
International Journal of Computer Applications (0975 – 8887)

Volume 74– No.19, July 2013

28

Component based Integration Testing using Abbot Tool

Neelam Sirohi
Research Scholar
H.C.T.M Kaithal

 Anshu Parashar
Associate Professor

H.C.T.M Kaithal

ABSTRACT

Testing is an important part in software development. When a

component based software system are developed then to

ensure the quality of system, testing must be done.

Components have implementation transparency property and

they are heterogeneous in nature. When the components are

integrated to make a system then unexpected result may

occur. So integration testing is necessary when components

are integrated. In this paper, a student record system is

implemented and its components are tested using abbot tool.

Abbot tool is used for integration/functional testing. Abbot

builds upon the java.awt.Robot class to provide an automated

event generation and validation framework for Swing GUI

components. The framework can be used to create, record,

and execute scripts and programmatic test cases in Java.

Abbot also has a script editor called Costello that facilitates

the creation of scripts in XML. This paper also describes the

features of abbot tool.

General Terms

Component based system, testing techniques.

Keywords

GUI Component Testing, XML Script, Abbot Tool, Costello

Script Editor.

1. INTRODUCTION
Software testing is one of the most important part in software

development process. Every programmer knows that testing

is essential in the development of software application.

Component based software systems are mainly constructed

from reusable components such as third party components and

Commercial off the Shelf Components (COTS). Due to these

reusable and commercial off the shelf components,

component based system are developed quickly, easily and

with minimum resource cost [1]. Component-Based

Development (CBD) offers a radically new approach to the

design, construction, implementation and evolution of

software applications. Software applications are implemented

by assembling the several components; the components may

be written in several different programming languages and run

on several different platforms. Conventional development is a

special case of CBD, which lacks some of the techniques and

opportunities that characterize full CBD.

To ensure the best delivery of component based software,

effective and efficient testing is the key process in software

development. Component Based Software has implementation

transparency property and they are written in several different

programming languages and run on several different

platforms. This heterogeneous nature of components raises

difficulties in testing. In software development, several

components are reused to build a system. Then the

components must be tested adequately. Most of the testing

tools are available today for GUI based testing like Marathon,

Guitar, Abbot, HTML Unit, HTML Fixture, Selenium.

Marathon, Guitar and Abbot are java based tools where as

HTML Unit, HTML Fixture, Selenium are web based tools.

Junit tool is used for unit testing. Junit is a unit testing

framework, which means that junit works by taking the

smallest part of testable software, this tool isolate that part

from rest of the software and in turn validating that it works

correctly or not. Aim of this paper is component based

integration testing by using testing tool – Abbot that is

suitable for integration testing. It checks all the components

together. Abbot framework is a java library that provides

methods to reproduce user actions and examine the state of

GUI components. The framework may be invoked directly

from java code or accessed without programming through the

use of scripts. Abbot tests the java UI. It provides a Costello

script editor which is built on Abbot. Costello allows the

tester to easily launch, explore, and control an application.

Framework may be used with both scripts and compiled code.

Costello script editor runs the xml scripts.

In this paper, student record system is implemented and all the

components are tested. For testing these components abbot

tool is used which provides an automated event generation

and validation framework for GUI components. In this paper

main purpose is to test the functionality of all the components

that they are working properly after integrated.

The next section presents background information on the test

generation. Section 3 describes the proposed work. Section 4

describes the implementation work done and results. Then

section 5 conclusion and section 6 future work.

2. RELATED WORK
In the past, many papers have been published to address the

component based testing and issues related to component

based software engineering. Testing of component based

system is different from normal software testing that‟s why

the testing techniques are also bit different. There are

basically two different approaches for testing white box and

Black box. The black box testing is more prevalent in the

component based systems because in most of the cases the

source code is not available with the component; at most only

the specification is available. Several techniques are defined

to test the component based system. Some of them are defined

below.

2.1 Adequate testing
An “Adequate Testing” approach for testing component based

software was suggested by David S.Rosenblum [2] this

technique provide initial basis for testing of component based

software. The main result of this technique is the formal

definition of the concept c-adequate-for p for adequate unit

testing for the components and c-adequate –for m for

integration testing for component based system.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.19, July 2013

29

2.2 Boundary value analysis
Muthu Ramchandran[4] suggested “Boundary Value

Analysis” for testing CBS. It is a software testing technique.

In this technique test cases are designed in such a way that

they include representatives of boundary values. It is based on

complex embedded software and it also helps to apply

boundary value testing and analysis on component interfaces

which is the key to achieve testability of reusable software

components. It uses visual notations to understand component

connections/compositions.

2.3 Integrated testing technique
Sami Beydeda and Volkar gruhn et.al [3] proposed

“Integration Testing Technique”. In this all the features of

component based system are tested and it allows more

rigorous testing. The main purpose of this approach is to give

graphical representation which combines the black and white

box information. This graphical representation can then be

used for test case generation. But this technique has one flaw

that is very time consuming approach and there is no

provision for automatic test case generation. This technique

has one flaw that is very time consuming approach and there

is no provision of automatic test case generation. Our next

part shows the automatic test case generation testing

techniques. After this automated testing techniques are

proposed.

2.4 Automated software robustness testing
The trend shifted towards automatic testing of software

components Marcel Dix Holger et al. [5] suggested

“Automated Software Robustness testing”. Main purpose of

this technique is to do the automated robustness testing.

Robustness is defined as the components ability to handle

invalid input conditions. This technique can generate large

number of test cases with small input values. But there is

demand for reducing this large mass of test cases so another

technique that is static testing was introduced for test case

reduction. It reduces the number of test cases to be executed

without affecting test accuracy and reliability but it was

unable to reduce the numbers of test case and to generate test

cases, human efficient expertise is needed.

2.5 Self testing of component based system
“Self Testing” was suggested by Fevzi Belli et al. [6]. It is

widely accepted that conventional test methods are not

necessarily adequate for testing of component based software.

Also conventional test tools cause same problem for the

automation of the test CBS, because the knowledge about the

implementation of the CBS are essential to run the tests. But

the component manufacturers are not willing to provide the

component source code. This technique is based on black box

testing and uses some features of capture/playback tools. It

provides a framework for automation of user oriented

component testing which reduces the test cost.

2.6 Regression testing
Chengiying Mao et.al[7] suggested “Regression Testing

Technique”. It is based on change information. Due to lack of

information about source code of externally provided

component system tester can‟t perform effective regression

testing on their component based system. Component users

don‟t know the details of change in components so they are

not able to select the proper test cases to test modified

components. This technique provides a regression testing

method based on enhanced change information of component

version to test the modified components. It needs a joint

participation of component developer and the users. Call for

graph is used to calculate the change information.

2.7 Modular regression testing
Bruce W.Weide [10] proposed “Modular Regression Testing”.

Whenever the modifications are done in the software system

then regression testing must be done. On the release of every

new version, new test cases are generated. It is too expensive

to generate the new test cases for every version. Modular

regression testing provides an advantage over regression

testing. In this RTCM is used. RTCM reduces this cost by

providing the concept of reusability. Regression Test Case

Modeler (RTCM) is a framework that generates the test cases

automatically from event forest and also generates regression

test suite. RTCM choose old test suite which represent correct

input and is necessary to validate the modified software.

When the structure of the original GUI is modified, test cases

from the original GUI are either usable or unusable on the

modified GUI. Test cases which can‟t be used in modified

GUI are discarded and test cases which can be used in

modified GUI are kept. Test cases which can‟t be rerun are

known as obsolete test cases. GUI test cases can be unusable,

usable or repairable. In RTCM we have followed the principle

“do not throw away unusable test cases”.

2.8 Object oriented component testing
Fakhra Jabeen et.al[8] suggested “Object Oriented Testing”.

The unavailability of source code preludes extrapolating

standard testing approaches. In this technique object oriented

framework is proposed that relies on utilization of discrete

descriptors to facilitate test execution and to enable a uniform

information flow. At present it supports component unit

testing and partial integration testing.

Junit tool is used for unit testing. Abbot tool is a most popular

tool and used for integration/functional testing.

Its features include:

 Abbot is an extension of junit tool and is used for

integration/ functional testing.

 Provides GUI tests for java AWT/swing application.

 Consists of recorder, player and an editor.

 Records tests script in java.

 Allows to write test cases directly from java code.

 Allows to insert assertions in script easily.

 It runs the XML scripts then there is no need of

compilation.

3. PROPOSED WORK
Software testing is a critical element of any kind of software‟s

quality assurance and is of utmost important for the credibility

of the software system. When it comes to component based

software paradigm, testing mechanism and strategies varies

from the traditional testing approaches because traditional

software system contained source code which can be tested by

tester, but while testing component based software system the

source code is not available generally. Testing is especially

important for system being assembled from any self contained

software components. GUI‟s by far are the most important

means, of communicating with today‟s software, so the

functional characteristics of GUI‟s are of utmost important.

The test data required for testing GUI is huge sometime so

manual approach isn‟t suitable. Manual testing makes

regression task more laborious and time consuming and

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.19, July 2013

30

longer times are needed for test coverage. Automatic testing

of software is necessary to save the time and to reduce the

labour of programmers. In software development unit testing

is the starting phase of testing. First of all unit testing is done.

In unit testing a single piece of software/single component is

tested by the tester. Junit tool is used for automatic unit

testing. This tool works on java platform. Integration testing

comes after unit testing and is most important testing in

software development. Several components are integrated to

make a system. Testing of independent component is simple

but when the components are assembled in a system then

unexpected results may occur. Then to ensure the quality of

the system, integrated testing is necessary. Abbot tool is used

for integration testing and it is an extension of junit tool or can

be says that a better bot.

The ultimate goal of this paper is to completely automate the

testing of integrated components. A programmer should be

able to perform testing simply by clicking on a button. Abbot

tool provides GUI integration/functional testing and test cases

are generated automatically by this tool. In this paper, student

record system is implemented and all the components are

tested together. Next section describes the implementation and

results of the work.

4. IMPLEMENTATION AND RESULTS
Abbot tool provides a framework to test the GUI components.

Abbot builds upon the java.awt.Robot class. It provides an

automated event generation and validation framework for

Swing GUI components. The framework can be used to

create, record, and execute scripts and programmatic test

cases in Java. Abbot also has a script editor called Costello

that facilitates the creation of scripts in XML. This tool

converts the java source code into .jar (java archive files) files

which are executable files and path of these files are

associated with xml files and give them to abbot then abbot

automatically generates test cases. A student record program

is implemented in java. After this xml scripts are created and

these scripts are used by Costello script editor to run the

applications. To test this program open the Costello (script

editor), then LaunchMain.main([]) method occur. With the

help of this method tester can run XML script. This method is

shown in the Fig.1. This fig also shows the hierarchy,

refrences, properties, attributes.etc. If the hierarchy of any

component is changed then the script will break. This will

produce an error in the system. Then to remove this type of

error, script must be updated after every change in the

hierarchy of components.

Fig.1 Costello script editor. It shows LaunchMain.main([])

method which run xml script of student record.

Example of abbot test code for student record is shown below.

This java code is used for inserting information about student.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class Add extends AbstractAction

{

 private JDialog dialog;

 private JFrame frame;

 public Add(String commandAction,JFrame frame)

 {

 super(commandAction);

 this.frame = frame;

 }

public void actionPerformed(ActionEvent event)

 {

 addNewStudent();

 }

 public void addNewStudent()

 {

 dialog = new JDialog(frame,"Add

Record",true);

dialog.setContentPane(new

NewStudent(dialog).getPanel());

 dialog.pack();

 dialog.setLocationRelativeTo(frame);

 dialog.setVisible(true);

 }

}

After click on run button student record window open in front

of tester then tester can check all the validation check which

put on every component for testing. If all the test cases are

passed without any error then result is shown in bottom of

costello like invoking test case.. done as shown in fig 2. Tester

also able to tell what test failed because it is highlighted in red

line and error message appears in bottom of Costello. In this,

all the textboxes, dropdownlist and command buttons i.e add,

close are tested that they are working correctly or not.

Fig.2 Testing of addition component using abbot tool.

Similarly delete, search and edit components are tested by this

tool. This is an example of student deletion.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.19, July 2013

31

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class Delete extends AbstractAction

{

 Private StudentList studentList = new StudentList();

 private JFrame frame =null;

 public Delete(String commandAction,JFrame

frame)

 {

 super(commandAction);

 this.frame = frame;

 }

 public void actionPerformed(ActionEvent event)

 {

 if(studentList.getList().size() != 0)

 {

 Int n =

JOptionPane.showConfirmDialog(frame,"Are you sure? you

want to delete this record 'student'","Confirm

delete",JOptionPane.YES_NO_OPTION);

 if(n == JOptionPane.YES_OPTION)

 {

 deleteStudentRecord();

 }

 }

 }

 public void deleteStudentRecord()

 {

 studentList.getList().remove(studentList.getRecord(

));

 if(studentList.getList().size() !=

0)

 {

 Student student =

(Student)studentList.getList().getLast();

 studentList.setRecord(studentList.getList().size() -

1);

new StudentRecordGUI(studentList.getRecord() + 1);

 new

StudentRecordGUI(student.getFirstName(),

 student.getLastName(),

 student.getIdNum(),

 student.getCourse(),

 student.getYearLevel());

 }

 else

 {

 new StudentRecordGUI(false);

 new StudentRecordGUI(0);

 new StudentRecordGUI("","",0,"","");

 }

 }

After click on delete button of application a message box

appears in front of tester into the figure “Are you sure? you

want to delete this record „student‟ ”. Two command buttons

appears, yes or no. This is shown in fig 3.

Fig.3 Testing of delete component of student record.

Searching component depends upon the addition component.

It can search only those students information whose records

are added i.e depend on the addition component.

Fig.4 Testing of search component of student record.

From the above results it is sure that student record

application works correctly. All test of components are passed

by abbot tool.

5. CONCLUSION
This paper presents a systematic integration testing using

abbot tool. Abbot tool provides integration/functional testing

and it is an extension of junit. It helps writing system/GUI test

for java AWT/swing application. Abbot tool automatically

generates the test cases. We also define the role of Costello

script editor. Costello allows us to easily launch, explore, and

control an application. The framework may be used with both

scripts and compiled code. Costello script editor can also run

xml scripts and results are shown in the bottom.

6. FUTURE WORK
This paper discusses the features of abbot testing tool. Student

record application is implemented in java and observes that

how abbot testing tool can help in testing the components of

this application. This paper presents the testing of static

components. Dynamic objects are another thing which keeps

on changing like we see on some of the website, text logo‟s

keeps on changing in the same area. In future some work can

be done on dynamic components.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.19, July 2013

32

7. REFERENCE
[1] Jim Q Ning, 1997. Component-Based Software

Engineering, Proceedings of U.S National Institute of

Standards and Technology‟s Advance Technology

Program on Component Based Software, Document

number 0-8186-7940-9/97.

[2] David S. Rosenblum, 11 Aug 1997. Adequate Testing of

Component-Based Software, Technical Report 97-34

Department of Information and Computer Science

University of California, Irvine, CA 92697-3425.

[3] Sami Beydeda and Volker Gruhn, IEEE Computer

Society 2001. An Integrated testing Technique for

Component-Based Software.

[4] Muthu Ramchandran, 2003. Testing Software

Components using Boundary Value Analysis,

proceedings of the 29th EUROMICRO conference New

Waves in System Architecture” (EUROMICRO 08),

Document number 1089-6503/03, IEEE Computer

Society.

[5] Marcel Dix. Holger and D. Hofmann, 2002. Automated

Software Robustness Testing, proceedings of the 28th

Conference (EUROMICRO‟02) IEEE, Document

number 1089-6503/02.

[6] Fevzi Belli and Christof J. Budnik, 2005. Towards Self-

Testing of Component-Based Software, Proceeding of

the 29th Annual International Software and Applications

Conference (COMPSAC ‟05), IEEE Computer Society.

[7] Chengying Mao, Yansheng Lu, 2005. Regression Testing

for Component-based Software Systems by Enhancing

Change Information, Proceedings of the Asia-pacific

Software Engineering Conference (APSEC‟05),

Document number 0-7695-2465-6/05.

[8] Fakhra Jabeen, Muhammad jaffar-Ur Rehman, 2005. A

Framework for Object oriented Component Testing,

Document number 0730-3157/05, IEEE press.

[9] Nitin V. Koppalkar, Seshaiah Uppala and Mahesh

Madugundu. Testing of Component-Based Software

Systems, Philips Research India-Bangalore.

[10] Bruce W.Weide, 2005. Modular Regression Testing,

Connections to Component-Based Software, Dept. of

Computer and Information Science, The Ohio State

University , 2015 eil Ave. Columbus, OH 43210,USA

+1 614 292 .

[11] A. M.Memon and M. L.Soffa. Regression testing of

GUIs , in Proceedings of the 9th European Software

Engineering Conference (ESEC) and 11th ACM

SIGSOFT International Symposium on the Foundations

of Software Engineering .

IJCATM : www.ijcaonline.org

