
International Journal of Computer Applications (0975 – 8887)

Volume 74– No.14, July 2013

13

Renovation in Compression Expertness of Huffman
Coding and Intelligent Data Encryption

 Farrukh Fareed Shiva Chaudhary

 Assistant Professor, RIMT Assistant Professor, RIMT
 Bareilly, India Bareilly, India

ABSTRACT
Data compression is used for reducing storage requirements.

It involves transforming data of a given format, called source

message, to data of a smaller sized format, called compressed

message. The Data compression helps in reducing the size of

the database so that it is very easy to maintain huge database.

On the other hand Type Casting is used to convert the input

source message into suitable format so that Huffman

Algorithm can work on maximum data formats and after that

Data Normalization technique is used to remove redundancy

from the data this technique enhance the compression

efficiency of Huffman Algorithm. Decreasing the amount of

data required representing a source of information while

preserving the original content as much as possible and after

that providing security to this compressed code word with the

application of data encryption. The main objectives of this

paper are to get higher compression efficiency by applying a

planned technique on Huffman Algorithm and providing

security to this compressed data to limit the unauthorized

access using data encryption.

Keywords
Type Casting, Data Normalization, Huffman Algorithm, Data

Encryption.

1. INTRODUCTION
A compression algorithm can be used for minimizing the

storage space of data. Development of Information technology

leads increment in data size so that data compression

algorithm is necessary to maintain huge amount of data

economically. There are basically two types of compression

techniques - lossless and lossy compression depends upon

data type, such that in text compression every character of text

is important and loss of single character can change the

meaning of the sentence, only lossless compression can give

desirable results. Compression and Decompression is

performed in two parts. In the first part an encoding algorithm

generates the compressed code word of input message and in

the second part a decoding algorithm that reconstructs the

original input message from the compressed code word when

ever needed. It is also important to consider the security

aspects of the data being compressed so as to limit the

unauthorized access to the private and confidential data. In

this paper, the proposed technique enhanced the compression

ratio and compression efficiency of the Huffman Coding on

text data wit an added security using data encryption. This

paper also outlines the use of Typecasting which makes

Huffman algorithm applicable on more data formats and after

that Data Normalization is used for improving compression

efficiency as it removes redundancy from data.

2. TYPE CASTING
Typecasting is a technique which is used for changing the

contents of one data type into another. Typecasting is used to

take benefit of some important features of type hierarchies or

type representations. The example of typecasting would be

small integers, which can be stored in a compressed format

and converted to a larger representation when used in

arithmetic computations. In object-oriented programming with

the use of typecasting programmers can treat objects of one

type as one of their predecessor types to simply interact with

them. Different programming language has different rules

through which data types are converted. Generally objects and

original data types are converted it depends upon requirement.

The basic example would be an equation which has both

integer and floating point numbers i.e. 3-0.1 in which the

integers are usually converted into the latter. Unambiguously

the type conversions can either be performed through some

special syntax or through separately defined conversion rules.

In programming languages conversion and casting are the two

different concepts. Languages mention conversion, changing a

value from one data type to another. On the other hand the

word cast refers to clearly changing the understanding of the

bit pattern representing an entity from one type to another.

The use of Typecasting before Huffman Algorithm is very

useful so that Huffman Algorithm can be applicable to more

data formats as compared to conventional Huffman

Algorithm.

3. DATA NORMALIZATION
The method of organizing data to decrease redundancy and

anomalies is called normalization. Redundant data wastes disk

space and creates maintenance problems. The aim of database

normalization is to decompose relations with anomalies in

order to produce smaller, logical relations. Normalization

frequently involves separating large, badly-formed tables into

smaller, well-formed tables and defining links between them.

Main objective of data normalization is to separate data so

that modifications of a field can be made in just one table and

then propagated through the rest of the database using the

defined relationships. Due to these properties of normalization

technique higher compression ratios in Huffman algorithm

can be achieved as the data is being normalized before

compression. There are certain set of rules for database

normalization. Each set of rules are called a "Normal Form."

If the first set of rules is applied, the database is said to be in

"First Normal Form (1NF)."If the second set of rules is

applied on the data which is in first normal form, database is

said to be in "Second Normal Form (2NF)” and so on.

Although other levels of normalization are also possible,

Third Normal Form (3NF) is to be considered the highest

level essential for most applications.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.14, July 2013

14

3.1 First Normal Form (1NF)
The First normal form (1NF) is defined as belongings of a

relation in a relational database.

 The table cells must be of single value.

 Repeating groups must be excluded from the

Individual tables.

 A separate table should be formed for each group of

linked data.

 Every group of linked data should be identified by a

primary key.

If a database satisfies above set of rules then it is in first

normal form.

3.2 Second Normal Form (2NF)
The database is in second normal form if it satisfies the

following set of rules:

 Database should be in First Normal Form (1NF).

 All non-key attributes should be completely

functional dependent on the primary key.

There should be no partial dependencies if partial

dependencies occur on primary key it should be removed.

There is still a probability for a table in this form (2NF) to

reveal transitive dependency.

3.3 Third Normal Form (3NF)
A database is in third normal form if it satisfies the following

set of rules:

 Database should be in Second Normal Form (2NF).

 Remove such domains that are not dependent on the

primary key.

 Remove transitive functional dependency.

Transitive functional dependency is defined via the following

relationships: A is functionally dependent on B, and B is

functionally dependent on C. In such situation, C is

transitively dependent on A via B.

3.4 Example of Data Normalization
Consider a database of Project Report Layout as shown in

Table1.

Table 1. Un-Normalized database

3.4.1 First Normal Form (1NF)

Repeating groups must be excluded. Every attribute

is dependent on primary key and all attributes are clearly

defined. Table 2 has partial dependency.

Table 2. Database is in 1NF

3.4.2 Second Normal Form (2NF)
According to the set of rules of 2NF redundant data should be

removed. Table 5. Shows transitive dependency.

 Table 3. Project Table 4. ASSIGN

Table 5. Employee Details

3.4.3 Third Normal Form (3NF)
 According to the set of rules 3NF, remove columns that are

not dependent on key. Remove transitive dependency.

Table 6. Project Table 7. Job details

 Table 8. Employee Details

Table 9. ASSIGN

Applying data normalization before Huffman Algorithm is

extremely advantageous for higher compression ratio and

compression efficiency.

4. HUFFMAN ALGORITHM
Huffman algorithm is a lossless text compression algorithm.

With the use of Huffman algorithm compression of text data

can be done in such an efficient way that every character of

text can be recovered when decompression algorithm is

employed and this is one of the major factor to use Huffman

algorithm in this paper. Huffman algorithm constructs a

http://en.wikipedia.org/wiki/Relation_%28database%29
http://en.wikipedia.org/wiki/Relational_database

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.14, July 2013

15

binary tree to minimize the average bit rate and this binary

tree is known as optimal prefix tree. Huffman algorithm gives

variable length code as every character in a data file are

converted to a binary code in such a way that the high

frequency characters in the file have the shortest binary codes

and the lowest frequency have the longest binary codes.

4.1 Huffman Data Compression Algorithm
To view how Huffman compression algorithm works,

consider an example: “ABAEACABDCABA”

1. First step, arrange the characters from highest to lowest

frequency of occurrence as follows:

Character Frequency
 A 6

 B 3

 C ` 2

 D 1

 E 1

2. Second step, the two lowest-frequency characters are

selected, logically grouped together and add their frequencies.

In this example, the D and E characters have a combined

frequency of 2 and connection to a parent node which makes

it easy to read the code in reverse starting from a leaf node.

Interior nodes contain symbol frequencies, connection to two

child nodes and the possible connection to a parent node. As a

frequent rule, bit '0' represents the left child and bit

'1'represents following the right child

Character Frequency
 A 6

 B 3

 C 2

 1 (D+E) 2

 0 1

 2

 1 1

 Fig 1: Binary tree after the IInd
 step

3. Now again select the two elements of the lowest

frequencies and make the table and tree according to the rule

followed in step 2.

Character Frequency
 A 6

 B 3

 2(D+E+C) 4

 Fig 2: Binary tree after the IIIrd step

4. Now again select the two elements of the lowest

frequencies and make the table and tree according to the rule

followed in step 2.

Character Frequency

 A 6

 3(D+E+C+B) 7

Fig 3: Binary tree after the IVth step

5. Now again select the two elements of the lowest

frequencies and make the table and tree according to the rule

followed in step 2.

Character Frequency Character Frequency

 3(D+E+C+B) 7

 A 6 4(A+ D+E+C+B) 13

 Fig 4: Final Binary tree

When the table has only single node remaining, this node is

the root of the Huffman binary tree. The code word for

corresponding symbol can be defined from the way from root

node to the leaf node:

1

D E

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.14, July 2013

16

Table 9. Binary Code Table

Character Frequency Code

A 6 0

B 3 10

C 2 111

D 1 1100

E 1 1101

Input message:

ABAEACABDCABA

Compressed code by Huffman Compression Algorithm:

01001101011101011001110100

4.2 Huffman Data Decompression

Algorithm
Decompression algorithm is basically converting the prefix

codes in corresponding byte values. Huffman decompression

Algorithm starts from the root of binary tree and whenever a

leaf node reached stop there and look the code of that

corresponding symbol from root node to leaf node, assign the

corresponding symbol of that code from the compressed code

repeat this process until whole compressed message is

decoded:

01001101011101011001110100

 Code word Character

 0 A

 10 B

 0 A

 1101 E

 0 A

 111 C

 0 A

 10 B

 1100 D

 111 C

 0 A

 10 B

 0 A

Compressed code word:

01001101011101011001110100

Input message in its original form by Huffman

decompression Algorithm:

ABAEACABDCABA

5. DATA ENCRYPTION
Encryption can be defined as to make the data unreadable for

everybody else except those authorized users. Data

Encryption can also be understood as writing the text in such

a secret form with certain set of rules such that those who

know the set of rules can read the text so it is some form of

secret writing. This secret writing is known as Cryptography.
Encryption is done by applying a mathematical function to the

text and converting it to cipher text. Data Encryption is the

most economical and most widely used technique for

providing security to sensitive or confidential data. The most

difficult part in encryption is to make sure that the authorized

users can be able to decipher the text. There are two

techniques of encryption Private Key Encryption and Public

Key Encryption.

5.1 Private Key Encryption
The Private Key encryption is also known as symmetric key

encryption. It is the most conventional method of encryption.
In private key encryption single secret key is used for both

encryption and decryption process. In this encryption process

the secret key must be shared between sender and receiver in a

very secure manner. If someone hacks this secret key and

calculate the algorithm then the data can be decrypted easily

so in this form of encryption there is a need of secure

exchange of secret key and a powerful encryption algorithm.
5.2 Public Key Encryption
The Public Key Encryption is also known as asymmetric key

encryption. This is a modern approach in this type of

encryption there is a use of two types of keys, private key &

public key. Public key is open to all everyone knows but

private key is a confidential one, assign only to the authorized

users. The encryption is done with the help of public key

encryption but decryption can only be performed by the

mathematical matching of public key and private key.

6. PROPOSED DATA ENCRYPTION

AND DECRYPTION TECHNIQUE
Consider the length of the compressed code word that is

generated by Huffman algorithm is L and length of generator

polynomial S. The remainder of length S-1 is transmitted to

authorized user before the process of encryption. In

encryption process the length of the code word (L) in divided

with the length of generator polynomial (S) such that the

nearest prime number of the quotient is multiplied with the

generator polynomial. The result of this multiplication is in

the form of bit pattern, used for encryption. Let the length of

this bit pattern is N. These N bits are XORed with the last N

bits of the code word. The process will be done until the last

bit pattern of the code word; if code word length is less than N

they will be left as it is. As a result of this process the cipher

text is generated.

When the authorized user gets this cipher text, the user will be

able to do decryption is reverse steps of encryption along with

the remainder which is send before compression as XOR of

XOR is the same number.

The proposed encryption technique can be embedded very

easily with the compressed code word generated by the

Huffman algorithm and save extra processing and provide

strong security to the confidential data that’s why the name

Intelligent Data encryption is used in this paper.

7. OPERATION SUMMARY
To perform the proposed techniques MATLAB software is

used. The whole process is performed in two halves and these

two halves can be understood with the help of flow charts.

7.1 First Half
The first half can be understood with the help of flow chart as

shown in figure below:

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.14, July 2013

17

Fig 5: Flow chart of Compression & Encryption

From the diagram the process is done in following main

points which are as follows:

 MATLAB module takes the normal text file from

the user.

 Apply Type Casting to that file.

 Check format if it is in suitable format than apply

next step otherwise stop.

 Apply Data Normalization to remove redundancy.

 Apply Huffman Compression Algorithm to

compress the text file and get the compressed Code

word.

 Apply proposed encryption technique to get the

Compressed and encrypted file.

7.2 Second Half
The second half is the reverse process and can be understood

with the help of flow chart as shown in figure below:

 Fig 6: Flow chart of Decompression & Decryption

From the diagram the process is done in following main

points which are as follows:

 Get the Compressed and Encrypted data.

 Apply Decryption to remove security so that

authorized user can access the data.

 Apply Huffman Decompression Algorithm to

decompress the data.

 Display normal data as operation of normalization is

being performed before compression.

 Convert and save the data in its original format so

that authorized user can access the data.

8. RESULT
The proposed technique is performed with the help of

MATLAB and the summary of the result is shown in the table

below and the encrypted output is shown with the help of

pictures.

Table 8. Result summary

Size of

input text

file (kb)

Size of

compressed

file(kb)

Size of

decompress

file(kb)

%

compression

(approx)

22 13 22

40

42 24 42

42

76 43 76

43

Using different-different data in text file and apply proposed

techniques, following results obtained as shown in the table

above.

Average % compression achieved =
40+42+43

3
 = 41 % (Approx)

Encryption is also performed along with compression. The

picture below shows the text file which is to be compressed

and encrypted:

Fig 7: Text File which is to be compressed and encrypted

Start

Get Compressed and Encrypted file

Apply Decryption

Apply Huffman Decompression

Algorithm

Display Normal Data

Convert the data into its original

format

Stop

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.14, July 2013

18

Picture below shows result of compressed and encrypted file:

Fig 7: Compressed & Encrypted text file

9. CONCLUSION
This paper experimentally prove that compressed

representation of text data lead to significant savings of

storage space so that it is very economical and beneficial to

maintain huge amount of data base and if encryption is also

done after compression this leads to maintain the database

secure so that only authorized users can access the database.

By using the proposed techniques transmission of huge data

over any medium such as via internet, removable storage etc.

can be done precisely and there is no need of providing extra

security as encryption is already performed. So proposed

technique improves the compression expertness of Huffman

Algorithm with the use of type casting and Data

Normalization before Huffman Algorithm and with the use

proposed encryption technique security is provided to the

compressed file so as to prevent unauthorized access.

10. REFERENCES
[1] Mohd. Faisal Muqtida and Raju Singh Kushwaha,

"Improvement in Compression Efficiency of Huffman

Coding”, International Journal of Computer Applications

(0975 – 8887) Volume 45– No.24, May 2012.

[2] S.Mohankrishna, Singuru SriHari, T.V. Trinadh, G. Raja

Kumar,"A Novel Approach for Reduction of Huffman

Cost Table in Image Compression”, International Journal

of Computer Applications (0975 – 8887) Volume 20–

No.6, April 2011.

[3] A Method for the Construction of Minimum-Redundancy

 Codes David A. Huffman, Associate, IRE. (1952).

[4] Bao Ergude, Li Weisheng, Fan Dongrui, Ma Xiaoyu, " A

study and implementation of the Huffman Algorithm

based on condensed Huffman table”, Computer Science

and Software Engineering, 2008 International

Conference on (Volume: 6), ISBN: 978-0-7695-3336-0

[5] Database System Concepts by Silberschatz, Korth,

Sudarshan McGraw-Hill Higher Education, ISBN NO.0-

07-120413-X.

[4] A Method for the Construction of Minimum-Redundancy

Codes DAVID A. HUFFMAN, ASSOCIATE, IRE.

[6] Abraham Sinkov, "Elementary Cryptanalysis: A

Mathematical Approach”, Mathematical Association of

America, 1966. ISBN 0-88385-622-0.

[7] Ternary Tree & A new Huffman Decoding Technique,

IJCSNS International Journal of Computer Science and

Network Security, Vol.10 N0.3, March 2010.

[8] A guide to MATLAB by Brian R.Hunt, Ronald L.

Lipsman, J.M. Rosenberg Cambridge Univ. Press. ISBN

No.0-521- 00859-X.

[9] D. Kahn 1967, “The Code breakers”, The Story of Secret

Writing. New York: Macmillan.

IJCATM : www.ijcaonline.org

