
International Journal of Computer Applications (0975 – 8887)

Volume 74– No.19, July 2013

33

A Performance Analysis of Task Scheduling Algorithms using
Qualitative Parameters

 Abhijit A. Rajguru, S.S. Apte,Ph.D

 SKNSCOE, Pandharpur, WIT, Solapur,
 Maharashtra, INDIA. Maharashtra, INDIA.

ABSTRACT
 A CPU is the very important part of the computer system;

hence it must be utilized efficiently. When the demand for computing

power increases, then scheduling problem becomes very important. The

problem of task scheduling and load balancing are most important and

challenging area of research in computer engineering. Task scheduling

can be defined as allocating processes to processor so that total

execution time will be minimized, utilization of processors will be

optimized. Load balancing is the process of improving the performance

of system through a redistribution of load among processor. In this

paper, the performance analysis of various task scheduling algorithms

based on different qualitative parameters is presented. The analysis

indicates that task scheduling algorithms have some advantages as well

as disadvantages. The main purpose of this paper is to help in design of

new scheduling algorithms in future by studying existing task

scheduling algorithms.

Keywords:
Scheduling algorithms, Classification, Qualitative parameters,

Performance analysis.

1. INTRODUCTION

1.1 Scheduling in distributed systems:
Task Scheduling and load balancing has very important role

in overall system performance and throughput. The main objective of

the task scheduling, to distribute the tasks among processors to

maximize throughput of the system, maintain stability of the system and

efficient resource utilization. Load balancing is a process of improving

the performance of system through a redistribution of load among

processor.

1.2 Issues of load balancing and scheduling:
The load balancing and task scheduling mechanism has

different issues as described below,

 Load balancing is very complex because processes may migrate

from one system to another system even in the middle of execution

to ensure equal work load. [1]

 An important problem is to decide how to achieve a balance in the

load distribution between processors so that the computation is

completed in the shortest possible time. [2]

 The large number and diverse nature of these computing resources

and their users pose a significant challenge to efficiently schedule

the loads and utilize the resources. [3]

 Algorithms for load balancing have to rely on the assumption that

the on hand information at each node is accurate to prevent

processes from being continuously circulated about the system without

any progress. [2]

 One of the crucial aspects of the scheduling problem is load

balancing. The challenge for a scheduling algorithm is that the

requirements of fairness and data locality often conflict. [4]

 Scheduling in distributed operating systems is a critical factor in

overall system efficiency because the distributed system is non-

uniform and non-preemptive, that is, the processors may be

different. [5]

1.3 Classification of scheduling algorithms:
Task scheduling algorithms are classified on the basis of

different parameters.

1.3.1 Classification from user's point of view:
 From the user's point of view, scheduling algorithms are

classified into 3 categories.

1.3.1.1 Iterative Scheduling:
In this, scheduling of processes is done iteratively and the algorithms

used for scheduling are known as iterative scheduling algorithms [6].

Round Robin, shortest process next, lottery scheduling etc. are the

examples of iterative scheduling algorithms.

1.3.1.2 Batch Scheduling:

 In Batch scheduling, processes are queued together in a batch and

scheduling is done in batches. FCFS, Shortest remaining time next,

highest response ratio next are the examples of batch scheduling

algorithms.

1.3.1.3 Real time scheduling: Real time tasks are those in which

the accuracy of the outcome not only depend on the correctness of result

but also depend on the time at which the results are produced. Rate

monotonic and Earliest Deadline First (EDF) are examples of real time

scheduling algorithms.

1.3.2 Classification based on the time of schedule:

In this, classification is done on the basis of time of

scheduling the processes i.e. whether the processes are to be scheduled

on the compile time or run time.

1.3.2.1 Static Scheduling:
In this technique, scheduling is done at compile time. For static

scheduling, complete prior knowledge of task-set characteristics is

required [8]. Rate monotonic scheduling is the example of static

scheduling used for scheduling real time tasks.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.19, July 2013

34

 1.3.2.1 Dynamic Scheduling:

In this technique scheduling is done at run time [7,8]. Dynamic

schedulers are flexible. EDF is the example of dynamic priority

scheduling algorithm used to schedule real time tasks.

1.3.3 Classification based on the site of scheduling:
This classification is based on whether the tasks are to be

scheduled on a central site or on distributed sites.

1.3.3.1 Centralized Scheduling:
In centralized scheduling all decisions are made at the central site [9].

But failure of the central scheduler in the distributed system is a critical

issue.

1.3.3.2 Distributed scheduling:
Scheduling of non-interactive processes in a network of computers

comes under this category [10]. It refers to the chaining of different jobs

into a coordinated workflow that spans several computers.

1.3.4 Classification based on pre-emption:
 Pre-emption means prediction of higher priority task.

Depending upon, whether pre-emption is allowed or not, scheduling

algorithms can be classified into two categories.

1.3.4.1 Pre-emptive Scheduling:
If the system can be interrupted during the execution of the process on

the arrival of higher priority process then this type of system is known

as pre-emptive system [9,6]. All real time scheduling algorithms are

examples of pre-emptive scheduling algorithms.

1.3.4.2 Non Pre-emptive Scheduling:
If no interruption is allowed during the execution of process then such

type of scheduling is known as non pre-emptive scheduling. First Come

First Serve (FCFS) scheduling is non pre-emptive scheduling.

1.3.5 Classification based on the number of

processes to be scheduled:
This classification is done by considering whether the

scheduling is done on single processor or multiple processors.

1.3.5.1 Uniprocessor Scheduling:
If the scheduling is done on a single processor then it is known as

uniprocessor scheduling[11]. Round Robin, RM scheduling etc are the

examples of uniprocessor scheduling algorithms.

1.3.5.2 Multiprocessor Scheduling:
If the scheduling is done on multiple processors then it is known as

multiprocessor scheduling. [9,7,11]. Global scheduling algorithms and

partitioning scheduling algorithms are the examples of multiprocessor

scheduling.

1.3.6 Classification based on different criteria:

1.3.6.1 Co-operative Scheduling:

In this case, system have many schedulers, each scheduler is

responsible for performing certain activity in scheduling process

towards common system wide range based on the cooperation of

procedures, given rules and current system users.

1.3.6.2 Immediate/ Online Mode:

 In this case scheduler schedules any recently arriving job as soon as it

arrives with no waiting for next time interval on available resources at

that moment [6].

1.3.6.3 Batch/ Offline Mode:
 In this mode of scheduling the scheduler holds arriving jobs as group of
problems to be solved over successive time intervals, [6].

2. SCHEDULING ALGORITHMS

There are different types of CPU scheduling algorithms are

available, each having its own characteristics, advantages and

disadvantages. In this section some of the most important and

significant scheduling algorithms are discussed, namely:

•First Come First-Served (FCFS) Scheduling Algorithm.

•Shortest Job First (SJF) / Shortest Remaining Time (SRT) Scheduling

Algorithm.

•Priority-based Scheduling Algorithm.

•Round-Robin Scheduling Algorithm.

•Multi-level Feedback Queue Scheduling Algorithm.

2.1 First Come First Served Scheduling
 In first-come, first- served (FCFS) scheduling algorithm,

processes are assigned to the CPU in the order they request it.

There is a single queue of ready processes. When a process enters

the ready queue, its PCB is linked onto the tail of the queue. The

average waiting time of FCFS scheduling, is quite long. Consider

the following processes that arrive at time 0, and length of the CPU

burst given in milliseconds:

Table 1:

If the processes arrive in the order P1, P2, P3, and are

served in FCFS order, following result can be get.

P1 P2 P3

0 48 54

60

Figure 1:

If the processes arrive in the order P2, P3, P1, the results will be

as shown in the following chart:

P2 P3 P1

 0 6 12

60

Figure 2:

The average waiting time is now (12 + 0 + 6)/3 = 6 milliseconds.

The average waiting time o f FCFS policy is generally not

minimal. The FCFS scheduling algorithm is non-preemptive. The

FCFS policy can’t utilize resources parallel.

 2.2 Shortest Job First Scheduling:
 A shortest-job-first (SJF) scheduling algorithm

associates with each process the length of the process’s next CPU

burst.

Process

Burst

Time

Waiting

Time

Turnaround

Time

P1 48 0 48

P2 6 48 54

P3 6 54 60

Average - 34 54

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.19, July 2013

35

The CPU is assigned to the process that has the smallest

next CPU burst. If the next CPU bursts of two processes are

equal, FCFS scheduling policy is used. For example consider the
following processes, with the length of the CPU burst given in

milliseconds:
 Table 2:

Using SJF scheduling, these processes are scheduled

according to the following chart:

0 6 18 32 48

Figure 3:

The SJF scheduling algorithm p r o v i d e s the minimum

average waiting time for a given set of processes. The problem of

SJF algorithm is knowing the length of the next CPU request. The

SJF algorithm cannot be implemented at the level of short-term

CPU scheduling. The SJF algorithm can be pre-emptive or

non-preemptive.

2.3 Priority Scheduling:
 In priority scheduling a priority is assigned to each

process. The CPU is allocated to the process with the highest

priority. If two processes has equal priority then they are processed

according to FCFS policy. Priorities are generally indicated by

r a n g e o f n u mbers, such as 0 to 2 0 or 0 to 5020. H e r e ,

low numbers represent high priority. Consider the following

processes, assumed to have arrived at time 0, in the order P1, P2, . . .

P5, with the length of the CPU burst given in milliseconds:

Table 3:

 Using priority scheduling, these processes are scheduled

according to the following chart:

P2 P5 P1 P3 P4

 0 2 12 32 36

38

Figure 4:

Priority scheduling can be either pre-emptive or non-

preemptive. A pre-emptive priority scheduling algorithm will preempt

the CPU i f the priority of the newly arrived process is higher than

the priority of the currently running process. A non-preemptive

priority scheduling algorithm will put the new arrived process at the

head of the ready queue. A critical problem with priority scheduling

algorithms is indefinite blocking, or starvation. A priority
scheduling algorithm can leave some low priority processes waiting

indefinitely.

2.4. Round Robin Scheduling:

 It is one of the oldest, simplest, fairest and most widely used

scheduling algorithms, designed especially for time-sharing systems. A

small unit of time, called timeslice or quantum, is defined. All runnable

processes are kept in a circular queue. The CPU scheduler goes around

this queue, allocating the CPU to each process for a time interval of one

quantum. New processes are added to the tail of the queue.

The CPU scheduler picks the first process from the queue,

sets a timer to interrupt after one quantum, and dispatches the process. If

the process is still running at the end of the quantum, the CPU is

preempted and the process is added to the tail of the queue. If the

process finishes before the end of the quantum, the process itself

releases the CPU voluntarily. In either case, the CPU scheduler assigns

the CPU to the next process in the ready queue. Every time a process is

granted the CPU, a context switch occurs, which adds overhead to the

process execution time. The average waiting time under the RR

policy is often long. Consider the following set of processes that

arrive at time 0, and the length of the CPU burst given in

milliseconds: (a time quantum of 4 milliseconds)

Table 4:

 Using round-robin scheduling, these processes a r e

sch edu led according to the following chart:

P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26

30

Figure 5:

 In the RR scheduling algorithm, no process is allocated

the CPU for more than 1 time quantum in a row (unless it is

the only runnable process). The RR scheduling algorithm is pre-

emptive.

Process
Burst

Time

Waiting

Time
Turnaround Time

P1 12 6 18

P2 16 32 48

P3 14 18 32

P4 6 0 6

Average - 14 26

P4 P1 P3 P2

Process

Burst

Time
Priority

Waiting

Time

Turnaround

Time

P1 20 6 12 32

P2 2 2 0 2

P3 4 8 32 36

P4 2 10 36 38

P5 10 4 2 12

Average - - 16.4 24

Process

Burst

Time

Waiting

Time

Turnaround

Time

P1 48 12 60

P2 6 8 14

P3 6 14 20

Average - 11.33 31.33

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.19, July 2013

36

2.5 Multilevel Queue Scheduling:
 In multilevel Queue Scheduling, processes are easily

classified into different groups. A common division is made

between foreground (interactive) processes and background

(batch) processes.

- These two types of processes have different response-time

requirements.

- In addition, foreground processes may have priority (externally

defined) over background processes.

- A multilevel queue scheduling algorithm partitions the ready queue

into several separate queues (see Fig.).

 High Priority

 Low Priority

Figure 6: Multilevel queue scheduling.

The processes are permanently assigned to one queue,

generally based on some property of the process, such as memory

size, process priority, or process type.

Each queue has its own scheduling algorithm. The

foreground queue might be scheduled by an RR algorithm, while

the background queue is scheduled by an FCFS algorithm.

2.6 Multilevel Feedback Queue Scheduling:
 In multilevel queue scheduling algorithm, processes are

permanently assigned to a queue when they enter the system. If there

are separate queues for foreground and background processes,

processes do not move from one queue to the other, since processes

do not change their foreground or background nature. Due to this

multilevel feedback queue scheduling having low scheduling

overhead, but it is inflexible. The m u l t i l e v e l feedback-queue

scheduling algorithm, allows a process to move between queues. To

separate process following idea is used

- If a process uses more CPU time, it will be transferred to a lower-

priority queue.

- A process that waits more time in a lower-priority queue may be

transferred to a higher-priority queue.

This form of aging prevents starvation (see Fig.).

- A process entering the ready queue is put in queue 0. A process

in queue 0 is given a time quantum of 8 milliseconds.

- If it does not finish within this time, it is moved to the tail of

queue 1.

- If queue 0 is empty, the process at the head of queue 1 is given a

quantum of 16 milliseconds.

- If it does not complete, it is preempted and is put into queue 2.

Figure 7: Multilevel feedback queues.

- Processes in queue 2 are run on an FCFS basis but are run only

when queues 0 and 1 are empty Multilevel feedback queue scheduling

is most complex algorithm.

3. QUALITATIVE PARAMETERS

Following qualitative parameters are used to analyze

performance of various task scheduling algorithms.

3.1. CPU Utilization/Efficiency:

Keep the CPU busy 100% of the time with useful work.

3.2. Throughput:

 Maximize the number of jobs processed per unit time. Usually goal is

to maximize the throughput.

3.3. Turnaround time:

From the time of submission to the time of completion, minimize the

time batch users must wait for output.

3.4. Waiting time:

 Sum of times spent in ready queue, minimize this.

3.4. Response Time:

Time from submission till the first response is produced, minimize

response time for interactive users.

3.5. Fairness:

 Make sure each process gets a fair share of the CPU.

 Each scheduling algorithms having their own advantages and

disadvantage. Following table shows comparative analysis of different

scheduling algorithms.

System Processes

Interactive Processes

Interactive editing Processes

Student Processes

Batch Processes

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.19, July 2013

37

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.19, July 2013

38

Algorithms

Parameters

FCFS

algorithm

SJF Scheduling

algorithm

Priority Scheduling

algorithm

RR

algorithm

Multilevel Feedback

Queue Scheduling

CPU Overhead Low Medium Medium High High

Throughput Low High Low Medium High

Turnaround

Time
High Medium High Medium Medium

Response Time Low Medium High High Medium

Implementation Simple Hard Hard Simple Hard

Scheduling

Criterion

CPU executes job

that arrived

earliest

CPU executes job with

shortest time remaining

to completion*

CPU executes process

with highest priority

like FCFS, but with

limited time slices

like multilevel queue,

except that jobs can

migrate from one

queue to another

Fairness Not fair Not Fair Fair Fair Not Fair

Preemptiveness Non- Preemptive

Non- Preemptive

Or

Preemptive

Non- Preemptive

Or Preemptive
Preemptive

Non- Preemptive

Or Preemptive

Advantages Easy to implement

Average waiting time is

minimum, Maximum

throughput in most of

cases

It uses RR technique to

make sure that a single job

does not hog resources of

the processor

Fair with every

process, good average

response time

Highly efficient,

Flexible

Disadvantages

Average waiting

time is long, Not

useful for time

sharing system.

Need advanced

knowledge of

estimation and

preemption, Not useful

for time sharing system.

Starvation problem, May

not give best average

waiting time.

Average waiting time

is poor, It assumes that

all processes are

equally important, thus

each process receives

an equal portion of

CPU, More context

switch overhead.

Inefficient in single

core system, Hard to

implement.

Table 5: Comparative analysis of Task scheduling algorithms.

4. CONCLUSION
The purpose of this paper was to compare different task

scheduling algorithms based on identified qualitative parameters. In this

paper the analysis of different scheduling algorithms are carried out,

various parameters are used to check the results. The shortest job first

(SJF) algorithm is recommended for the CPU scheduling problems of

minimizing either the average waiting time or average turnaround time.

Also, the first come first serve (FCFS) algorithm is recommended for

the CPU scheduling problems of minimizing either the average CPU

utilization or average throughput. Round robin scheduling algorithm is

fair to every process. Multilevel feedback scheduling algorithm is

highly efficient and low scheduling overhead.

In future work, more and more real experimentation are

needed to choose good scheduling algorithm.

5. REFERENCES
[1] Sandeep Sharma, Sarabjit Singh, and Meenakshi Sharma,

“Performance Analysis of Load Balancing Algorithms”, World

Academy of Science, Engineering and Technology, 2008.

[2] Veeravalli Bharadwaj, Depasish Ghose and Thomas G. Robertazzi,

“Divisible Load Theory: A New Paradigm for Load Scheduling in

Distributed Systems”, Journal of Cluster computing, Vol-6, Issue-

1, 2003.

[3] Sivakumar Viswanathan, Bharadwaj Veeravalli and Thomas G.

Robertazzi, “Resource-Aware Distributed Scheduling Strategies

for Large-Scale Computational Cluster/Grid Systems”, IEEE

Transactions on Parallel and Distributed Systems, Vol-18, 2007.

[4] Michael Isard, Vijayan Prabhakaran, Jon Currey, Udi Wieder, Kunal

Talwar and Andrew Goldberg, “Quincy: Fair Scheduling for

Distributed Computing Clusters”, Proceedings of the ACM

SIGOPS 22nd symposium on Operating systems principles (SOSP

'09), 2009.

[5] M. Nikravan and M. H. Kashani, “A Genetic Algorithm for Process

Scheduling in Distributed Operating Systems Considering Load

balancing”, Proceedings 21st European Conference on Modeling

and Simulation (ECMS), 2007.

[6] Hermann Kopetz, "Real-Time Systems: Design Principles for

Distributed Embedded Applications", Springer, second edition.

[7] Peter Brucker, "Scheduling Algorithms", Springer, fifth edition.

[8] Giorgio C. Buttazzo, "Hard Real Time Computing Systems:

Predictable Scheduling Algorithms and Applications", Springer,

Third edition.

[9] Daniel P. Bovet and Marco Cesati, "Understanding the Linux

Kernel", O'Reilly Online Catalogue, October 2000.

[10] Hermann Kopetz, "Real-Time Systems: Design Principles for

Distributed Embedded Applications", Springer, second edition.

[11] Ishan Khera Ajay Kakkar “ Study of Scheduling Algorithms for

Real Time Environment” International Journal of Computer

Applications , April 2012

IJCATM : www.ijcaonline.org

