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ABSTRACT 

Software quality assurance is the most important activity 

during the development of software. Defective software 

modules may increase costs and decrease customer 

satisfaction. Hence, effective defect prediction models or 

techniques are very important in order to deliver efficient 

software. In this research different machine learning 

algorithms are used to predict three main prediction 

performance measures i.e. precision, recall and f-measure.  

The accuracy of the software modules is being calculated. 

Different classifiers are also used in order to predict the values 

of these measures by using important attributes only. The 

results obtained after applying both the techniques i.e. 

attribute selection and without attribute selection, on all the 

datasets, are then analysed and best predicted results are 

chosen in order to predict the correct values of prediction 

performance measures. The accuracy of some software 

modules can be improved to 91.16%, recall and precision to 1 

after using attribute selection techniques in CM1 dataset. In 

PC1 dataset the accuracy has been improved to 93.778%.  

General Terms 

Defect Prediction Models, Faulty Modules, Accuracy, Data 

Mining. 

Keywords 

Defect Prediction Models, Precision, Recall, F-measure, 

Classifiers. 

1. INTRODUCTION 
Software Quality is the most important aspect during and after 

the software development. Any defective module in software 

may lead to increase in its cost and may cause failures and 

results in customer’s dissatisfaction. Delivering a robust, 

defect free and efficient software is very important; hence 

there is a huge need of efficient defect prediction models or 

techniques. There are many modeling techniques that are used 

in software quality prediction, namely- Discriminant Analysis, 

Logistic Regression, ANN, Bayes Belief Network, Genetic 

Algorithms, Classification Trees etc. If a model gives both 

high defect detection rate and high overall accuracy then it is 

an efficient and effective defect prediction model. 

In this paper 4 NASA datasets [10] namely CM1, JM1, KC1 

and PC1 are being evaluated. Many machine learning 

algorithms available in WEKA are used, in order to predict 

modules’ precision, recall, f-measure and accuracy. According 

to Tim Menzies and his colleagues, who worked on JM1, 

there is a low probability of detecting defective modules [1] 

Comparison of many machine learning algorithms on these 

datasets, performed by Taghi Khoshftaar and Naeem Seliya 

also predicts low prediction performance [2]. Analysis done 

by Lan Guo and her colleagues also revealed similar results 

but they found that Random Forest technique produces better 

prediction results than other algorithms.[3] 

In this paper a software prediction methodology is introduced 

by using different machine learning algorithms. Results 

obtained by considering all the attributes together are 

compared with the results obtained by considering attributes 

after they are ranked by a Ranker algorithm. Many machine 

learning techniques for attribute selection that have been used 

in this research are GainRatioAttributeEval, 

PrincipalComponents, FilteredAttributeEval and 

ReliefAttributeEval. Different classifiers such as NaiveBayes, 

BayesNet, SMO, SimpleCart, RandomTree etc. are used in 

order to predict values of precision, recall, f-measure and 

accuracy. 

1.1 Weka 

The Weka workbench is a collection of machine learning 

algorithms and data preprocessing tools. Weka was developed 

at the University of Waikato in New Zealand, and the name 

stands for Waikato Environment for Knowledge Analysis. The 

system is written in Java and distributed under the terms of 

the GNU General Public License. It runs on almost any 

platform including Linux, Windows, and Macintosh operating 

systems. It includes methods for all the standard data mining 

problems: regression, classification, clustering, association 

rule mining, and attribute selection. All algorithms take their 

input in the form of a single relational table in the ARFF 

format, which can be read from a file or generated by a 

database query. [7] 

2. METHODOLOGY 

By using different classifiers and performing cross validation 

with 10 folds, calculation of the commonly used prediction 

performance measures- Precision, Recall and F-measure, was 

done. The 10 folds cross validation method partitions the 

dataset into 10 equal portions, this method uses each portion 

once as the test set to evaluate the model built using the 

remaining nine portions. Results obtained by considering all 

the attributes together are compared with the results obtained 

by considering attributes after they are ranked by a Ranker 

algorithm. 
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2.1 Precision 

It is the ratio of number of modules correctly predicted as 

defective to the total number of modules predicted as 

defective in the set tp+fp. 

Here, tp: number of true positives 

fp: number of false positives 

fn: number of false negatives 

 

tn: number of true negatives 

 

Precision= tp/(tp + fp)                                               (1) 

 

2.2 Recall 

It is the ratio of number of modules predicted correctly as 

defective to the total number of defective modules in the set 

tp+fn. 

Recall=tp/(tp + fn)                                                     (2) 

2.3 F-Measure  

It considers precision and recall equally important by taking 

their harmonic mean. The higher value indicates better 

prediction performance. [4] 

F-measure = 2 * Recall * Precision / (Recall + Precision)                                                                            

                                                                                   (3) 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig1: Flowchart of the steps followed (without attribute 

selection) 

 

 

 

 

 

 

 

 
 

Fig2: Flowchart of the steps followed (with attribute 

selection) 

3. DATASET 

This research analyzed the CM1, JM1, KC1 and PC1 datasets 

of Promise Repository [5], which belong to 4 software 

products developed by NASA. In each dataset the graphs of 

each attribute were analysed. There are 22 attributes, 

mentioned below: 

v(G)-Cyclomatic Complexity, ev(G)- Essential Complexity 

iv(G)- Design Complexity, LOC- Lines of Code, N- Length 

V- Volume, L- Level, D- Difficulty, I- Intelligent Count, E- 

Effort, B- Effort Estimate, T- Programming Time, LOCode- 

Lines of Code, LOComment- Lines of Comment, LOBlank- 

Lines of Blank, LOCodeAndComment- Lines of Code and 

Comment, UniqOp- Unique Operators, UniqOpnd- Unique 

Operands, TotalOp- Total Operators, TotalOpnd- Total 

Operands, BranchCount- Total Branch Count         

                       Table 1: Datasets Detail 

Project  No. of 

Modules 

Percentage 

with defects 

Language 

CM1 496 9.8% C 

JM1 10,885 19.3% C 

KC1 2,109 15.5% C++ 

PC1 1,109 6.9% C 

3.1 Classifiers Used 

1. Bayes Net: It represents the probabilistic dependencies 

of variables by graph structure. 

2. Naive Bayes: It is a simple probabilistic classifier based 

on applying Bayes Theorem with strong independence 

assumptions. It assumes that the presence or absence of a 

particular feature is unrelated to the presence or absence 

of any other feature. 

3. SMO: SMO chooses to solve the smallest possible 

optimization problem at every step. It gives highest 

precision and accuracy table for enemy dataset.[8] 

4. Logistic Regression: It is useful to predict a dependent 

variable on the basis of independent variables.[6] 

5. NBTree: Naive Bayes trees are simply decision trees 

with Naive bayes classifiers learned from the instances 

that reach the leaves. All attributes are used in each 

Naive Bayes model. 

6. Random Trees: In Random Trees classification works 

as follows: the random trees classifier takes the input 

feature vector, classifies it with every tree in the forest, 

and outputs the class label that received the majority of 

“votes”. In case of a regression, the classifier response is 

the average of the responses over all the trees in the 

forest. All the trees are trained with the same parameters 

but on different training sets. These sets are generated 

from the original training set using the bootstrap 

procedure: for each training set, you randomly select the 

same number of vectors as in the original set. The 

vectors are chosen with replacement. That is, some 

vectors will occur more than once and some will be 

absent. At each node of each trained tree, not all the 

variables are used to find the best split, but a random 

subset of them. With each node a new subset is 

generated. [11] 

Learning Models: 

NaiveBayes 

BayesNet 

SMO 

Logistic Regression 

NBTree 

RandomForest 

RandomTree 

SimpleCart 

 

Results:  

Precision 

Recall 

F-measure 

Accuracy 
   Test Set 

All Features Feature 

Selection 

Techniques 

Learning 

Models 

 

Result 

      Test Set 

Features (22)
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7. Random forests: Random forests are learning methods 

for classification that operate by constructing a multitude 

of decision trees at training time. A random forest is a 

classifier consisting of a collection of tree-structured 

classifiers [9].  

4. RESULTS AND ANALYSIS 

               Table 2: Result analysis of CM1 [3] 

Method Precision Recall F-

Measure 

Accuracy 

BayesNet 0.643 0.947 0.766 64.65% 

Naive 

Bayes 

0.910 0.925 0.917 85.34% 

Logistic 

Regression 

0.964 0.909 0.936 88.15% 

NB Tree 0.979 0.899 0.938 88.35% 

Random 

Tree 

0.915 0.911 0.913 84.33% 

Random 

Forest 

0.971 0.902 0.935 87.95% 

The above table shows the results without using any attribute 

selection method. Attribute selection methods are used in 

order to enhance accuracy and prediction performance 

measures. Different classifiers give different results, when 

attribute selection algorithms are applied to the data set, 

following results are obtained. 

                       Table 3: Best results of CM1 

Performance 

Measure 

Method Values Selection 

Criteria 

Precision Simple Cart 1 With 

attribute 

Selection 

Recall SMO, Simple 

Cart 

1 With 

Attribute 

Selection 

F-measure SMO, Simple 

Cart 

0.948 With 

Attribute 

Selection 

Accuracy Logistic 

Regression 

89.558% With 

Attribute 

Selection 
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           Fig 3: Prediction performance measures of CM1 

The above results show that the accuracy of CM1 software 

module can be improved to 89.558% by using attribute 

selection techniques. The prediction performance measures 

have also considerably improved after attribute selection 

method. 

Table 4: Result analysis of JM1 [3] 

Method Precision Recall F-

Measure 

Accuracy 

BayesNet 1.422 0.876 0.780 68% 

Naive 

Bayes 

0.948 0.832 0.886 80.5% 

Logistic 

Regression 

0.980 0.822 0.894 81.35% 

SMO 1 0.808 0.893 80.72% 

Simple Cart 0.977 0.821 0.893 81.11% 

NB Tree 0.978 0.822 0.893 81.27% 

Random 

Tree 

0.848 0.847 0.848 75.47% 

Random 

Forest 

0.948 0.838 0.889 81.05% 
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The table above gives results without attribute selection 

method. Results vary when some attribute selection 

techniques are applied. The table below shows best results 

when attribute selection techniques are applied on the JM1 

software modules.  

                     Table 5: Best results of JM1 

Performance 

Measure 

Method Values Selection 

Criteria 

Precision Bayes Net 1.422 Without 

attribute 

Selection 

Recall SMO 1 With 

Attribute 

Selection 

F-measure Simple Cart 0.895 With 

Attribute 

Selection 

Accuracy Simple Cart, 

SMO 

81.479% With 

Attribute 

Selection 

 

 

     Fig 4: Prediction performance measures of JM1 

 

           

 

 

 

 

 

 

 

 

 

 

                   Table 6: Result analysis of KC1 [3] 

                

The above table shows results without any attribute selection. 

The following table shows the best results obtained after 

applying attribute selection techniques. 

                       Table 7: Best results of KC1 

Performance 

Measure 

Method Values Selection 

Criteria 

Precision SMO 0.996 Without 

attribute 

Selection 

Recall SMO 1 With 

Attribute 

Selection 

F-measure Random Tree 0.924 Without 

Attribute 

Selection 

Accuracy Random 

Forest 

85.917% With 

Attribute 

Selection 

 

 

 

Method Precision Recall F-

Measure 

Accuracy 

BayesNet 0.694 0.931 0.796 69.89% 

Naive 

Bayes 

0.905 0.888 0.896 82.361% 

SMO 0.996 0.849 0.843 84.779% 

Simple Cart 0.973 0.863 0.915 84.732% 

NB Tree 0.971 0.867 0.916 85.01% 

Random 

Tree 

0.913 0.885 0.924 82.693% 
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      Fig 5: Prediction performance measures of KC1 

The results shown above indicate that accuracy and Recall are 

improved by using attribute selection techniques. Accuracy of 

85.917% can be reached with attribute selection machine 

learning techniques. 

                     Table 8: Result analysis of PC1 [3] 

 Method Precision Recall F-

Measure 

Accuracy 

BayesNet 0.759 0.956 0.949 74.391% 

Naive Bayes 0.934 0.947 0.940 89.179% 

Logistic 

Regression 

0.988 0.934 0.960 92.425% 

SMO 0.999 0.930 0.963 92.966% 

Simple Cart 0.996 0.935 0.964 93.237% 

NB Tree 0.984 0.947 0.965 93.507% 

Random 

Tree 

0.950 0.953 0.951 91.073% 

Random 

Forest 

0.985 0.946 0.965 93.507% 

 

The above table gives results of without applying any attribute 

selection algorithms. When attribute selection technique is 

applied the above results vary. The best results after applying 

both the techniques are shown below.  

                             Table 9: Best results of PC1 

 

         Fig 6: Prediction performance measures of PC1 

 

 

 

 

 

 

 

 

 

 

 

 

Performance 

Measure 

Method Values Selection 

Criteria 

Precision SMO 0.999 Without 

attribute 

Selection 

Recall SMO 1 With 

Attribute 

Selection 

F-measure Random 

Forest, 

NBTree 

0.967 With 

Attribute 

Selection 

Accuracy NBTree 93.778% With 

Attribute 

Selection 
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5. CONCLUSION  
An important feature of this study is that it has compared 

results from different machine learning algorithms on 

several data sets. This paper contributes new results to the 

framework of software defect prediction. The software 

prediction performance measures i.e. precision, recall, f-

measure and accuracy are calculated on 4 different 

datasets. These measures have been calculated in two 

ways firstly by considering all the attributes of the dataset 

and secondly by attribute selection techniques. The results 

from these two techniques are compared and the best 

results are taken into consideration for prediction of faulty 

modules. The attribute selection techniques in some cases 

prove to be very efficient and hence improve the 

prediction performance measures.  

In datasets CM1 and KC1 all prediction performance 

measures values have improved after using attribute 

selection techniques. Similarly in dataset JM1 recall, f-

measure and accuracy has improved when attribute 

selection is applied. In PC1 dataset the attribute selection 

techniques give improved values of recall, f-measure and 

accuracy. Hence, by using attribute selection techniques 

the accuracy of software modules can be improved to 

about 93.778%. In this research the attribute selection is 

done by ranking the attributes using machine learning 

methods. The higher ranked attributes are selected for 

calculations. Hence, applying attribute selection 

techniques provided in Weka tool tends to improve the 

prediction performance measures and help in effective 

defect prediction of software modules.  
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