
International Journal of Computer Applications (0975 – 8887)

Volume 74– No.12, July 2013

17

Adaptive Approach of Fault Prediction in Software
Modules by using Discriminative and Generative Model

of Machine Learning

Varneet Kaur
Student

Chitkara University, Himachal Pradesh, India

Amit Arora
Assistant Professor

Chitkara University, Himachal Pradesh, India

ABSTRACT

Software quality assurance is the most important activity

during the development of software. Defective software

modules may increase costs and decrease customer

satisfaction. Hence, effective defect prediction models or

techniques are very important in order to deliver efficient

software. In this research different machine learning

algorithms are used to predict three main prediction

performance measures i.e. precision, recall and f-measure.

The accuracy of the software modules is being calculated.

Different classifiers are also used in order to predict the values

of these measures by using important attributes only. The

results obtained after applying both the techniques i.e.

attribute selection and without attribute selection, on all the

datasets, are then analysed and best predicted results are

chosen in order to predict the correct values of prediction

performance measures. The accuracy of some software

modules can be improved to 91.16%, recall and precision to 1

after using attribute selection techniques in CM1 dataset. In

PC1 dataset the accuracy has been improved to 93.778%.

General Terms

Defect Prediction Models, Faulty Modules, Accuracy, Data

Mining.

Keywords

Defect Prediction Models, Precision, Recall, F-measure,

Classifiers.

1. INTRODUCTION
Software Quality is the most important aspect during and after

the software development. Any defective module in software

may lead to increase in its cost and may cause failures and

results in customer’s dissatisfaction. Delivering a robust,

defect free and efficient software is very important; hence

there is a huge need of efficient defect prediction models or

techniques. There are many modeling techniques that are used

in software quality prediction, namely- Discriminant Analysis,

Logistic Regression, ANN, Bayes Belief Network, Genetic

Algorithms, Classification Trees etc. If a model gives both

high defect detection rate and high overall accuracy then it is

an efficient and effective defect prediction model.

In this paper 4 NASA datasets [10] namely CM1, JM1, KC1

and PC1 are being evaluated. Many machine learning

algorithms available in WEKA are used, in order to predict

modules’ precision, recall, f-measure and accuracy. According

to Tim Menzies and his colleagues, who worked on JM1,

there is a low probability of detecting defective modules [1]

Comparison of many machine learning algorithms on these

datasets, performed by Taghi Khoshftaar and Naeem Seliya

also predicts low prediction performance [2]. Analysis done

by Lan Guo and her colleagues also revealed similar results

but they found that Random Forest technique produces better

prediction results than other algorithms.[3]

In this paper a software prediction methodology is introduced

by using different machine learning algorithms. Results

obtained by considering all the attributes together are

compared with the results obtained by considering attributes

after they are ranked by a Ranker algorithm. Many machine

learning techniques for attribute selection that have been used

in this research are GainRatioAttributeEval,

PrincipalComponents, FilteredAttributeEval and

ReliefAttributeEval. Different classifiers such as NaiveBayes,

BayesNet, SMO, SimpleCart, RandomTree etc. are used in

order to predict values of precision, recall, f-measure and

accuracy.

1.1 Weka

The Weka workbench is a collection of machine learning

algorithms and data preprocessing tools. Weka was developed

at the University of Waikato in New Zealand, and the name

stands for Waikato Environment for Knowledge Analysis. The

system is written in Java and distributed under the terms of

the GNU General Public License. It runs on almost any

platform including Linux, Windows, and Macintosh operating

systems. It includes methods for all the standard data mining

problems: regression, classification, clustering, association

rule mining, and attribute selection. All algorithms take their

input in the form of a single relational table in the ARFF

format, which can be read from a file or generated by a

database query. [7]

2. METHODOLOGY

By using different classifiers and performing cross validation

with 10 folds, calculation of the commonly used prediction

performance measures- Precision, Recall and F-measure, was

done. The 10 folds cross validation method partitions the

dataset into 10 equal portions, this method uses each portion

once as the test set to evaluate the model built using the

remaining nine portions. Results obtained by considering all

the attributes together are compared with the results obtained

by considering attributes after they are ranked by a Ranker

algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.12, July 2013

18

2.1 Precision

It is the ratio of number of modules correctly predicted as

defective to the total number of modules predicted as

defective in the set tp+fp.

Here, tp: number of true positives

fp: number of false positives

fn: number of false negatives

tn: number of true negatives

Precision= tp/(tp + fp) (1)

2.2 Recall

It is the ratio of number of modules predicted correctly as

defective to the total number of defective modules in the set

tp+fn.

Recall=tp/(tp + fn) (2)

2.3 F-Measure

It considers precision and recall equally important by taking

their harmonic mean. The higher value indicates better

prediction performance. [4]

F-measure = 2 * Recall * Precision / (Recall + Precision)

 (3)

Fig1: Flowchart of the steps followed (without attribute

selection)

Fig2: Flowchart of the steps followed (with attribute

selection)

3. DATASET

This research analyzed the CM1, JM1, KC1 and PC1 datasets

of Promise Repository [5], which belong to 4 software

products developed by NASA. In each dataset the graphs of

each attribute were analysed. There are 22 attributes,

mentioned below:

v(G)-Cyclomatic Complexity, ev(G)- Essential Complexity

iv(G)- Design Complexity, LOC- Lines of Code, N- Length

V- Volume, L- Level, D- Difficulty, I- Intelligent Count, E-

Effort, B- Effort Estimate, T- Programming Time, LOCode-

Lines of Code, LOComment- Lines of Comment, LOBlank-

Lines of Blank, LOCodeAndComment- Lines of Code and

Comment, UniqOp- Unique Operators, UniqOpnd- Unique

Operands, TotalOp- Total Operators, TotalOpnd- Total

Operands, BranchCount- Total Branch Count

 Table 1: Datasets Detail

Project No. of

Modules

Percentage

with defects

Language

CM1 496 9.8% C

JM1 10,885 19.3% C

KC1 2,109 15.5% C++

PC1 1,109 6.9% C

3.1 Classifiers Used

1. Bayes Net: It represents the probabilistic dependencies

of variables by graph structure.

2. Naive Bayes: It is a simple probabilistic classifier based

on applying Bayes Theorem with strong independence

assumptions. It assumes that the presence or absence of a

particular feature is unrelated to the presence or absence

of any other feature.

3. SMO: SMO chooses to solve the smallest possible

optimization problem at every step. It gives highest

precision and accuracy table for enemy dataset.[8]

4. Logistic Regression: It is useful to predict a dependent

variable on the basis of independent variables.[6]

5. NBTree: Naive Bayes trees are simply decision trees

with Naive bayes classifiers learned from the instances

that reach the leaves. All attributes are used in each

Naive Bayes model.

6. Random Trees: In Random Trees classification works

as follows: the random trees classifier takes the input

feature vector, classifies it with every tree in the forest,

and outputs the class label that received the majority of

“votes”. In case of a regression, the classifier response is

the average of the responses over all the trees in the

forest. All the trees are trained with the same parameters

but on different training sets. These sets are generated

from the original training set using the bootstrap

procedure: for each training set, you randomly select the

same number of vectors as in the original set. The

vectors are chosen with replacement. That is, some

vectors will occur more than once and some will be

absent. At each node of each trained tree, not all the

variables are used to find the best split, but a random

subset of them. With each node a new subset is

generated. [11]

Learning Models:

NaiveBayes

BayesNet

SMO

Logistic Regression

NBTree

RandomForest

RandomTree

SimpleCart

Results:

Precision

Recall

F-measure

Accuracy
 Test Set

All Features Feature

Selection

Techniques

Learning

Models

Result

 Test Set

Features (22)

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.12, July 2013

19

7. Random forests: Random forests are learning methods

for classification that operate by constructing a multitude

of decision trees at training time. A random forest is a

classifier consisting of a collection of tree-structured

classifiers [9].

4. RESULTS AND ANALYSIS

 Table 2: Result analysis of CM1 [3]

Method Precision Recall F-

Measure

Accuracy

BayesNet 0.643 0.947 0.766 64.65%

Naive

Bayes

0.910 0.925 0.917 85.34%

Logistic

Regression

0.964 0.909 0.936 88.15%

NB Tree 0.979 0.899 0.938 88.35%

Random

Tree

0.915 0.911 0.913 84.33%

Random

Forest

0.971 0.902 0.935 87.95%

The above table shows the results without using any attribute

selection method. Attribute selection methods are used in

order to enhance accuracy and prediction performance

measures. Different classifiers give different results, when

attribute selection algorithms are applied to the data set,

following results are obtained.

 Table 3: Best results of CM1

Performance

Measure

Method Values Selection

Criteria

Precision Simple Cart 1 With

attribute

Selection

Recall SMO, Simple

Cart

1 With

Attribute

Selection

F-measure SMO, Simple

Cart

0.948 With

Attribute

Selection

Accuracy Logistic

Regression

89.558% With

Attribute

Selection

0
0.2
0.4
0.6
0.8

1
1.2

Highest
Precision

Highest
Recall

Highest F-
measure

All Attributes

Attribute
Selection

 Fig 3: Prediction performance measures of CM1

The above results show that the accuracy of CM1 software

module can be improved to 89.558% by using attribute

selection techniques. The prediction performance measures

have also considerably improved after attribute selection

method.

Table 4: Result analysis of JM1 [3]

Method Precision Recall F-

Measure

Accuracy

BayesNet 1.422 0.876 0.780 68%

Naive

Bayes

0.948 0.832 0.886 80.5%

Logistic

Regression

0.980 0.822 0.894 81.35%

SMO 1 0.808 0.893 80.72%

Simple Cart 0.977 0.821 0.893 81.11%

NB Tree 0.978 0.822 0.893 81.27%

Random

Tree

0.848 0.847 0.848 75.47%

Random

Forest

0.948 0.838 0.889 81.05%

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.12, July 2013

20

The table above gives results without attribute selection

method. Results vary when some attribute selection

techniques are applied. The table below shows best results

when attribute selection techniques are applied on the JM1

software modules.

 Table 5: Best results of JM1

Performance

Measure

Method Values Selection

Criteria

Precision Bayes Net 1.422 Without

attribute

Selection

Recall SMO 1 With

Attribute

Selection

F-measure Simple Cart 0.895 With

Attribute

Selection

Accuracy Simple Cart,

SMO

81.479% With

Attribute

Selection

 Fig 4: Prediction performance measures of JM1

 Table 6: Result analysis of KC1 [3]

The above table shows results without any attribute selection.

The following table shows the best results obtained after

applying attribute selection techniques.

 Table 7: Best results of KC1

Performance

Measure

Method Values Selection

Criteria

Precision SMO 0.996 Without

attribute

Selection

Recall SMO 1 With

Attribute

Selection

F-measure Random Tree 0.924 Without

Attribute

Selection

Accuracy Random

Forest

85.917% With

Attribute

Selection

Method Precision Recall F-

Measure

Accuracy

BayesNet 0.694 0.931 0.796 69.89%

Naive

Bayes

0.905 0.888 0.896 82.361%

SMO 0.996 0.849 0.843 84.779%

Simple Cart 0.973 0.863 0.915 84.732%

NB Tree 0.971 0.867 0.916 85.01%

Random

Tree

0.913 0.885 0.924 82.693%

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.12, July 2013

21

 Fig 5: Prediction performance measures of KC1

The results shown above indicate that accuracy and Recall are

improved by using attribute selection techniques. Accuracy of

85.917% can be reached with attribute selection machine

learning techniques.

 Table 8: Result analysis of PC1 [3]

 Method Precision Recall F-

Measure

Accuracy

BayesNet 0.759 0.956 0.949 74.391%

Naive Bayes 0.934 0.947 0.940 89.179%

Logistic

Regression

0.988 0.934 0.960 92.425%

SMO 0.999 0.930 0.963 92.966%

Simple Cart 0.996 0.935 0.964 93.237%

NB Tree 0.984 0.947 0.965 93.507%

Random

Tree

0.950 0.953 0.951 91.073%

Random

Forest

0.985 0.946 0.965 93.507%

The above table gives results of without applying any attribute

selection algorithms. When attribute selection technique is

applied the above results vary. The best results after applying

both the techniques are shown below.

 Table 9: Best results of PC1

 Fig 6: Prediction performance measures of PC1

Performance

Measure

Method Values Selection

Criteria

Precision SMO 0.999 Without

attribute

Selection

Recall SMO 1 With

Attribute

Selection

F-measure Random

Forest,

NBTree

0.967 With

Attribute

Selection

Accuracy NBTree 93.778% With

Attribute

Selection

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.12, July 2013

22

5. CONCLUSION
An important feature of this study is that it has compared

results from different machine learning algorithms on

several data sets. This paper contributes new results to the

framework of software defect prediction. The software

prediction performance measures i.e. precision, recall, f-

measure and accuracy are calculated on 4 different

datasets. These measures have been calculated in two

ways firstly by considering all the attributes of the dataset

and secondly by attribute selection techniques. The results

from these two techniques are compared and the best

results are taken into consideration for prediction of faulty

modules. The attribute selection techniques in some cases

prove to be very efficient and hence improve the

prediction performance measures.

In datasets CM1 and KC1 all prediction performance

measures values have improved after using attribute

selection techniques. Similarly in dataset JM1 recall, f-

measure and accuracy has improved when attribute

selection is applied. In PC1 dataset the attribute selection

techniques give improved values of recall, f-measure and

accuracy. Hence, by using attribute selection techniques

the accuracy of software modules can be improved to

about 93.778%. In this research the attribute selection is

done by ranking the attributes using machine learning

methods. The higher ranked attributes are selected for

calculations. Hence, applying attribute selection

techniques provided in Weka tool tends to improve the

prediction performance measures and help in effective

defect prediction of software modules.

6. REFERENCES
[1] T. Menzies et al., “Mining Repositories to Assist in

Project Planning and Resource Allocation,” Proc.

1st Workshop on Mining Software Repositories

(MSR 04), 2004,

http://msr.uwaterloo.ca/papers/Menzies.pdf.

[2] T.M. Khoshgoftaar and N. Seliya, “The Necessity

ofAssuring Quality in Software Measurement

Data,” Proc. 10th Int’l Symp. Software Metrics

(METRICS 04),IEEE CS Press, 2004, pp. 119–130.

[3] L. Guo et al., “Robust Prediction of Fault Proneness

by Random Forests,” Proc. 15th Int’l Symp.

Software Reliability Eng. (ISSRE 04), IEEE CS

Press, 2004, pp. 417–428.

[4] A.G. Koru and J. Tian, “An Empirical Comparison

and Characterization of High Defect and High

Complexity Modules,” J. Systems and Software,

vol.67, no. 3, 2003, pp. 153–163.

[5] J.S. Shirabad and T.J. Menzies, “The PROMISE

Repository of Software Engineering Databases,”

School of Information Technology and Engineering,

University of Ottawa, Canada, 2005.

[6] Lan Guo, Yan Ma, Bojan Cukic, Harshinder Singh,

“ Robust Prediction of Fault-pronness of Random

Forests”.

[7] Ian H. Witten and Eibe Frank, “Data Mining-

Practical Machine learning Tools and Techniques”,

Second Edition, © 2005 by Elsevier Inc.

[8] Sequential Minimal Optimization: A Fast Algorithm

for Training Support Vector Machines, John C.

Platt, Microsoft Research jplatt@microsoft.com

Technical Report MSR-TR-98-14 April 21, 1998.

[9] http://www.stat.berkeley.edu/users/breiman/Rando

mForests

[10] http://promise.site.uottawa.ca/SERepository/datsaet

s-page.html

[11] http://www.stat.berkeley.edu/users/breiman/Rando

mForests/,http://docs.opencv.org/modules/ml/doc/ra

ndom_trees.html

Varneet Kaur, is a Student, currently pursuing M.E.

from the Computer Science Department, Chitkara

University, Distt. Solan, Himachal Pradesh, under the

guidance of Mr. Amit Arora.

Amit Arora, is Assistant Professor in Computer Science

Department at Chitkara University, Distt. Solan,

Himachal Pradesh.

IJCATM : www.ijcaonline.org

