; the value of the ER is assigned to „b‟. 

 

 Now calculate the „c‟ and PDF of each project in the 

dataset. 

4. EXPERIMENTAL RESULTS 
After applying the formula given in equation 3 for 

calculation Effort Ratio on the COCOMO81 dataset, we 

get the results as shown in the Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Effort Ratio of 63 projects in COCOMO81 

dataset 

ID Effort Ratio ID Effort Ratio ID Effort Ratio 

17 1.283721 13 3.70705 6 5.763963 

37 2.104367 45 3.710275 12 5.802257 

38 2.229629 63 3.884739 54 5.847295 

53 2.288457 11 3.937519 10 6.39769 

46 2.335829 61 3.998476 2 6.483402 

44 2.48606 60 4.002591 22 6.487082 

28 2.682064 4 4.00745 33 6.496252 

16 2.761052 14 4.044475 20 6.648227 

40 2.763678 47 4.11179 9 7.001785 

7 2.884644 57 4.216529 34 7.091108 

30 2.996595 41 4.449032 24 7.502831 

43 3.027671 58 4.772357 19 7.862968 

35 3.031597 18 5.035442 1 7.889943 

29 3.118586 15 5.139106 23 7.919763 

5 3.143243 51 5.293863 26 8.220614 

32 3.16293 3 5.31678 55 8.31251 

59 3.164988 27 5.439545 8 8.868325 

39 3.32777 31 5.591581 21 11.21152 

62 3.607633 49 5.682517 25 11.41372 

48 3.616214 50 5.727512 56 13.33456 

52 3.633674 36 5.745162 42 41.4608 

 
As per the steps given in proposed methodology, we 

calculated the value of a = 2.761052 and b = 7.919763. 

Hence the projects having Effort Ratio less than the value 

of „a‟ and greater than the value of „b‟ will be treated as 

outlier. In this experiment 7 projects are below a and 7 

projects are above b. So total 14 projects are outlier out of 

63 in this dataset and rest 49 are considered for the effort 

estimation. 

Performance of estimation methods is evaluated using 

several metrics including Mean Magnitude of Relative 

Error (MMRE) and Percentage of the Prediction (PRED), 

which are computed as following: 
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Where, A is the number of projects with MRE less than or 

equal to X and N is the number of considered projects. 

The acceptable level of X in software cost estimation 

methods is 0.25 and the various methods are compared 

based on this level. 

The values of MMRE and Pred (25) of this experiment are 

shown in the Table 2 for both the cases: Before Outlier 

removal and After Outlier Removal. Also Figure 1 shows 

a comparison graph of MMRE and Pred (25) for both the 

cases. 

The results show the significant improvement in accuracy 

as the value of MMRE decreases a Pred (25) increases 

after Outlier Removal. 

 

Table 2: Comparison between MMRE and Pred (25) 

using Outlier Removal 

 MMRE Pred(25) 

Before Outlier 

Removal 

0.347432 30/63 

After Outlier 

Removal 

0.245396 29/49 

 

 
Fig. 1: Graph of MMRE and Pred (25) for Outlier 

Removal 

 

5. CONCLUSION 
 Outlier is unusual data value. The effects of outliers 

are biased or distortion of estimates and faulty 

conclusions. The software effort estimation methods, 

which are built using the data samples with outliers, 

degrade the accuracy of effort estimation for software 

projects. Therefore, in this paper, a new outlier 

elimination method is proposed. We also examined 

the accuracy of effort estimation when applying 

outlier elimination method on a data set. The results 

show that after applying the proposed outlier 

elimination method, the estimation accuracy of the 

software effort estimation model improves by almost 

30%. Since Soft computing exploits the tolerance for 

imprecision, uncertainty, approximate reasoning, and 

partial truth in order to achieve tractability and 

robustness. So after this outlier removal, soft 

computing techniques can be further applied for 

effort prediction to get promising outcomes. 
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