
International Journal of Computer Applications (0975 – 8887)

Volume 74– No.15, July 2013

1

Survey of Fault Tolerance Policy for Load Balancing
Scheme in Distributed Computing

Akanksha Chandola Anthwal
Department of Computer Science

Kanya Gurukul Mahavidyalaya, Dehradun

Nipur,Ph.D

Department of Computer Science
Kanya Gurukul Mahavidyalaya, Dehradun

ABSTRACT

Cloud computing had opened a new horizon for utilization of

resources and their computing. But as accessibility of cloud

increases, one of the most important factors to be considered

would be availability of resources and load balancing. Fault

tolerance is another issue to deal with while providing Quality

of Service in cloud environment thus enhancing the

performance. This paper investigates about fault-tolerance in

load balancing schemes in distributed environment. There are

some more parameters influencing QOS but our main focus is

on fault tolerance and load balancing.

Keywords

Cloud computing; fault tolerance; load balancing; Quality of

Service (QOS).

1. INTRODUCTION

Cloud computing is Internet-based computing, whereby

shared configurable resources (e.g., infrastructure, platform,

and software) are provided to computers and other devices as

services [1].Cloud computing make the resources available to

the customer from common pool of distributed computing

resources (storage, network, processing ability and

infrastructure), from any location up to any duration. In this

distributed computing environment some of important issue

associated are security, dynamic load balancing or task

scheduling, occurrence of failure, violation of Service Level

Agreement (SLA) which are obstacle to provide better QOS

values. Our main concern is Load Balancing along with Fault

Tolerance for cloud.

 In Cloud Computing the main concerns involve

efficiently assigning tasks to the Cloud nodes such that the

effort and request processing is done as efficiently as possible

[2], while being able to tolerate the various affecting

constraints such as heterogeneity and high communication

delays. With the popularity of Cloud computing requirement

of large and powerful data centers had occurred. Load

balancing is another issue which should be taken in account in

the virtual environment for efficient job execution and

necessity for minimizing job turnaround time in distributed

computing systems thus providing with improved QOS value.

Till the time many load-balancing approaches were proposed

for real-time scenario but, few of them had taken in account

the fault-tolerance in load balancing mechanisms. An efficient

load balancing mechanism is required for improving the

system performance and Fault-tolerant network systems are

designed to provide reliable and continuous services in

distributed computing despite the failures of some of their

components.

In this paper our prime focus is on load balancing and fault

tolerance approaches and for the same, Section II; gives an

overview of some commonly used Load balancing techniques.

In our next section III; metrics and challenges for load

balancing and fault tolerance in cloud environment are

discussed. Section IV gives some load balancing schemes

taken in account fault tolerant policy. In Section V above

mention techniques are compare and contrast. At last paper is

concluded with future scope of work in this particular area.

2. LOAD BALANCING TECHNIQUES

REVIEW

Load balancing techniques are takes in account different types

of approaches. Broadly these are classified as: Static

algorithms which divide the traffic evenly between servers

and Dynamic algorithm which search for the lightest server in

the network and then designated appropriate weights on it.

There are numerous load balancing techniques but few of

them had been selected for review work.

Some of the commonly known Static Load Balancing

Algorithms are;

2.1 Honey Bee Foraging

Honey Bee foraging [2] algorithm is derived from the

behavior of honey bees for finding and reaping food. In order

to check for fluctuation in demand of services, servers are

grouped under virtual servers (VS), having its own virtual

service queues. Each server processing a request from its

queue calculates a profit or reward on basis of CPU

utilization, which is corresponds to the quality that the bees

show in their waggle dance and advertise on the advert board.

Each of the servers takes the role of either a forager or a

scout. A server serving a request, calculates its profit and

compare it with the colony profit, if profit was high, then the

server stays at the current virtual server and on the other hand

if profit was low, then the server returns to the forage or scout

behavior, thus balancing the load with the server.

2.2 Biased Random Sampling

According to Biased Random Sampling [3] approach the load

on a server is represented as a virtual graph having

connectivity with each node. Each server is symbolized as a

node in the graph, where each in degree represents the free

resources of the server. Whenever a node executes a job, an

incoming edge is being deleted, thus indicating the reduction

in the availability of free resource. After completion of a job,

the node adds on an incoming edge, indicating an increase in

the availability of free resource. Random sampling is used to

increment and decrement processes. The last node in walk is

selected for allocation of load; instead any other node based

on certain criteria could also be preferred.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.15, July 2013

2

A node on receiving a job, will execute it only if its current

walk length is equal to or greater than the threshold value.

Being lesser to the threshold value, the walk length of the job

under consideration is incremented and another neighbor node

is selected randomly. Again a new directed graph is formed

and load balancing is achieved in fully decentralized manner,

thus making it suitable for large network systems like cloud.

2.3 Active Clustering

Active Clustering approach [4] is considered as a self

aggregation algorithm, works on the principle of grouping

similar nodes and working together on these groups. A set of

processes are iteratively executed by each node on the

network. Initially any node can become an initiator and

selects another node from its neighbors to be the matchmaker

node satisfying the criteria of being a different type than the

former one. The matchmaker node then forms a connection

between neighbors of it which are similar to the initiator. The

matchmaker node then removes the connection between itself

and the initiator.

In order to work more efficiently in real scenario, Dynamic

Load Balancing Algorithms are required; some of them are

discussed as follows:

2.4 Join Idle Queue

JIQ [5] is a load balancing algorithm applicable for

dynamically scalable web services. This technique involves a

dispatcher to whom processors informs at the time of their

idleness, without interfering with job arrivals. Thus removing

the load balancing work from the critical path of request

processing, system load is reduced; no communication

overhead at job arrivals and no increment in actual response

time.

In JIQ algorithm load balances idle processors across

dispatchers, which is called the secondary load balancing

problem. For solving primary load balancing problem concern

with assigning jobs to the processors, first of all the secondary

problem of assignment of idle processors to dispatchers is

being solved, which in turn takes place in the reverse

direction. While the primary problem concerns the reduction

of average queue length at each processor, the secondary

problem concerns the availability of idle processors at each

dispatcher [5].

2.5 Divisible Load/Task Theory (DLT)

DLT [6] is inspired by level-balancing property of liquid.

When water is poured into a cup on the horizontal surface,

water (independent of amount) always reaches the equilibrium

state, which means the water surface settles down to be level

finally. Similarly, an unstructured P2P grid is a container and

computational jobs are like water and jobs are unevenly

distributed in girds, forced to move from overloaded nodes to

lightly loaded nodes, distributing load evenly.

In DLT, a load can be arbitrarily partitioned into chunks for a

group of processors with no priority relationship among

obtained chunks. This approach assumes nodes in the grid to

be homogeneous and during load balancing no task can insert

the queue nor leave. A node only exchange and collect

information with their nearest neighbors within one hop to

make grids converge to the load balanced equilibrium state

[6].

2.6 Load Balance Min-Min (LBMM)

 LBMM scheduling algorithm [8] and new optimized Load

Balancing Max-Min-Max (LB3M) [7] had main objective to

minimize execution time of each task, also avoid unnecessary

replication of task on the node thereby minimizing overall

completion time. Opportunistic Load Balancing algorithm

when combined with LBMM (OLB + LBMM) [8] keeps

every node in working state to achieve load balance. Similar

to LBMM, LB3M also calculate average completion time for

each task for all nodes. Then mark the task with maximum

average completion time. Next it dispatches the task of

marked node to the unassigned node with minimum

completion task, thus balancing the workload evenly among

all nodes.

3. WORK LOAD METRIC AND FAULT

TOLERANCE TECHNIQUE

While comparing different techniques of load balancing,

certain metric had to take into account to check the

implementation feasibility of the algorithm for a specific

application. Some of metrics for load balancing are:

 Throughput & Response Time which are related with

processing efficiency of the computing systems.

Throughput and response time take in account total

turnaround time calculate as sum of waiting time,

expected execution time, time to input files and time taken

for output. Throughput is number of task completed in

unit time and response time is amount of time to complete

unit task. For a good load balancing algorithm throughput

should be high and response time should be low.

 Overhead Associated determines the amount of overhead

involved while implementing a load-balancing algorithm.

It includes inter process communication, network

overhead, system monitoring and control, dues associated

with movement of tasks. Overheads should be minimized

for working efficiency of load balancing technique.

 Resource Awareness is the feature of load balancing

technique to have responsiveness about the capacity of

server (including cpu, memory and I/O) and better

utilization of resources. This factor helps in optimal

resource allocation which is most important requirement

of load balancing techniques.

 Performance in heterogeneous environment is also an

important factor because of dynamic and diversity of real

time applications. In order to deal with fluctuating

demand of resources in a distributed environment,

heterogeneity feature is a necessity to be implemented in

these algorithms.

 Fault Tolerance is one of the metric which is consider to

be most important since the resource failure affects job

execution, throughput, response time and performance of

system. Thus a fault tolerance policy is required to detect

failures, resolve these failures, thus improving

performance metric. Fault Tolerance policies are

classified in two categories: Reactive and Proactive.

Reactive fault tolerance policies are applicable on

occurrence of fault to reduce its effect. Replication, check

point/restart, retry, task resubmission, job migration,

rescue workflow etc. are common reactive techniques. On

the other hand proactive fault tolerance policies are based

on fault avoidance, predicting failure points, or removing

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.15, July 2013

3

suspected/slow components. Preemptive migration,

software rejuvenating, self healing are some proactive

techniques.

 Migration is the metric which is associated with fault

tolerance. In that case if one of the nodes of distributed

system fails in executing tasks assigned to it, jobs had to

shift to some other nodes. The time to migrate the jobs or

resources from one node to other is Job migration time

which should be minimized in order to enhance the

performance of the system.

 Implementation Complexity as the name suggests is the

difficulty for implementation of any algorithm to the

distributed system. Load balancing algorithms are

preferred to be less complex in terms of implementation

and operations. The higher implementation complexity

would lead to a more complex process which could cause

some negative performance issues.

4. LOAD BALANCING SCHEME

INCLUDING FAULT TOLERANCE

4.1 Ant Colony Optimization (ACO)

ACO [9] is an improved version of load balancing mechanism

based on Ant Colony and Complex Network Theory

(ACCLB) [10] in an open cloud computing federation. Both

algorithms make use of ants’ pheromone to gather and update

information about the cloud thus selecting a specific node in

order to assign the task however evenly distributing work

among nodes.

 The ants in proposed algorithm continuously originate from

the Head node and traverse all around the network making

forward and backward movement to find the under loaded and

overloaded nodes. In ACO two types of pheromones are used

Foraging Pheromone (FP) used to explore overloaded node

by forward movement of ants while Trailing Pheromone (TP)

used to discover its path back to the under loaded node. In

order to limit the number of ants in the network, they would

commit suicide once it finds the target node [10].

4.2 ESWLC (Exponential Smooth Forecast

based on Weighted Least Connection)

ESWLC [11] is an improved form of Weighted least-

connection (WLC) along with its features, it also taken into

account time series and trials. However WLC counts the

connections of each server and reports the appropriate server

based on the multiplication of a server weight and its count of

connections, ESWLC algorithm concludes assigning a certain

task to a node only after getting to know about the node

capabilities. ESWLC builds the decision based on the

experience of the node’s CPU power, memory, number of

connections and the amount of disk space currently being

used. ESWLC then predicts which node is to be selected

based on exponential smoothing [11].

4.3 Map Reduce

Map Reduce [12] is a programming model consisting of two

functions- Map and Reduce and improved Map Reduce Fault

Tolerance [13] use passive replication on top of re-execution

in the cloud. It involves two operations Map process which

processes a block of input producing a sequence of (key,

value) pairs, and Reduce that process all values of a given

key and emit one or more (key, value) pairs. A Map Reduce

algorithm consists of three phases: map phase, shuffle phase

and reduce phase. The map function operates on request entity

i.e. a series of key/value pairs, processes them and emits

output key/value pairs. In shuffle phase, each output key/value

pair is saved into a hash table and sorted, grouping all values

associated with a particular key. The reduce phase is

associated with processes of all values associated with given

key and emitting the one or more new key/value pairs.

In Map Reduce Fault Tolerance, the master first attempts to

assign a map task (in the queue) whose data is on that

machine (data locality) provided that the machine is free to

process the request. In case of failure in the execution, it

attempts to assign a map task whose data is located (on a

machine) on the same network switch with that machine (rack

locality). Therefore, on occurrence of failure complete map

tasks need to be re-executed, but completed reduce tasks does

not. To ensure that a failed job can be recovered and is being

scheduled with a guaranteed time period, a threshold value is

used whereby beyond it, the failed job will be scheduled on

the next available machine in spite of data locality [13].

 4.4 Virtual Machine Mapping (VM

Mapping)

VM Mapping [14] is based on multi-dimensional resources to

achieve overall load balance. This algorithm adopts the

centralized control architecture comprises of scheduling

controller and resource monitor as core elements of the

system. The scheduling controller is responsible for VM

lifecycle management and fulfilling allocation policy while

the resource monitor collects the information about resources

from physical hosts [14].The processes involved in VM

mapping policy goes through following four phases: firstly;

accepting the request for virtual machine on FCFS principle,

secondly; obtaining resource information which in turn is

maintain by resource monitor, thirdly; VM initial placement

by scheduling controller, finally; user can remotely access the

application on cloud.

In the initial phase weights for each dimension resources are

calculated, by taken in account all the resources occupied and

VM are compared. Next step is based on light load first,

where each node is being scored on bases of above calculated

weights, which would be inverse propositional to its

utilization. Finally probability scheme is used for selection of

node using Roulette Wheel approach. This algorithm also

gives the provision of VM migration policy for dynamically

adjusting load according to the threshold during the running

period. It eases the problem of load crowding to a certain

extent and ensures load balance in the virtual environment.

4.5 Dual Direction FTP (DDFTP)

DDFTP [15] is a dual-direction downloading algorithm from

FTP servers and its modified version in [16], introducing

efficient fault-tolerance and load balancing with minimal

communication and coordination overhead while executing

services in parallel over shared and dynamic heterogeneous

distributed cloud infrastructure. The main idea of algorithm is

to splits the file into two half and task is being executed on

two servers, such that each server starts processing the task in

an opposite direction from the other, one server starts

processing from the beginning in an incremental order while

other starts the file downloading from the last block in

decrement order. The task is considered to be finished when

the two servers download two consecutive blocks meeting at

consent. As a result, both servers will work independently, but

will end up downloading the whole file to the client in the best

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.15, July 2013

4

possible time, giving the performance and properties of both

servers [16]. Moreover, attributes such as network load, node

load, network speed are automatically taken into

consideration, while no run-time monitoring of the nodes is

required, yet it maintain good load balancing among all

participating server. In addition, if one of the servers fails

before completion of task, second one continues the task till it

reaches to the point where the other gets fail.

4.6 Fault Tolerance Policy on Dynamic

Load Balancing (FTDLB)

FTDLB [17] is fault tolerance policy that could tolerate the

node’s permanent failures while balancing load of real-time

applications on P2P grids. For improving the system

reliability, FTDLB duplicates jobs into different sites and

adaptively adjust the load of real-time applications to achieve

the job’s minimal turnaround time. FTDLB algorithm works

as follows; each site regularly sends "heartbeat" messages to

its neighbor site which includes the cpu utilization, memory

usage, job status, etc. When receiving of "heartbeat" messages

stops, within a fixed period, it indicates failure of neighbor

site thus triggering fault tolerance policy.

The proposed policy calculates the turnaround time of jobs in

the Request Queue (REQ), and selects the site’s Running

Queue (RQ) to minimize job turnaround time maintaining

load balancing among sites. When the job is dispatched from

REQ, job redundant mechanism is triggers to finds the

primary and secondary site provided turnaround time would

be smallest and then sends the redundant jobs to backup

storages of both. When the original site to fails execute the

job, the primary site transfers the redundant job from the

backup storage to REQ in primary site, and notifies the

backup storage in the secondary site to remove the copy.

When the original site as well as its primary site is failed, the

secondary site transfers the job from the backup storage to

REQ for execution [17]. In this policy the initial task of

allocation of job to the original site, selection of primary and

secondary site achieve load balancing while triggering job

redundancy and backup storage add on fault tolerance to the

system.

4.7 O-Ring (Overlapped Ring)

O-Ring [18] is a novel architecture that provides fault

tolerance and load balancing for distributed and dynamic

scenario. O-Ring use the approach of data replication

(mirroring) and data distribution in order to provide both fault

tolerance and load balancing in well- organized manner. In the

initial phase data items are replicated on the neighboring peers

on the ring in order to achieve fault tolerance and each peer

also stores the address of its predecessor and successor. Every

ring had a Directory Service which is responsible for routing

of requests like; data retrieval, updates, insertions and

deletions on appropriate peers. As copy of data is already

being replicated for backup on another peer short-term

fluctuations are addressed by moving the boundaries of

responsibility between peers without the need to move the

data itself. Thus, redistributing the load in forward and

backward direction in order to balance the load faster, and

minimizing interferes with concurrent query processing. Any

types of fluctuations, that require the movement of data, are

addressed by moving the backup copies of the data in the

background, without disturbing the primary copy of the data

that is being used to handle requests for the data. Along with

less expensive load balancing of O-Ring also achieves higher

throughput, as it can balance the load with lower overheads

and can respond rapidly to load imbalances.

5. DICUSSION & COMPARISION

Table I show the comparison of above mentioned Load

Balancing schemes on bases of metric mentioned in section

III.

Biased Random Sampling and Active Clustering are the

algorithm which supports heterogeneity partly means as

system diversity increases these algorithm degrade their

efficiency, thus inferring that these technique would be suited

to lesser diversify and dynamic environment. ACO is the

dynamic load balancing technique which do not support

heterogeneity but had the provision of fault tolerance

technique and is easy to implement to Internet, cloud or grid

computing systems. DLT had job migration provision for load

balancing only and does not consider the faulty scenarios

while FTDLB and VM Mapping shift the jobs to other nodes

in order to achieve load balancing and on the occurrence of

fault, for improving performance of the system. O-Ring as

compare to FTDLB has lesser implementation complexity

thus with less overhead it reduces the implementation cost and

perform fast. VM Mapping had higher overhead associated

than DDFTP as the former had resource monitoring system as

core element of the system.

6. CONCLUSION

In this paper, main focus is on fault tolerance policy based

load balancing algorithm. In this survey starting with common

load balancing techniques in cloud computing and further

investigated techniques having fault tolerance provision in

load balancing scheme also included some approaches

implemented to grid computing as both are type of distributed

computing.

By comparing the techniques on different metric and tried to

find the scope for improving fault tolerance policy in load

balancing schemes. In near future research could be conducted

on development of load balancing algorithm for cloud, taking

in account fault management and also minimizing migration

time of job in case of failure of node occurs and further

guaranteeing optimal performance of system. More load

balancing algorithm could be developed which take into

account proactive technique of fault tolerance in cloud

computing for enhancing the efficiency and providing quality

of service value with the increase of demand of resources on

cloud for vital applications.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.15, July 2013

5

Technique/ Metric Heterogeneity Resource

Awareness

Implementation

Complexity

Distributed

Environment

Fault

Tolerance

Job

Migration

Overhead

Associated

Honey Bee Foraging YES YES NO Cloud NO NO NO

Biased random

sampling

YES (Partly) YES NO Cloud NO NO NO

Active Clustering YES (Partly) NO NO Cloud NO NO NO

Join Id Queue YES NO LESS Cloud NO NO NO

DLT YES YES NO P2P Grid NO NO YES

ACO NO YES NO Cloud/P2P Grid Reactive NO YES

ESWLC YES YES HIGH Cloud Reactive YES YES

Map Reduce YES NO HIGH Cloud Reactive NO NO

VM Mapping YES YES HIGH Cloud Reactive YES YES

DDFTP YES YES LESS Cloud/P2P Grid Reactive NO LESS

FTDLB YES YES HIGH P2P Grid Reactive YES YES

O Ring YES NO LESS P2P Grid Reactive NO NO

Table I: Comparison of Load balancing Techniques

7. REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.

Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,

I. Stoica, and M. Zaharia, “Above the clouds: A berkeley

view of cloud computing,” Technical Report, EECS-

2009-28, University of California, Berkeley, 2009.

[2] Randles, M., D. Lamb and A. Taleb-Bendiab, “A

Comparative Study into Distributed Load Balancing

Algorithms for Cloud Computing,” in Proc. IEEE 24th

International Conference on Advanced Information

Networking and Applications Workshops (WAINA),

Perth, Australia, April 2010.

[3] O. Abu- Rahmeh, P. Johnson and A. Taleb-Bendiab, “A

Dynamic Biased Random Sampling Scheme for Scalable

and Reliable Grid Networks”, INFOCOMP - Journal of

Computer Science, ISSN 1807-4545, 2008, VOL.7, N.4,

December, 2008, pp. 01-10.

[4] F. Saffre, R. Tateson, J. Halloy, M. Shackleton and J.L.

Deneubourg, “Aggregation Dynamics in Overlay

Networks and Their Implications for Self-Organized

Distributed Applications.” The Computer Journal, March

31st, 2008.

[5] Yi Lua, Qiaomin Xiea, Gabriel Kliotb, Alan Gellerb,

James R. Larusb, Albert Greenbergc, “ Join-Idle-Queue:

A Novel Load Balancing Algorithm for Dynamically

Scalable Web Services” Volume 68 Issue 11, November,

2011, pp:1056-1071, Elsevier Science Publishers, 2011.

[6] V. M. B. Veeravalli, D. Ghose and T. Robertazzi,

“Scheduling Divisible Loads in Parallel and Distributed

Systems,” IEEE CS Press, 1996.

[7] Che-Lun Hung, Hsiao-hsi Wang and Yu-Chen Hu

“Efficient Load Balancing Algorithm for Cloud

Computing Network”, International Conference on

Information Science and Technology (IST 2012), April

28-30, pp; 251-253.

[8] S. Wang, K. Yan, W. Liao, and S. Wang, “Towards a

Load Balancing in a Three-level Cloud Computing

Network”, Proceedings of the 3rd IEEE International

Conference on Computer Science and Information

Technology (ICCSIT), Chengdu, China, September

2010, pages 108-113.

[9] Nishant, K. P. Sharma, V. Krishna, C. Gupta, KP. Singh,

N. Nitin and R. Rastogi, "Load Balancing of Nodes in

Cloud Using Ant Colony Optimization." In proc. 14th

International Conference on Computer Modelling and

Simulation (UKSim), IEEE, pp: 3-8, March 2012.

[10] Zhang, Z. and X. Zhang, "A load balancing mechanism

based on Ant Colony and Complex Network Theory in

Open Cloud Computing federation." In proc. 2nd

International Conference on. Industrial Mechatronics and

Automation (ICIMA), IEEE, Vol. 2, pp:240-243, May

2010.

[11] Ren, X., R. Lin and H. Zou, "A dynamic load balancing

strategy for cloud computing platform based on

exponential smoothing forecast" in proc. International

Conference on. Cloud Computing and Intelligent

Systems (CCIS), IEEE, pp: 220-224, September 2011.

[12] J. Dean and S.Ghemawat, “MapReduce: simplified data

processing on large clusters”, Communications of the

ACM, 107-113 (2008).

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.15, July 2013

6

[13] Qin Zheng, “Improving MapReduce Fault Tolerance in

the Cloud”, Parallel & Distributed Processing,

Workshops and Phd Forum (IPDPSW), 2010 IEEE

International Symposium, April 2010.

[14] Ni, J., Y. Huang, Z. Luan, J. Zhang and D. Qian,

"Virtual machine mapping policy based on load

balancing in private cloud environment," in proc.

International Conference on Cloud and Service

Computing (CSC), IEEE, pp: 292-295, December 2011.

[15] Al-Jaroodi, J. and N. Mohamed. "DDFTP: Dual-

Direction FTP," in proc. 11th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing

(CCGrid), IEEE, pp: 504-503, May 2011.

[16] Jameela Al-Jaroodi, Nader Mohamed, and Klaithem Al

Nuaimi, “An Efficient Fault-Tolerant Algorithm for

Distributed Cloud Services,” in proc. 2012 IEEE Second

Symposium on Network Cloud Computing and

Applications, pp:1-8.

[17] Tian-Liang Huang, Tian-An Hsieh, Kuan-Chou Lai,

Kuan-Ching Li, Ching-Hsien Hsu, and Hsi-Ya Chang,

“Fault Tolerance Policy on Dynamic Load Balancing in

P2P Grids”, in proc. International Joint Conference of

IEEE TrustCom-11/IEEE ICESS-11/FCST-11, 2011,

pp:1413-1419.

[18] P. M. Melliar-Smith and Louise E. Moser, “O-Ring: A

Fault Tolerance and Load Balancing Architecture for

Peer-to-Peer Systems”, Proceedings of International

Conference of the Chilean Computer Science Society

2009, IEEE Computer Society, pp:25-33.

IJCATM : www.ijcaonline.org

