
International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 20, July 2013

24

A Distribution based Approach of
Outlier Removal for Software Effort Data

ABSTRACT
There are unavoidably a few outliers in the software

measurement data. When software effort estimation models

are made using the data samples with outliers, these models

reduce the effort estimation precision for future planning.

Therefore, this work investigated the influence of outlier

upon the accuracy of prediction and proposed a distribution

based outlier elimination method for effort estimation. The

proposed work shows that the applied outlier elimination

method improves the estimation accuracy of the software

effort estimation process. In contrast, the effects of outlier

elimination on the accuracy of effort estimation may differ

depending on the characteristics of the data set, the effort

estimation method.

Keywords

COCOMO, EAF, MRE, MMRE, PRED.

1. INTRODUCTION
To estimate an accurate software cost, many organizations

use a software effort estimation model built upon their

project history data. However, these project history data

contain outliers that can degrade project data quality. The

outlier is defined as a set of data to be an observation that

appears to be inconsistent with the remainder of the set of

data [1]. It is caused by:

 The instable project environment such as frequent

turnover of developers.

 The rare event such as performance of large- scaled

project in the software organization that mainly

performed small-scaled projects.

 The measurement mistake such as human collector‟s

confusion between LOC and KLOC.

Outliers can distort the linear regression model, affecting

the accuracy and stability of the model. Unfortunately,

software data sets often contain outliers. This problem is

caused by inconsistency and ambiguity in the definition of

software terms (i.e., size and effort), imprecision in the

data collection process, and the lack of standardized

software processes [2, 3, 4]. To handle possible outliers in

software data sets, several techniques has been used often,

including building robust regression models, transforming

the data, and identifying and eliminating outliers from the

rest of the data set [2, 5, 6].

The remainder of this paper is organized as follows.

Section II briefly reviews existing work for uncertainty in

software estimation datasets. In Section III, the proposed

work is discussed, IV gives experimental results and V

draws the conclusions.

2. LITERATURE SURVEY
Musilek et al. [7] have demonstrated that small errors in

the COCOMO II model can lead to large changes in the

estimate. Clearly, to get an accurate effort estimate,

relevant project metrics must be measured carefully and

consistently.

Size and effort multipliers are very important and adequate

time and resources should be devoted to their accurate

evaluation. The scale factors are much less important and

could be neglected (set to their nominal values) if

necessary.

The sensitivity issue shown by Musilek highlights a

symptom of the larger problem of uncertainty. Indeed,

software effort estimation is widely recognized as an

inherently uncertain task. Assessing the uncertainty of the

estimate is one of Jorgensen‟s twelve best practice

guidelines for effort estimation. This uncertainty may be a

contributing factor to the deviance problem.

Beyond carefully collecting metrics, Musilek et al.

proposed using fuzzy sets for the input variables, and

finished that the administrator should, “no longer missing

with a solitary number estimate that could be very

confusing.” This means that the imprecision of the input

variables is gathered. This is an important task too often

ignored by the effort estimation research community.

Jorgensen [8, 9, 10] has investigated the psychology of

gathering metric ranges from developers, and found that

merely changing the phrasing of the question changing the

metric ranges.

Instead of asking the estimators to provide the minimum

and maximum effort values based on given assurance

levels, e.g., “almost sure” or “90 % sure”, it looks to be

better to inquire them to assess the probability of the

actual effort being higher or lower than a definite value.

e.g., outcomes recommend that it is better to ask the

estimator, “How expected is it that the development will

need further 1.700 work-hours?” more readily than, “What

is the highest cost of the development? Be 90 % sure.”

In addition, Jorgensen found that the developers might

have other motives than realism when providing ranges of

uncertainty. The developer had somewhat less real values

inside the minimum-maximum interval, and then given

those insignificant, wide effort intervals. This is an

unfortunate reality, especially considering that; “low

estimation accuracy is not necessarily an indicator of low

estimation skills when the software development project

work is highly uncertain.”

Kitchenham and Linkman [5] have described four sources

of estimation uncertainty.

• Measurement error is an error from accuracy limitations

in the input variables of the model.

• Model error is an error due to the model‟s abstractions

from reality.

• Assumption error is error from making incorrect

assumptions about a model‟s input parameters.

• Scope error is an error from estimating outside the

Amit Sinhal
Dept. of Computer Sc. & Engg.

Technocrats Institute of Technology,
Bhopal, India

Bhupendra Verma
Dept. of Computer Sc. & Engg.

Technocrats Institute of Technology (Excellence)
Bhopal, India

International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 20, July 2013

25

model‟s domain.

Another source of error mentioned by Dosban and

Pataricza [11] is a, “statistically insufficient number or

representativeness of the basic data set serving for

extrapolation.” This is a important feature that is simply

ignored. Tuned models should be given a sufficient

amount of data for calibration.

Boehm recommends a minimum of 5 records for local

calibration of his COCOMO model. Ideally there should

be many more records.

Many models have adapted to incorporate measurement

error. This is done by representing both the input variables

and the output estimate as a range instead of point values.

For example, Tian and Noore [12] warn that the

discretization of effort multipliers used in COCOMO into

six category results in an inherent uncertainty in the

historical data, and thus methods such as fuzzy logic

should be used to account for this inherent ambiguity. This

has been accomplished for effort estimation using fuzzy

logic, Bayes algorithm, and through Monte-Carlo

simulation. Fuzzy logic and Bayes algorithm require

developing an estimation model to work directly with their

distributions, but the Monte-Carlo simulation does not.

This is because it simply samples discrete instances from a

distribution and calls an existing model used for discrete

input. Thus, Monte-Carlo simulation is better suited for

use with pre-existing models, while the other two methods

should be considered if developing a new model.

A more severe source of measurement error is an

estimation with incomplete data. Although techniques

exist for estimating effort with incomplete data, it is still

advised to use complete data sets. In an impressive display

of ability despite incomplete data, Menzies et al. [13, 14]

considered uncertainty from a more positive angle and

realized that if you can describe all of your model‟s input

parameters using ranges found from the industry, then it is

possible to make estimates without calibration data at all.

Further evidence of uncertainty in software effort

estimation is the attribute instability problem identified by

Menzies et al. [15] regarding Boehm‟s delta estimation

method. The delta estimation method proposed by Boehm

works by basing the estimate off of similar previous

projects and adjusting for the delta between the new and

the old using the COCOMO cost drivers. Each of

Kitchenham‟s [16] uncertainty operators can potentially

explain this instability. The most unsettling potential cause

is that of scope error in the case in which the true

correlation between the attributes and the target variable

has indeed changed due to the different domain.

Jorgensen found experts tend to be overconfident about

the uncertainty of their estimates. A study by Gruschke

and Jorgensen [17] investigated the ability of experts to

improve at uncertainty estimation using a feedback

mechanism. They found some experts could improve,

however, they also found, and “that we cannot expect

uncertainty assessments to improve when they are

dominantly intuition-based.” This result suggests that

additional controlled methods for uncertainty assessment

should be used. Model-based effort estimation

methodologies have the potential to excel at representing

this uncertainty [18, 19]. One of the goals of this work is

to represent estimation uncertainty by accounting for

Kitchenham‟s sources of estimation error. In addition, a

goal of this work is to reduce estimation uncertainty. A

brief review given by Khatibi et. al. [20] and Sinhal et. al.

[21] on effort estimation methods. Data Mining [23] and

Soft Computing techniques [24] improves the estimation

accuracy and reduce uncertainty in data.

3. PROPOSED METHOD
The COCOMO 81 model is a regression based model

derived by collecting data from a large number of

software projects [4]. It is considered to be one of the most

cited, well-known and most plausible effort and cost

prediction model. This dataset consists of 63 software

projects and 17 features. The features include Size, Actual

Effort and 15 Effort Multipliers (EM).

The estimated effort in person-months (PM) for the

intermediate COCOMO is given as:

EAF [Size] A =Effort B 

 (1)

Effort Adjustment Factor (EAF) is:





15

1i

i EM EAF

 (2)

Since SizeEffort  and EAFEffort 

Hence Effort is dependent on Size and EAF.

Now we can calculate Ratio of Effort and Size * EAF as

ER (Effort Ratio):

EAF) * (Size

Effort
 = ER

 (3)

Relative Error (RE), Magnitude of Relative Error (MRE)

is computed as follows:

AE

 AE -EE
 = RE

 (4)

Where EE is Estimated Effort & AE is Actual Effort.

AE

 | AE -EE |
 = MRE

 (5)

One way to represent the uncertainty in a variable is to use

a distribution. The distributions used here are triangular

for their simplicity and ability to skew the median.

Triangular distributions are often used in business

simulations or project management simulations when

there is only limited sample data (e.g. the relationship

between variables is known but data is scarce).

Formally, a triangular distribution is a continuous

probability distribution with lower limit a, mode c and

upper limit b with the ranges

bcaaba  ,),,(
 (6)

and probability density function (PDF):

International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 20, July 2013

26

 0 for ax 

))((

)(2

acab

ax




 for

cxa 

),,(cbaxPDF

))((

)(2

cbab

xb




 for

bxc 

 0 for bx 
(7)

The proposed method will have following steps:

 Calculate the Effort Ratio (ER) and Magnitude of

Relative Error (MRE) of all the projects in the dataset.

 Sort the projects in ascending order with respect to

ER.

 Considering the triangular distribution, to calculate the

lower limit „a‟ of ER, the MRE is compared with a

threshold value from top of the list, when MRE is

found lower than threshold, the value of ER is

assigned to „a‟.

 Similarly, to calculate the upper limit „b‟ of ER, the

MRE compares with a threshold value from the

bottom of the list, when MRE is found lower than

threshold; the value of the ER is assigned to „b‟.

 Now calculate the „c‟ and PDF of each project in the

dataset.

4. EXPERIMENTAL RESULTS
After applying the formula given in equation 3 for

calculation Effort Ratio on the COCOMO81 dataset, we

get the results as shown in the Table 1.

Table 1: Effort Ratio of 63 projects in COCOMO81

dataset

ID Effort Ratio ID Effort Ratio ID Effort Ratio

17 1.283721 13 3.70705 6 5.763963

37 2.104367 45 3.710275 12 5.802257

38 2.229629 63 3.884739 54 5.847295

53 2.288457 11 3.937519 10 6.39769

46 2.335829 61 3.998476 2 6.483402

44 2.48606 60 4.002591 22 6.487082

28 2.682064 4 4.00745 33 6.496252

16 2.761052 14 4.044475 20 6.648227

40 2.763678 47 4.11179 9 7.001785

7 2.884644 57 4.216529 34 7.091108

30 2.996595 41 4.449032 24 7.502831

43 3.027671 58 4.772357 19 7.862968

35 3.031597 18 5.035442 1 7.889943

29 3.118586 15 5.139106 23 7.919763

5 3.143243 51 5.293863 26 8.220614

32 3.16293 3 5.31678 55 8.31251

59 3.164988 27 5.439545 8 8.868325

39 3.32777 31 5.591581 21 11.21152

62 3.607633 49 5.682517 25 11.41372

48 3.616214 50 5.727512 56 13.33456

52 3.633674 36 5.745162 42 41.4608

As per the steps given in proposed methodology, we

calculated the value of a = 2.761052 and b = 7.919763.

Hence the projects having Effort Ratio less than the value

of „a‟ and greater than the value of „b‟ will be treated as

outlier. In this experiment 7 projects are below a and 7

projects are above b. So total 14 projects are outlier out of

63 in this dataset and rest 49 are considered for the effort

estimation.

Performance of estimation methods is evaluated using

several metrics including Mean Magnitude of Relative

Error (MMRE) and Percentage of the Prediction (PRED),

which are computed as following:





N

1i

iMRE MMRE

 (8)

N

A
 = (X) Pred

 (9)

International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 20, July 2013

27

Where, A is the number of projects with MRE less than or

equal to X and N is the number of considered projects.

The acceptable level of X in software cost estimation

methods is 0.25 and the various methods are compared

based on this level.

The values of MMRE and Pred (25) of this experiment are

shown in the Table 2 for both the cases: Before Outlier

removal and After Outlier Removal. Also Figure 1 shows

a comparison graph of MMRE and Pred (25) for both the

cases.

The results show the significant improvement in accuracy

as the value of MMRE decreases a Pred (25) increases

after Outlier Removal.

Table 2: Comparison between MMRE and Pred (25)

using Outlier Removal

 MMRE Pred(25)

Before Outlier

Removal

0.347432 30/63

After Outlier

Removal

0.245396 29/49

Fig. 1: Graph of MMRE and Pred (25) for Outlier

Removal

5. CONCLUSION
 Outlier is unusual data value. The effects of outliers

are biased or distortion of estimates and faulty

conclusions. The software effort estimation methods,

which are built using the data samples with outliers,

degrade the accuracy of effort estimation for software

projects. Therefore, in this paper, a new outlier

elimination method is proposed. We also examined

the accuracy of effort estimation when applying

outlier elimination method on a data set. The results

show that after applying the proposed outlier

elimination method, the estimation accuracy of the

software effort estimation model improves by almost

30%. Since Soft computing exploits the tolerance for

imprecision, uncertainty, approximate reasoning, and

partial truth in order to achieve tractability and

robustness. So after this outlier removal, soft

computing techniques can be further applied for

effort prediction to get promising outcomes.

6. REFERENCES
[1] Yeong-Seok Seo, Kyung-A Yoon, Doo-Hwan

Bae, “An Empirical Analysis of Software Effort

Estimation with Outlier Elimination”,

Proceedings of the 4th International workshop on

Predictor models in Software Engineering ©

ACM, 2008.

[2] Y. Miyazaki, M. Terakado, K. Ozaki, and H.

Nozaki, “Robust Regression for Developing

Software Estimation Models,” Journal of Systems

and Software, Vol. 27, No. 1, pp. 3–16, 1994.

[3] Basili V. R., Freburger K., "Programming

Measurement and Estimation in the Software

Engineering Laboratory", Journal of Systems and

Software, Vol. 2, No.2, pp. 47-57, 1981.

[4] Boehm B. W., Abts C., Chulani S., “Software

Development Cost Estimation Approaches – A

Survey”, Annals of Software Engineering, Vol.

10, pp. 177–205, 2000.

[5] Kitchenham and Linkman “Systematic Literature

Reviews in Software Engineering”, Information

and Software Technology, Volume 51 Issue 1,

pp. 7-15, January, 2009.

[6] V. Chang and W. Wong., “Outlier Elimination in

Construction of Software Metric Models”,

Proceedings of the 22nd ACM Symposium on

Applied Computing, pp. 1484–1488, 2007.

[7] Musilek P., Pedrycz W., “On the Sensitivity of

COCOMO II Software Cost Estimation Model”,

Proceedings of Eighth IEEE Symposium on

Software Metrics, 2002.

[8] Jorgensen M., Boehm B., "Software

Development Effort Estimation: Formal Models

or Expert Judgment?” IEEE Software, Vol. 26,

No. 2, pp. 14-19, 2009.

[9] Jorgensen M., "A Review of Studies on Expert

Estimation of Software Development Effort",

Journal of Systems and Software, Vol. 70, No. 1-

2, pp. 37-60, 2004.

[10] Jorgensen M., “Practical Guidelines for Expert-

Judgment-Based Software Effort Estimation”,

IEEE Software, Vol. 22, No.3, pp. 57-63, 2005.

[11] Orsolya Durban and Andras Pataricza. “Cost

Estimation Driven Software Development

Process”, Proceedings of the 27 th EUROMICRO

Conference, 2001.

[12] Liang Tian and Afzel Noore. “Multistage

software estimation”, Proceedings of the 35th

Southeastern Symposium on System Theory, pp

232–236, 2003.

[13] Menzies T., Port D., Chen Z., “Validation

Methods for Calibrating Software Effort

Models”, Proceedings of the 27th International

Conference on Software engineering, ICSE ‟05:

(New York, USA), ACM Press, pp. 587–595,

2005.

[14] Menzies T., Hihn J., "Evidence-Based Cost

Estimation for Better-Quality Software", IEEE

Software, Vol. 23, No. 4, pp. 64-66, 2006.

[15] Menzies T., Chen Z., Hihn J., "Selecting Best

Practices for Effort Estimation", IEEE

Transactions on Software Engineering, Vol. 32,

pp. 883-895, 2006.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 20, July 2013

28

[16] Kitchenham B.A., Mendes E., "A Comparison of

Cross-company and Within-company Effort

Estimation Models for Web Applications", 8th

International Conference on Empirical

Assessment in Software Engineering, pp. 47-56,

2004.

[17] Tanja Gruschke and Magne Jorgensen.

“Assessing Uncertainty of Software Development

Effort Estimates: The Learning from Outcome

Feedback”. In METRICS ‟05: Proceedings of the

11th IEEE International Software Metrics

Symposium (METRICS‟05), page 4,

Washington, DC, USA, 2005. IEEE Computer

Society.

[18] I. de Barcelos Tronto, J. DA Silva, and N.

Sant‟Anna, “Comparison of Artificial Neural

Network and Regression Models in Software

Effort Estimation”, International Joint

Conference on Neural Networks, pp 771–776,

2007.

[19] Q. Song and M. Shepperd, “A New Imputation

Method for Small Software Project Data Sets”,

Journal of Systems and Software, 80 (1): 51–62,

2007.

[20] Vahid Khatibi. B, Jawawi Dayang N.A,

"Software Cost Estimation Methods: A Review",

Journal of Emerging Trends in Computing and

Information Sciences, Vol. 2, pp. 21-29, 2011.

[21] Amit Sinhal, Bhupendra Verma, “Software

Development Effort Estimation: A Review”,

International Journal of Advanced Research in

Computer Science and Software Engineering, 3

(6), pp. 1-15, June 2013.

[22] Karel Dejaeger, Wouter Verbeke, "Data Mining

Techniques for Software Effort Estimation: A

Comparative Study", IEEE Transactions on

Software Engineering, Vol. 38, No. 2, pp. 375-

397, 2012.

[23] Amit Sinhal, Bhupendra Verma, “A Proposal of

Novel Soft Computing Based Effort Estimation

Model for Software Development”, CiiT

International Journal of Software Engineering

and Technology, Vol. 6, No. 6, 2013.

 Prof. Amit Sinhal completed his B.E. in Computer

Engineering from NIT Surat in 1996, M.Tech in

Computer Science & Engineering from SATI Vidisha

in 2005 and is pursuing Ph.D. from Rajiv Gandhi

Technical University, Bhopal. He worked in various

reputed software development companies as Project

Lead and University Institute of Technology,

Barkatullah University Bhopal as Assistant Professor.

Currently he is working at Technocrats Institute of

Technology, Bhopal as Professor in the Computer

Science & Engineering department. He has

published/presented more than 20 research papers in

International Journals/Conferences.

Dr. Bhupendra Verma completed his B.E. in

Computer Engineering, M.Tech in Computer Science

& Engineering from SATI Vidisha and Ph.D. from

Rajiv Gandhi Technical University, Bhopal. Currently

he is working in Technocrats Institute of Technology,

(Excellence) Bhopal as Director and Professor in the

Computer Science & Engineering department. He has

published/presented more than 50 research papers in

International Journals/Conferences. He has guided 20

M.Tech dissertations and is presently guiding five

students for Ph.D.

IJCATM : www.ijcaonline.org

