
International Journal of Computer Applications (0975 – 8887)

Volume 74– No.19, July 2013

47

Approximate Multiple Pattern String Matching using
Bit Parallelism: A Review

Syed.Danish.Ali

Department of Computer Science &
Engineering

All Saints’ College of Technology

Zuber Farooqui
Department of Computer Science &

Engineering
All Saints’ College of Technology

ABSTRACT

 String matching is to find all the occurrences of a given

pattern in a large text both being sequence of characters

drawn from finite alphabet set. Approximate String

Matching involves the detection of correct patterns along

with the detection of some wrong patterns inside the text.

Bit Parallelism is a feature that can be used to detect

patterns inside the text and is reported to result in more

efficient approximate string matching. Bit parallelism

enhances the processing speed of the approximate string

matching algorithm as it takes the benefit of the internal

bit operations taking place in parallel inside the system.

The bit parallel method has also been compared with the

traditional Aho Corasick Algorithms which consumes

more time and memory. In general bit parallel are both

memory and time efficient.

Keywords

Approximate String matching, Bit parallelism, Shift OR

String Matching.

1. INTRODUCTION

 String matching consists in Finding one or more

generally all the occurrences (exact or approximate) of a

single string (or a finite set of strings) in a text. It is an

extensively studied problem in computer science, mainly

due to its direct applications to such diverse areas as text,

image and signal processing, speech analysis and

recognition, information retrieval, computational biology

and chemistry[8]. String matching is a very important

subject in the wider domain of text processing and

algorithms for the problem are also basic components

used in implementations of practical software‟s existing

under most operating systems. Moreover, emphasize

programming methods that serve as paradigms in other

fields of computer science. Finally also play an important

role in theoretical computer science by providing

challenging problems.

 In the recent years bit parallelism plays an important

role in string matching, because „w‟ length of the pattern

can be processed in parallel [8]. This is done by creating

bit vectors of the pattern characters, and then the

matching takes place with the help of bit operations in

parallel.

Transformation into bits results in faster results as can be

performed in parallel. Bit parallelism although performs

better as compared to other non bit parallel algorithms,

but it imposes a limitation on the pattern size. Traditional

algorithms solved using bit parallelism has a pattern size

which is equal to the word length of the computer

system. Therefore increasing the word size of the system

will make string matching algorithm work for patterns of

larger size. Recent architecture makes use of 64 bit word

size [8].

 String Matching using bit parallelism can be viewed as

being solved for single Pattern and multiple patterns. In

single pattern string matching problem, there is a single

pattern whose occurrence is to be reported in the text. In

multiple pattern string matching problems, there are

given a set of patterns whose occurrence‟s are to be

reported in the text. The multiple pattern string matching

problems are having more practical applications in real

life.

2. BIT PARALLELISM

 Bit-parallelism is a technique which takes advantage of

the intrinsic parallelism of the bit operations inside a

computer word, allowing to cut down the number of

operations that an algorithm performs by a factor up to

the number of bits in the computer word[8]. Bit-

parallelism is indeed particularly suitable for the efficient

simulation of non-deterministic automata. In other

words, Bit-parallelism is the technique of packing several

values in a single computer word and updating them all

in a single operation. This technique has yielded the

fastest approximate string-matching algorithms if

exclude filteration algorithms [8].

 Bit-parallelism permits executing several operations

simultaneously over a set of bits or numbers stored in a

single computer word. This technique permits for the

approximate searching of a pattern of length n in

O(m/wn), where w is the number of bits in the computer

word. Using bit parallelism multiple patterns can be

packed into a single computer word so as to search for all

them simultaneously. Instead of spending O(rn) time to

search for r patterns of length m ≤ w/2, require O(rm/wn)

time. Second, the mechanism permits boosting the search

for a single pattern of length m ≤ w/2. Finally, the ideas

can be applied to other problems such as single and

multiple pattern string matching.

3. SINGLE PATTERN MATCHING

USING BIT PARALLELISM

BNDM (Backward Non deterministic Matching) is Bit

Parallel Simulation of the BDM (Backward

Deterministic Matching) that uses the concept of Suffix

Automaton [3, 4]. The basic idea of BNDM is that it

maintains a set of position on the reverse pattern that are

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.19, July 2013

48

beginning positions of the factors of the text positioned

in the window. The set is stored as 0 and 1 where 1

denotes occurrence. The vector D keeps a list of

positions in pattern where the factor begins. This is

shown in figure 1.

Figure 1: Bit parallel Factor search

Each time the window is positioned in the text, D is

initialized and the window is scanned backwards. For

each new text character update D. D=dmdm-1……d1

which keeps the state of search using m bits of Computer

word. Whenever a prefix is found in the pattern (dm=1),

its position is remembered. If the value in D becomes

zero, then there cannot be a match and scanning is

suspended. If m iterations are performed then a match is

reported. The bit mask is stored in bit vector B. This

mask sets the corresponding to positions 1 where

pi=c.[3]

The formula to update D is : D‟← (D & B[tj]) << 1

The simulation is done in the following manner.

 One in MSB position of Vector D corresponds

to the condition that a factor has been

identified and there is a transition to final state

of DAWG.

 Zero in MSB position of vector D corresponds

to the condition that there is transition to non

final state .

 All zero values in D corresponds to the

condition that there is no transition from the

present state to other state. In this case the
window is shifted by the value stored in last

position.

BNDM (P=p1p2p3…pm, T=t1t2t3…tn) [3]

 1. Initialization

 s=1,j=0,d=1m;

2. Pre-processing

 For i=0….m-1 do B[Pm]=0

 For i=0….m-1 do B[Pm]=B[Pm]|s;

 s = s<<1;

3. While j<=n-m do

 i=m-1, last=m,d=1m;

 while d!=0m and i>=0 do

d = d &b[txt[j+i]] i = i-1

 if d!=0m do

 if i>=0 do

 last=i+1;

 else do

 count=count+1;

 report occurrence of pattern

 end else

 end if

 d=d<<1;

 end while

 j=j+last

end while.

 An Example shows how the algorithm works and the

working is shown in table 1:

 T=[o k b o] k o o b o o D=1111

B[b]=0001 B[o]=0110 B[k]=1000, m=4, last=4, j=4.

Pattern: “ koob”

1. T=[o k b o] k o o b o o

 1 1 1 1 j=3

& 0 1 1 0

D=0 1 1 0

5 T= o k b o[k o o b] o o

 0 1 0 0 j=1

& 0 1 1 0

D=0 1 0 0

2. T=[o k b o] k o o b o o

 1 1 0 0 j=2

& 0 0 0 1 last=4

D=0 0 0 0 It fail to recognize

next b so shift window by last

position

6 T=o k b o[k o o b] o o

 1 0 0 0

& 1 0 0 0 last =4

D=1 0 0 0 j=0 so

occurrence is reported at pos

5.

3. T=o k b o[k o o b] o o

 1 1 1 1 j=3

& 0 0 0 1

D=0 0 0 1

7

.

Shift the window by

pos+last position , which is

equal to 4+4=8. The main

while loop terminates as

pos>(10-4)

4. T= o k b o[k o o b] o o

 0 0 1 0 j=2

& 0 1 1 0

D=0 0 1 0

Table 1: BNDM example

3.1 ANALYSIS OF BNDM

ALGORITHM

 Worst case time complexity of the Backward

Nondeterministic DAWG Matching (BNDM) is

O(nm). This is because in the worst case the

window will be shifted by one character position ,

and also in a fixed window mismatch occurs when

the last character is scanned .

 Handle class, multiple pattern, and allow errors

 Using bit parallelism, Combine Shift-AND and

BDM

 Faster than BDM , Faster than BM [3]

 Update Function D‟← (D & B[tj]) << 1

4. MULTIPLE PATTERN

MATCHING USING BIT

PARALLELISM
 The Bit parallel approach can be extended to search for

multiple patterns inside the text. The method also works

for larger pattern sets. For large pattern sets , the bit

parallel approach can be beneficial in terms of execution

speed and memory requirement. The bit parallel

approach for multipattern sets uses the Shift OR

Algorithm for locating the patterns inside the text.[8]

 The method uses a bit vector B[c] which is initialised in

a way such that the ith bit is 0 if the character appears in

any of the patterns in position i . The automaton has a

transition from state i to state i + 1 on character c if ith

bit in B[c] is 0. Another vector D is used which is

initialized to all 1‟s. When the character c is read from

the text D is updated as D = (D<<1) | B[c] . After the

update, ith bit in D is 0 if i − 1th bit was 0 (the previous

state i − 1 was active) and ith bit is 0 in B[c] (there is a

transition from state i − 1 to i on c)[8].

 The assumption in this method is that all the patterns

p1p2…..pr have equal size m and m<=w, where w is word

size of the computer.[8]

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.19, July 2013

49

Algorithm ShiftOr(text=t1…tn, patterns=p1,..,pk)[8]

1. Initialization

m= pattern length, s=1, count=0,

position=0,

2. Preprocessing
 [text[i]] <- 1m

for j= 0…k do

for i= 0… m-1 do B[ptn[j][i]] <-

B[ptn[j][i] & ~ (s<<1)

 end for

 end for

3. While pos< n do

 D = D <<1 & 1m

 D=D | B[text[pos]]

if D> 1m-1 do pos<- pos + 1

 Else do count <- count +1

Report occurrence at position pos<- pos-m +1

 D <- 1m

 pos<- pos +1

 end else

 end while.

Example : Text= “hhello”

 Pattern = { “hello”, “world”}

The Bit Vectors are set in the following manner.

B[h]=11110, B[e]=11101,B[l]=10011,B[o]=01101 ,

B[w]=11110, B[r]=11011, B[d]=01111

The Automaton recognizing the set of patterns is shown

in figure 2

Figure 2 : NFA finding occurrence of character class

pattern.

The character class pattern is “[h,w],[e,o],[l/r],[l],[o/d]”

Table 2 shows bit parallel simulation of above automata.

1 Text = hhello

D 11110
B[h] 11110 OR

D 11110

D[0]=0 , so shift
To next state

3. Text = hhello

D 11100
B[e] 11101 OR

D 11101

D[1]=0, so shift to next
State

2. Text = hhello

D 11100
B[h] 11110 OR

D 11110

D[1]=1 , so it
remains

in the same state

4. Text = hhello

D 11010
B[l] 10011 OR

D 11011

D[2]=0, so shift to next
state

5. Text = hhello

D 10110

B[l] 10011 OR

D 10110
D[3]=0, so shift to

next

state

6. Text = hhello

D 01100

B[o] 01101 OR

D 01101
D[4]=0, so shift to next

State, which is the final

state
And the pattern is

recognized.
Table 2 : Multiple pattern search example

The method used for multiple pattern search is based on

filtering approach. The filter method works in three

phases. In the first phase, the pattern is preprocessed. In

the second phase, matching takes place and in the third

phase the matches generated by the method needs to be

verified for more accurate results [8].

4.1 ANALYSIS OF Shift OR

ALGORITHM

 If the Text Length is assumed to be n , then the

patterns are processed in O(n) time complexity.

 All the patterns are assumed to be of uniform length

and less than or equal to the word size of the system.

 The method is a filter where the potential matches

needs to be verified.

 Number of False Matches for Shift OR Method

It is assumed that there is a pattern set P=(p1,p2……pk)

of K patterns. All the patterns are assumed to be having

equal length m. The false matches are calculated for the

worst case , where all the patterns are assumed to be

having distinct characters in all pattern positions[12] . In

this case:

(i) Total Number of correct Matches (CM) = K, as

recognized by the Automaton.

(ii) Total number of matches recognized by the

automaton (TM)= Km

(iii) Total Number of false matches (FM1) = Total

Matches- Total number of Correct matches.

 FM= Km – K

(iv) In addition to these there are other false matches

detected . Considering the following text and the

pattern

Text: “heabcdello” and the pattern “hello” .

The Shift OR method will detect one pattern match in

the above text. Counting the false matches for such

case.

FM2= m(∑*-k) where ∑ denotes the size of the input

alphabet .

(v) Total False Matches(FM)= FM1 + FM2

FM= Km – K + m(∑*-k)

 = Km – K + m∑* - mk

 = K{ Km-1 –m-1} + m∑*

5. EXPERIMENTAL RESULTS
 An Experiment was performed to compare the

performance of Multiple Pattern Shift OR Algorithm that

uses approximate matching and the Aho Corasick

Algorithm. The Comparison was done on the basis of

number of matches detected by both the algorithms and

the time factor separately. The Aho Corasick algorithm

finds the matches correctly but the time taken is 10-20%

more than the time taken by the Multiple Pattern Shift

OR Algorithm. Also the as the pattern set size grows ,

the Aho Corasick algorithm uses enormous memory to

build the Trie. The number of matches detected in

Multiple Pattern Shift OR Algorithm is 20-30% more

than the Aho- Corasick Algorithm. The following

experimental conditions were used for the experiment.

Experimental Conditions:

 Processor : Intel Core i7-260 M CPU, 2.80 Ghz

 RAM : 8 GB

 System Type : 64 Bit Operating System

 OS : Windows 7 Professional

 Text Size : 350 MB

Pattern Size : 20, 40 , 60 , 80 and 100 characters

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.19, July 2013

50

The Comparison between the algorithms is done in both

tabular and graphical manner. Table 3 shows the tabular

comparison between Shift OR and Aho Corasick

algorithm based on the number of Matches and table 4

shows the comparison done on the basis of time factor

reported in milliseconds.

Table 3 : Number of Matches Detected

Figure 3 : Comparative Analysis of Aho Corasick and

Bit parallel Multiple pattern algorithm.

Table 4 : Time Analysis of both Aho Corasick and

Shift OR

Figure 4 : Time Analysis of Aho Corasick and Bit

parallel Multiple pattern algorithm.

6. APPLICATION AREAS OF BIT

PARALLEL STRING

MATCHING
 In general bit parallel string matching algorithms are

the most efficient as compared to the other algorithms.

The main idea of the bit-parallel algorithms is to store

several data items into a single computer word and then

update them in parallel using a single computer operation

[5]. String matching is often used in different areas such

as text editors, virus scanning, digital libraries, web

search engines, intrusion detection.

 Bit-parallel algorithms are very efficient for

approximate string matching. This problem has many

applications in computational biology viz. finding DNA

subsequences after possible mutations, locating positions

of a disease(s) in a genome etc[8].

7. PROPOSED WORK
The Bit Parallel approach for locating the patterns inside

the text is a filter where the potential matches needs to be

verified. In future will try to improve the filtering

efficiency of the shift OR method by considering n

grams of the pattern characters. In this direction will first

try to construct 2 grams of the pattern set. Constructing 2

grams will require an 2 dimensional array of size

256*256 to be constructed. The size of the automaton

will also reduce which in other in other sense would

mean that the text will be processed faster. This is

because now 2 characters will be read at a time as

compared to single character in previous method. The

filtering efficiency would also improve the design would

generate less false combinations. Further improvement

can be done if 3 grams of the pattern are considered. The

filtering efficiency and the speed improve at the cost of

increasing the memory requirement because to consider

n grams it requires an n dimensional memory to be

constructed.

0

5000000

10000000

15000000

2
0

6
0

1
0

0

N
u

m
b

er
 o

f

M
a
tc

h
es

Size of the pattern Set

Aho
Corasick

Shift OR

0

100

200

300

400

500

600

20 40 60 80 100

T
im

e
in

 m
il

li
se

c

Size of pattern set

Shift OR

Aho
Corasick

Pattern Size

in Characters

 Aho

Corasick Shift OR

Number of Matches

20 2569988 3263885

40 3556765 4517092

60 4567765 5801062

80 6776523 8606184

100 7654355 9721031

Pattern Size

in Characters

 Shift OR Aho Corasick

Time in Millisec

20 180 207

40 197 227

60 230 265

80 367 422

100 463 532

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.19, July 2013

51

8. CONCLUSION
The bit parallel approach for solving the multiple pattern

string matching performs better than the Aho-Corasick

algorithm, whose experimental results are shown. The

performance of Aho-corasick algorithm degrades as the

pattern size increases, as depending upon the pattern size,

the size of the tries grows enormously. The bit parallel

algorithm becomes practical in applications when there is

a large pattern set, such as application including intrusion

detection, bioinformatics and antivirus scanning.

9. ACKNOWLEDGMENT
I would like to thanks to my guide Prof Zuber Farooqui

who has give his precious time and guideline in order to

complete this paper. This paper will never complete

without the help of Department of Computer Science &

Engineering, ASCT Bhopal.

10. REFERENCES
[1] Rajesh Prasad, Suneeta Agarwal, Ishadutta Yadav,

Bharat Singh “Efficient Bit-Parallel Multi-Patterns

String Matching Algorithms for Limited

Expression”, Compute 2010 ACM

[2] Heikki Hyyr¨o, Kimmo Fredriksson Gonzalo

Navarro “Increased Bit-Parallelism for Approximate

and Multiple String Matching”, ACM Journal of

Experimental Algorithmics Vol 10 2006.

[3] Gonzalo Navarro and Mathieu Raffinot. A Bit

Parallel approach to Suffix Automata : Fast

Extended String Matching. In M. Farach (editor),

Proc. CPM'98, LNCS 1448. Pages 14-33, 1998.

[4] G. Navarro,M. Raffinot, Fast and flexible string

matching by combining bit-parallelism and suffix

automata,ACM J. Experimental Algorithmics (JEA)

5 (4) (2000).

[5] M. Crochemore et al., A bit-parallel suffix

automaton approach for (δ, γ)-matching in

music retrieval, in: Proc. 10th Internat. Symp. on

String Processing and Information Retrieval

(SPIRE‟03), in: Lecture Notes in Computer. Sci.,

vol. 2857, 2003, pp. 211–223

[6] R. Baeza-Yates, G. Gonnet, A new approach to text

searching, Comm. ACM 35 (10) (1992) 74–82.

[7] Hannu Peltola and Jorma Tarhio , Alternative

Algorithms for Bit-Parallel String Matching, String

Processing and Information Retrieval, 2003 -

Springer

[8] Leena Salmela, J. Tarhio and J. Kytojoki

“MultiPattern String Matching with Very Large

Pattern Sets”, ACM Journal of Experimental

Algorithmics, Volume 11, 2006.

[9] AHO, A. AND CORASICK, M. 1975. Efficient

string matching: n aid to bibliographic search.

Communications of the ACM 18, 6, 333–340.

[10] HYYR¨O, H. AND NAVARRO, G. 2002. Faster

bit-parallel approximate string matching. In Proc.

13th Combinatorial Pattern Matching (CPM ‟02).

LNCS 2373. Berlin, Germany, Springer, New

York.203–224.

[11] NAVARRO, G. AND RAFFINOT, M. 2000. Fast

and flexible string matching by combining

bitparallelism and suffix automata. ACM Journal of

Experimental Algorithmics (JEA). 5, 4.

[12] Vidya Saikrishna, Akhtar Rasool and Nilay Khare.

Article: Spam Filtering through Multiple Pattern Bit

Parallel String Matching Combining Shift AND &

OR. International Journal of Computer Applications

61(5):40-45, January 2013. Published by

Foundation of Computer Science, New York, USA.

IJCATM : www.ijcaonline.org

