
International Journal of Computer Applications (0975 – 8887)

Volume 74– No.11, July 2013

13

Performance Evaluations for Parallel Image Filter on
Multi - Core Computer using Java Threads

Devrim Akgün

Computer Engineering of
Technology Faculty,

Duzce University, Duzce,Turkey

ABSTRACT

Developing multi - core computer technology made it

practical to accelerate image processing algorithms via

parallel running threads. In this study, performance

evaluations for parallel image convolution filter on a multi -

core computer using Java thread utilities was presented. For

this purpose, the efficiency of static and the dynamic load

scheduling implementations are investigated on a multi - core

computer with six cores processor. Dynamic load scheduling

overhead results were measured experimentally. Also the

effect of busy running environment on performance which

usually occurs on due to other running processes is illustrated

by experimental measurements. According to performance

results, about 5.7 times acceleration over sequential

implementation was obtained on a six cores computer for

various image sizes

General Terms

Parallel Computing, Image Filtering, Java Threads

Keywords

Parallel image filter, multi - core processing, load scheduling

1. INTRODUCTION
Image filtering based on convolution is one of the widely used

image processing applications that provide a way to

investigate image features. Most of the image filtering

operations such as noise elimination, sharpening, blurring or

edge detection are applied by using convolution operation

[1,2]. Algorithms for these types of filters require

implementation of large loops with multiplication and

summation operations that demands intensive computational

power [3,4,5]. Rapid improvements in multi - core hardware

have led researchers to develop parallel algorithms that

efficiently utilize the computing power [6,7]. Threads which

are also called as lightweight processes can be used to build

parallel applications to utilize the capabilities of multi - core

technology. Threads provide a way to execute tasks

independent from each other. When hardware supports two or

more cores, threads can be executed in parallel for

performance increase [8,9]. Image convolution filtering is one

of the popular image processing algorithms that have

efficiently been implemented in parallel form [10,11,12,13].

Finite Impulse Response - FIR structure enables every filtered

pixel to be computed independent from each other which is

very suitable to implement as data - parallel approach which

gives high performance rates. The input image is usually

divided into determined number of sub - images and then each

part is distributed to cores for filtering. According to type of

the algorithm a number of lines near the edges can be added to

each sub - image or some communication operations can be

performed for handling the edges. Finally the filtered sub -

images are merged to form the filtered image. Dividing and

merging operations may be eliminated by using shared data

structures. However, distributed computing on network may

cause dramatic communication overheads even for handling

edges [10]. On the other hand, single chip multi - core

processors which have shared memory can simply be used

with shared variables. In addition, object oriented languages

make it practical to share variables among threads by using

class field definitions.

Load distribution using static load partitioning is simple as the

parallel loads are determined initially and thereafter remains

unchanged during execution. However, it may results in

irregularities in the execution times due to slow threads. The

adverse effect of slow threads on parallel for loops is usually

compensated by dynamic load scheduling. With this

approach, the loads of threads which are the number of pixels

operations per thread are managed dynamically using shared

data definitions and a synchronized counter. The focus of the

presented study is to investigate the efficiency of the parallel

convolution filter that has a dynamic control structure.

Parallel image filter algorithm was realized using Java

programming language which has built in library to support

multithreaded applications. The experimental results were

obtained on a computer having AMD Phenom II 1055T six

cores processor that has a large L3 cache memory which

increases the performance for shared data. The rest of the

paper is organized as follows; in the following section an

overview of image filtering with convolution is introduced. In

the third section, defining shared and partitioned image data

among thread objects and parallel filtering using static and

dynamic load partitioning was explained. In the fourth section

experimental results for investigating the success of parallel

designs were presented in detail. Performance evaluations

were shown in terms of speedup and parallel efficiency by

comparing with a single core application results.

2. AN OVERVIEW OF CONVOLUTION

FILTER
Convolution is one of the basic mathematical operations that

can be performed on images for filtering. Although it has a

simple structure, it is extremely useful in extracting desired

image characteristics. Most of the image processing

applications such as noise elimination or edge detection

involve realizing two dimensional convolution operations.

Image convolution can be carried out by convolving the input

image with a specified set of weights to produce the filtered

image. Mathematical definition of the convolution in the

discrete domain which represents the input-output relationship

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.11, July 2013

14

(b) (a)

…

…

…

Thread

1

input
image
data 1

output
image
data 1

shared input image data

shared output image

data

Thread

1
Thread

2
… Thread

N
Thread

2

input
image
data 2

output
image
data 2

Thread

1

input
image
data 1

output
image
data 1

of a linear image filter is usually described by Equation (1)

[14].





M

Mq

lk

M

Mp

qnpmxwnmy),(),(,
 (1)

Where w a matrix of the size of M representing the filter

weights and x is the 2D input signal representing the image.

This operation involves moving a filter mask on the image to

calculate filtered pixels. The coefficients of the window

determine the characteristics of filter. A pictorial description

of the convolution operation is shown in Figure 1. The filter

mask is centered at a pixel to be filtered and then

corresponding pixels to mask are multiplied by mask

coefficients and then results are summed together to calculate

the filtered pixel. This operation is repeated for all the pixels

of the image to obtain filtered image.

Fig 1: Image filtering with convolution operation

3. DESIGN CONSIDERATIONS

3.1 Parallel Programming Approach

FIR structure of the filter described above enables each pixel

to be computed independently. This enables the algorithm to

be implemented in the data parallel way which is very

efficient for high performance computing [15]. A number of

pixels can be computed concurrently using the same number

of cores on a multi - core system. According to static

partitioning, all the pixels are allocated to cores for processing

by dividing the image into regions. An example

implementation for three - core case is shown in Figure 2. It is

important for performance increase that all cores be utilized at

the same time. If the sub images are edge padded no

synchronization communication among threads during

execution is needed. Only barrier synchronization is used to

detect whether threads completed their tasks. This helps an

effective utilization of cores by means of parallelism and

linear performance increase according to number of cores can

be obtained. The object oriented programming technique

provides an efficient way to use multi - core system utilities

by using thread objects for the realization of the parallel

algorithms. Java has built in libraries to support multithreaded

programming via java.lang.Thread class or

java.lang.Runnable interface [8,9]. Figure 3 shows a

simplified pictorial description of the parallel image filter.

Parallel part of the algorithm involves instantiation of threads

by the same time and finalizing them using barrier

synchronization. Each of the threads is assigned to execute its

own convolution filter on the allocated regions of the image.

The regions are usually selected to be equal to provide equal

distribution of load to threads.

Fig 2: Example parallel image filtering using 3-core

The number of thread objects should be limited to number of

cores for performance increase. Hence the size of the thread

array is selected as equal as or smaller than the number of

core except hyper threading support. After initialization the

following step is to start threads by the same time. It was

realized by calling start() methods of each thread in the array

by using a loop. Once the threads were launched using the

start() methods of each thread objects, the main thread waits

for parallel threads to finish their task. Barrier synchronization

is realized by the join() method of each thread. Both the

start() and join() methods are inherited from the Thread class.

Fig 3: Block diagram for parallel image filter

3.2 Processing Image Using Shared and

Partitioned Data Structures

Efficient performance increase for parallel algorithm is

ensured by an equal distribution of computational loads to the

cores. For this purpose, the image is usually divided into

smaller sub - images and then these are distributed to the

cores for data parallel processing [11,12]. If the parallel

hardware is a single chip multi - core computer, image data

can be used as shared data among parallel running threads.

Fig4: Partitioning as a) object field b) class field

In object oriented programming, image data can be defined as

an object field or a class field which corresponds to shared

and partitioned implementations respectively. Declaring the

Input Image

Output Image

23 12 00 13 01 14 02

22 10 23 11 24 12

32 20 33 21 34 22

Y X W X W X W

X W X W X W

X W X W X W

  

  

  

Filter
Mask

Original Image

Edge padding

Convolution

Filtered Image

Thread 2
Convolution

Thread N
Convolution

Barrier Synchronization

 …

Allocation of the regions to threads

Thread 1
Convolution

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.11, July 2013

15

Start Finish

Thread 1

Thread 2

Thread 3

Idle

Busy

Delay
Time

image data as class field using static keyword, all thread

objects can access any pixel during filtering. Both cases are

illustrated in Figure 4 where Figure 4a shows partitioned

approach and Figure 4b shows shared approach. Load

distribution for above approaches can be done in several

ways. Example distribution operations for the 10 × 10 image

are shown in Figure 5a and 5b. Both design approaches can be

used with shared and partitioned approaches. Because of the

nature of the convolution filter given by Equation 1, it is

important for the partitioned approach to keep the allocated

pixels neighboring each other.

Fig 5: Example static partition organizations for three

parallel threads (a) Striped approach (b) Mixed approach

The other design given in Figure 5b can also be used with

partitioned approach providing the whole image data with

each thread, since neighbor pixels are needed to determine

filtered pixel. However it multiplies the memory utilization by

the number of parallel thread which is not practical to

implement. In view of the shared approach, both design styles

can be efficiently realized and threads run on the same input

and output image data without splitting. On the other hand the

design given in Figure 5b also eliminates the operation for

determining region coordinates. Algorithms given in Figure

6a and 6b show basic implementation codes for striped and

mixed methods respectively.

Fig 6: a) Striped approach b) Mixed approach

The striped approach as shown Figure 6a requires additional

definitions for starting coordinates for a region and load per

thread which specifies the number of pixels operations. A

counter is defined to help break the operation when the thread

achieved its allocated task. The mixed approach given in

Figure 6b is simpler to implement. Start coordinates are

determined according to thread id and are increased by the

steps determined according to the number of threads. The

method filterPixel() defines the convolution filtering

operations according to specified filter weights. It accepts the

pixel at (x,y) coordinates from the input image applies the

convolution filter and returns the filtered pixel.

3.3 Implementation with Dynamic Load

Scheduling

The efficiency of the parallel algorithm strictly depends on

execution times of parallel running threads where the

computational load is distributed. It is necessary for

performance increase to start all threads by the same time for

parallel run and that to terminate all threads by the same.

However, context switches in some cores may occur during

the execution of threads due to other running processes. These

types of interferences usually delay the execution of some

threads which in consequence delay the whole process. Figure

7 shows an illustrating example for fixed load approach using

three parallel running threads with some delays. These delays

cause deteriorations in the overall performance of parallel

algorithm.

Fig 7: An illustration for thread delays for three parallel

running threads

A control mechanism can be used to utilize the faster threads

to compensate thread delays by assigning more loads. For this

purpose, a self-scheduling parallelism where a shared variable

as a counter for organizing the loads of threads can be used

during running [16,17]. According to this approach, each

thread increases the counter and uses the increased value for

determining the start coordinates to continue filtering.

Because the counter is defined as synchronized it can only be

increased by a unique thread at a time. Therefore filtering the

same region more than one thread is prevented. The period of

increasing the counter for task demand can be varied from one

pixel to a number of pixels filtering operations. As will be

discussed in the experimental results keeping the period of

control tight may result in overhead as will be discussed in

experimental results. Figure 8a and 8b show the example

distributions of pixels for 10×10 image using three threads.

Figure 8a shows the case where uniform distribution of load

to cores is fully satisfied. The non - uniform distribution is

illusrated in Figure 8b where a period utilizes a two core for

example.

Fig 8: Example distributions for three thread executions a)

uniform b) non-uniform

The algorithm using dynamic load scheduling for the class

where the parallel running objects instantiated was simply

implemented using the pseudo code given by the Figure 9.

Dynamic control of the loads of the threads is realized by a

synchronized method which is used to increase a static class

field as counter. When a thread finishes its running period, it

tries to increase the counter to determine new working

coordinates. During an increase, the counter is locked and

other threads wait till it is released. Following the counter

increase, the variable can be accessed from other threads.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.11, July 2013

16

These operations continue till synchronized counter reach its

max value.

Fig 9: Pseudo code for dynamic load scheduling

4. EXPERIMENTAL RESULTS
In this section, comparative experimental results to show the

efficiency of presented approaches were investigated.

Because, the focus of the paper is the implementation of the

parallel processing algorithm on a single - chip multi - core

computer for practical purposes, the experimental results were

obtained a desktop computer which has a six core CPU. The

model of the processor used to obtain experimental results is

AMD Phenom II 1055T which has 128 KB L1 and 512KB L2

cache memory per core and 6MB L3 cache memory. The

results were obtained on Windows 7 operation system where

Java version 1.7.0_03. Image read/write operations in this

study was realized by BufferedImage class which is included

in a foundation package called java.awt.image. For higher

speed, complete image is read as an array instead of calling

getRGB method during filtering for reading image pixels.

4.1 Comparison of the shared and

partitioned approaches
In this experiment performance of the parallel algorithm was

evaluated in view of the two design approaches where the

image is defined as shared and partitioned data types.

Comparative results given by the Table 1 show that shared

and partitioned approaches give the same execution times of

individual threads. Because all cores access the memory using

the same hardware utilities, shared approach provides a

similar performance while eliminating the additional cost of

dividing image data into the number of parallel threads.

Table 1. Example measurements in milliseconds (Image

size: 1800 × 1800, filter size: 3 × 3)

 Shared Partitioned

Threads Run 1 Run 2 Run 3 Run 1 Run 2 Run 3

Thread 1 37.65 37.97 38.19 37.59 37.63 38.55

Thread 2 38.47 38.62 38.72 37.76 38.35 37.86

Thread 3 37.62 37.59 37.66 37.42 38.54 38.23

Thread 4 38.51 38.64 38.65 37.99 37.86 38.34

Thread 5 38.61 38.62 38.31 38.49 37.56 38.26

Thread 6 38.68 38.85 38.70 38.24 38.43 37.75

4.2 Comparison of the fixed load and

dynamic load scheduling approaches
The experimental results obtained above either shared or

partitioned approaches use fixed load assignment to threads.

However, when one or more core isn’t available due to

context switches, threads may not finish their task by the same

time and therefore differences in the times may occur.

Because of the fork - join structure, a delay in a thread also

delays the whole process. A more efficient approach for

coping with duration irregularities can be implemented by

using shared approach. While partitioned approach provides

higher data locality, share approach takes the advantage of

large L3 cache memory. For this purpose, a synchronized

counter to keep track of the block operations for dynamic load

scheduling can be used, as discussed previously. Because all

of the threads try to access the same variable for determining

filtering coordinate, frequent accesses may results in

significant overheads during running. On the other hand, the

overhead may be reduced by keeping the chunk sizes over

some specified number of pixels operations. Before

experiments for testing the effect of chunk size, the overhead

time in parallel run can be measured by the Equation (2) [18].

p

nT
pnTpnTo

)1,(
),(),( (2)

Where T(n,p) shows execution time of a parallel algorithm,

T(n,1) shows execution time for single core implementation, n

is the load and p is the number of processors. In practice

T(n,1) determined approximately from example runs. In order

to measure the efficiency of the dynamic load scheduling

approach to fixed one Equation 2 can be reorganized as in

Equation 3.

),(),,(),,(pnTipnTipnT fixeddynamico 

(3)

Where Tdynamic(n,p,i) shows the time of dynamic algorithm,

Tfixed(n,p,i) shows the time of fixed algorithm and i shows the

number of pixels operations per block or in other words chunk

size. Overhead measurement for dynamic algorithm relative to

fixed algorithm can simply be expressed in terms of percent

ratio as in Equation 4,

(, ,)
% 100

(,)

o
o

fixed

T n p i
T

T n p
  (4)

Experimental results to measure overhead percent versus the

chunk size were measured as given by Table 3 for a

1200×1200 image using 3×3 filter mask. Load per thread

represents number of pixels operations per thread. Control

period shows the parameter, after how many number of pixels

operation the synchronized counter will be increased to

determine new running coordinates. The results show that

smaller control period raises the overhead at serious levels.

After about 100 pixels of control period the overhead falls to

reasonable levels. The results become closer to fixed approach

after about 100 pixels. However, as the number of pixels

operation within a block size is increased, it becomes more

sensitive to delays caused by other applications. Therefore it

is desired to keep the control period at minimum level for

preventing load imbalance. Example execution times for

threads versus fixed load and dynamic load scheduling were

presented in Figure 11. During experiments, some of the cores

are made almost completely busy to see its effect on the

performance of the parallel algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.11, July 2013

17

Fig 10: Experimental results for approximate To%

(1200×1200 mask size 3 × 3)

Fig 11: Example threads activations during dynamic load

scheduling (Image size: 1200 × 1200, filter size: 3 × 3,

chunk size: 1000 pixels)

According to example consecutive runs, fixed load show

serious fluctuations in the running times when compared to

dynamic load scheduling. Figure 11a and 11b shows the

example results for no core busy and one core busy cases

respectively. While, in the first case small differences

occurred in the running times, for the other cases running

times are increased to about two times. The execution times

obtained by dynamic load scheduling significantly low for no

core busy and one core busy cases as shown in Figure 11d,

11e and 11f respectively. Therefore idle durations of the

threads that finish their tasks in advance were utilized to

compensate the delays in other threads by means of dynamic

load scheduling approach. Figure 12 shows random execution

results under variable conditions where some of the cores

were made artificially almost half busy by setting about 5 ms

busy and 5 ms idle actions. Figure 12a and 12b shows the

execution times of the algorithm under busy conditions.

According to results, considerable reductions when compared

to fixed load implementation were achieved. Thread loads

which show their activation in the process were presented in

Figure 13. The number of pixels operation per thread is close

to each other as shown in Figure 13a and 13b for fixed and

dynamic methods respectively. For this experiment, there is

no artificially busy core during running. Figure 13c and 13d

show the example results where one of the cores was made

artificially busy using fixed and dynamic methods

respectively. The thread activations for fixed method show

that one of the threads didn’t process any pixel of the image

during processing. This increases the execution duration by

two fold. This is eliminated in dynamic method by

distributing the load during runtime.

Fig 12: Example test results for artificially busy cases

(image: 1800 × 1800, filter: 3 × 3, chunk size: 1000 pixels)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

25 50 100 250 500 1000

To
%

Chunk size (Number of pixels)

2 Thread

4 Thread

6 Thread

0

100000

200000

300000

400000

500000

600000

700000

Run1 Run2 Run3 Run4

P
ix

e
ls

 O
p

e
ra

ti
o

n
s

p
e

r
Th

re
ad

Number of Runs

a) No core artificially busy

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

0

100000

200000

300000

400000

500000

600000

700000

Run1 Run2 Run3 Run4P
ix

e
ls

 O
p

e
ra

ti
o

n
s

p
e

r
Th

re
ad

Number of Runs

b) One core artificially busy

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

37

37.5

38

38.5

39

39.5

40

40.5

41

1 3 5 7 9 11 13 15 17 19

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Number of Run

a) Execution times for no core busy case

Fixed

Dynamic

0

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19

Ex
e

cu
ti

o
n

 t
im

e
 (

m
s)

Number of Run

b) Execution times for one core busy case (total ~17%)

Fixed

Dynamic

0 5 10 15 20 25 30 35 40 45

Run1

Run2

Run3

Run4

Running Time (ms)

N
u

m
b

e
r

o
f

R
u

n
s

a) Fixed load: No core artificially busy

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

0 5 10 15 20 25 30 35 40 45

Run1

Run2

Run3

Run4

Execution Time (ms)

N
u

m
b

e
r

o
f

R
u

n
s

b) Dynamic Load: No core artificially busy

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.11, July 2013

18

Fig 13: Running times for example cases. (Image

size:1200×1200, filter size: 3×3, chunk size: 500 pixels)

4.3 Speed - up and parallel efficiency
In this experiment, it was shown how the number of processor

affects the performance. The success of the parallel algorithm

was evaluated by comparing it to single core application.

Measurement of the performance is usually calculated by

using “Speedup” value referring to how many times the

algorithm runs faster than the sequential one [18]. Speedup is

determined by dividing the execution time of the single - core

application to multi - core application as given by Equation 5.

(,1)

(,)

T n
Speedup =

T n p

 (5)

In another criterion called “Parallel Efficiency”, the number of

cores used in execution is also incorporated. It reveals the

contribution of a core to the performance of parallel

algorithm. It is calculated by dividing the speedup to the

number of cores as given by Equation 6. The resulting value

varies between 0-1 where 1 shows full efficiency of the

parallel running cores.

p

Speedup
fficiency=Parallel E (6)

Experimental results that measuring the speed up and parallel

efficiency of the parallel image filter are given in Figure 14a

and 14b respectively. Speed up versus the number of threads

show good performance results. However, as the number of

threads is increased, performance characteristics deviate from

linearity. The same behavior was also observed in the parallel

efficiency evaluations. It can also be concluded that

increasing the image size has the improving effect on the

parallel performance as the number of pixels operation is

increased per core.

Fig 14: a) Speedup and b) Parallel efficiency results

(image size: 1200 × 1200, filter size: 3 × 3, chunk size: 1000

pixels)

5. CONCLUSIONS
Support for multithreading application in Java, enables an

efficient and practical way to implement image convolution

filter without additional libraries. According to experiments,

the success of the shared image and partitioned image data

approaches were close to each other. Shared definition of

image data considerably simplifies the parallel algorithm by

eliminating the splitting operations, merging and image

padding of sub images. Shared approach provides the threads

with the freedom of processing any pixels of the input image.

This property was shown to simplify implementing a control

mechanism for the dynamic load scheduling of the threads.

Comparisons between fixed and dynamic load scheduling

approaches showed that the irregularities in the running times

of parallel threads were reduced by a simple dynamic control.

Although, check intervals for load scheduling should be

selected to over a certain number of pixels operations, for

tested values satisfying results were observed. The results

show that good speed up and parallel efficiency can be

obtained practically on widely used multicore computers and

Java platform.

0 10 20 30 40 50 60 70 80

Run1

Run2

Run3

Run4

Running Time (ms)

N
u

m
b

e
r

o
f

R
u

n
s

c) Fixed load: 1 core artificially busy

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

0 10 20 30 40 50 60 70 80

Run1

Run2

Run3

Run4

Execution Time (ms)

N
u

m
b

e
r

o
f

R
u

n
s

d) Dynamic Load: 1 core artificially busy

Thread 6

Thread 5

Thread 4

Thread 3

Thread 2

Thread 1

1 2 3 4 5 6

2

4

6

Speep Up

N
u

m
b

e
r

o
f

Th
re

ad
s

(a) Speep Up versus the number of threads

2500x2500

1800x1800

1200x1200

600x600

0.8 0.85 0.9 0.95 1

2

4

6

Parallel Efficiency

N
u

m
b

e
r

o
f

Th
re

ad
s

(b) Parallel Efficiency versus the number of threads

2500x2500

1800x1800

1200x1200

600x600

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.11, July 2013

19

6. REFERENCES
[1] M.Kutila, J.,Viitanen, “Parallel Image Compression and

Analysis with Wavelets”, International Journal of Signal

Processing, Vol. 1, pp. 65–68, 2004

[2] T.Bräunl, “Tutorial in Data Parallel Image Processing”,

Australian Journal of Intelligent Information Processing

Systems , Vol. 6, pp. 164–174, 2001

[3] J. Kepner, “A Multi-Threaded Fast Convolver for

Dynamically Parallel Image filtering”, Journal of Parallel

and Distributed Computing, Vol.63, pp. 360–372,2003

[4] G. Damiand, D.Coeurjolly, “A Generic and Parallel

Algorithm for 2D Digital Curve Polygonal

Approximation”, Journal of Real-Time Image Proc, Vol.

6, pp.145–157, 2011

[5] P. Frost Gorder, “Multicore Processors for Science and

Engineering”, IEEE Computing in Science &

Engineering, Vol.9, pp. 3-7,2007

[6] G. Andrews, Foundations of Multithreaded, Parallel, and

Distributed Programming, Addison-Wesley, 2000

[7] F.Warg, P.Stenstrom, “Dual-thread Speculation: A

Simple Approach to Uncover Thread-level Parallelism

on a Simultaneous Multithreaded Processor”,

International Journal of Parallel Programming, Vol.36,

pp.166–183,2008

[8] B. Sanden, “Coping with Java threads”, IEEE Computer,

Vol. 37, pp. 20-27,2004

[9] D. Lea, Concurrent Programming in Java: Design

Principles and Patterns, Addison-Wesley, 1997

[10] S. Yu, M. Clement, Q. Snell, B. Morse, “Parallel

algorithms for image convolution”, Proceedings of the

International Conference on Parallel and Distributed

Techniques and Applications, Las Vegas, Nevada, 1998

[11] A. S. Grimshaw, W. T. Strayer, P. Narayan, “Dynamic,

Object-Oriented Parallel Processing”, IEEE Parallel and

Distributed Technology: Systems and Applications, Vol.

1, pp. 33–47,1993

[12] J. F. Karpovich, M. Judd, W. T. Strayer, A. S.

Grimshaw, “A Parallel Object-Oriented Framework for

Stencil Algorithms”, IEEE International Symposium on

High Performance Distributed Computing, pp. 34-

41,1993

[13] S.Nakariyakul, “Fast spatial averaging: an efficient

algorithm for 2D mean filtering”, The Journal of

Supercomputing, DOI: 10.1007/s11227-011-0638-9,

Online, 2011

[14] R. C. Gonzalez, R. E. Woods, Digital Image Processing,

Prentice Hall, 2008

[15] W. D. Hillis , G. L. Steele, “Data Parallel Algorithms”,

Communications of the ACM, Vol.29,pp.1170-1183,

1986

[16] K. K. Yue, D. J. Lilja, “Parallel Loop Scheduling for

High-Performance Computers”, High-Performance

Parallel Computing Research Group Technical Report

No. HPPC-94-13, 1994

[17] Z.Fang, P. Tang, P.C. Yew, C. Q. Zhu, “Dynamic

processor self-scheduling for general parallel nested

loops”, Vol. 39, pp. 919 – 929,1990

[18] Z. Juhasz, “An Analytical Method for Predicting the

Performance of Parallel Image Processing Operations”,

The Journal of Supercomputing,

Vol.12, pp.157-174, 1998

IJCATM : www.ijcaonline.org

