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ABSTRACT 

Developing multi - core computer technology made it 

practical to accelerate image processing algorithms via 

parallel running threads. In this study, performance 

evaluations for parallel image convolution filter on a multi - 

core computer using Java thread utilities was presented. For 

this purpose, the efficiency of static and the dynamic load 

scheduling implementations are investigated on a multi - core 

computer with six cores processor. Dynamic load scheduling 

overhead results were measured experimentally. Also the 

effect of busy running environment on performance which 

usually occurs on due to other running processes is illustrated 

by experimental measurements. According to performance 

results, about 5.7 times acceleration over sequential 

implementation was obtained on a six cores computer for 

various image sizes 
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1. INTRODUCTION 
Image filtering based on convolution is one of the widely used 

image processing applications that provide a way to 

investigate image features. Most of the image filtering 

operations such as noise elimination, sharpening, blurring or 

edge detection are applied by using convolution operation 

[1,2]. Algorithms for these types of filters require 

implementation of large loops with multiplication and 

summation operations that demands intensive computational 

power [3,4,5]. Rapid improvements in multi - core hardware 

have led researchers to develop parallel algorithms that 

efficiently utilize the computing power [6,7]. Threads which 

are also called as lightweight processes can be used to build 

parallel applications to utilize the capabilities of multi - core 

technology. Threads provide a way to execute tasks 

independent from each other. When hardware supports two or 

more cores, threads can be executed in parallel for 

performance increase [8,9]. Image convolution filtering is one 

of the popular image processing algorithms that have 

efficiently been implemented in parallel form [10,11,12,13]. 

Finite Impulse Response - FIR structure enables every filtered 

pixel to be computed independent from each other which is 

very suitable to implement as data - parallel approach which 

gives high performance rates.  The input image is usually 

divided into determined number of sub - images and then each 

part is distributed to cores for filtering. According to type of 

the algorithm a number of lines near the edges can be added to 

each sub - image or some communication operations can be 

performed for handling the edges. Finally the filtered sub - 

images are merged to form the filtered image. Dividing and 

merging operations may be eliminated by using shared data 

structures. However, distributed computing on network may 

cause dramatic communication overheads even for handling 

edges [10]. On the other hand, single chip multi - core 

processors which have shared memory can simply be used 

with shared variables. In addition, object oriented languages 

make it practical to share variables among threads by using 

class field definitions. 

Load distribution using static load partitioning is simple as the 

parallel loads are determined initially and thereafter remains 

unchanged during execution. However, it may results in 

irregularities in the execution times due to slow threads. The 

adverse effect of slow threads on parallel for loops is usually 

compensated by dynamic load scheduling. With this 

approach, the loads of threads which are the number of pixels 

operations per thread are managed dynamically using shared 

data definitions and a synchronized counter. The focus of the 

presented study is to investigate the efficiency of the parallel 

convolution filter that has a dynamic control structure. 

Parallel image filter algorithm was realized using Java 

programming language which has built in library to support 

multithreaded applications. The experimental results were 

obtained on a computer having AMD Phenom II 1055T six 

cores processor that has a large L3 cache memory which 

increases the performance for shared data.  The rest of the 

paper is organized as follows; in the following section an 

overview of image filtering with convolution is introduced. In 

the third section, defining shared and partitioned image data 

among thread objects and parallel filtering using static and 

dynamic load partitioning was explained. In the fourth section 

experimental results for investigating the success of parallel 

designs were presented in detail. Performance evaluations 

were shown in terms of speedup and parallel efficiency by 

comparing with a single core application results. 

2. AN OVERVIEW OF CONVOLUTION 

FILTER 
Convolution is one of the basic mathematical operations that 

can be performed on images for filtering.  Although it has a 

simple structure, it is extremely useful in extracting desired 

image characteristics. Most of the image processing 

applications such as noise elimination or edge detection 

involve realizing two dimensional convolution operations. 

Image convolution can be carried out by convolving the input 

image with a specified set of weights to produce the filtered 

image. Mathematical definition of the convolution in the 

discrete domain which represents the input-output relationship 
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of a linear image filter is usually described by Equation (1) 

[14]. 
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Where w a matrix of the size of M representing the filter 

weights and x is the 2D input signal representing the image. 

This operation involves moving a filter mask on the image to 

calculate filtered pixels. The coefficients of the window 

determine the characteristics of filter. A pictorial description 

of the convolution operation is shown in Figure 1. The filter 

mask is centered at a pixel to be filtered and then 

corresponding pixels to mask are multiplied by mask 

coefficients and then results are summed together to calculate 

the filtered pixel. This operation is repeated for all the pixels 

of the image to obtain filtered image. 

 
Fig 1: Image filtering with convolution operation 

3. DESIGN CONSIDERATIONS 

3.1 Parallel Programming Approach 

FIR structure of the filter described above enables each pixel 

to be computed independently. This enables the algorithm to 

be implemented in the data parallel way which is very 

efficient for high performance computing [15]. A number of 

pixels can be computed concurrently using the same number 

of cores on a multi - core system. According to static 

partitioning, all the pixels are allocated to cores for processing 

by dividing the image into regions. An example 

implementation for three - core case is shown in Figure 2. It is 

important for performance increase that all cores be utilized at 

the same time. If the sub images are edge padded no 

synchronization communication among threads during 

execution is needed. Only barrier synchronization is used to 

detect whether threads completed their tasks. This helps an 

effective utilization of cores by means of parallelism and 

linear performance increase according to number of cores can 

be obtained. The object oriented programming technique 

provides an efficient way to use multi - core system utilities 

by using thread objects for the realization of the parallel 

algorithms. Java has built in libraries to support multithreaded 

programming via java.lang.Thread class or 

java.lang.Runnable interface [8,9]. Figure 3 shows a 

simplified pictorial description of the parallel image filter. 

Parallel part of the algorithm involves instantiation of threads 

by the same time and finalizing them using barrier 

synchronization. Each of the threads is assigned to execute its 

own convolution filter on the allocated regions of the image. 

The regions are usually selected to be equal to provide equal 

distribution of load to threads. 

Fig 2: Example parallel image filtering using 3-core 

The number of thread objects should be limited to number of 

cores for performance increase. Hence the size of the thread 

array is selected as equal as or smaller than the number of 

core except hyper threading support. After initialization the 

following step is to start threads by the same time. It was 

realized by calling start() methods of each thread in the array 

by using a loop. Once the threads were launched using the 

start() methods of each thread objects, the main thread waits 

for parallel threads to finish their task. Barrier synchronization 

is realized by the join() method of each thread. Both the 

start() and join() methods are inherited from the Thread class. 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig 3: Block diagram for parallel image filter 

3.2 Processing Image Using Shared and 

Partitioned Data Structures 

Efficient performance increase for parallel algorithm is 

ensured by an equal distribution of computational loads to the 

cores. For this purpose, the image is usually divided into 

smaller sub - images and then these are distributed to the 

cores for data parallel processing [11,12]. If the parallel 

hardware is a single chip multi - core computer, image data 

can be used as shared data among parallel running threads. 

 

Fig4: Partitioning as a) object field b) class field 

In object oriented programming, image data can be defined as 

an object field or a class field which corresponds to shared 

and partitioned implementations respectively. Declaring the 

Input Image 

Output Image 

23 12 00 13 01 14 02

22 10 23 11 24 12

32 20 33 21 34 22

Y X W X W X W

X W X W X W

X W X W X W

  

  

  

Filter  
Mask 

Original Image 

Edge padding 
 

Convolution 

 

Filtered Image 

Thread 2 
Convolution 

Thread N 
Convolution 

Barrier Synchronization 

  … 

Allocation of the regions to threads 

Thread 1 
Convolution 



International Journal of Computer Applications (0975 – 8887)  

Volume 74– No.11, July 2013 

15 

Start  Finish 

Thread 1 

Thread 2 

Thread 3 

Idle  

Busy  

Delay  
Time  

image data as class field using static keyword, all thread 

objects can access any pixel during filtering. Both cases are 

illustrated in Figure 4 where Figure 4a shows partitioned 

approach and Figure 4b shows shared approach. Load 

distribution for above approaches can be done in several 

ways. Example distribution operations for the 10 × 10 image 

are shown in Figure 5a and 5b. Both design approaches can be 

used with shared and partitioned approaches. Because of the 

nature of the convolution filter given by Equation 1, it is 

important for the partitioned approach to keep the allocated 

pixels neighboring each other.  

 
Fig 5: Example static partition organizations for three 

parallel threads (a) Striped approach (b) Mixed approach 

The other design given in Figure 5b can also be used with 

partitioned approach providing the whole image data with 

each thread, since neighbor pixels are needed to determine 

filtered pixel. However it multiplies the memory utilization by 

the number of parallel thread which is not practical to 

implement. In view of the shared approach, both design styles 

can be efficiently realized and threads run on the same input 

and output image data without splitting. On the other hand the 

design given in Figure 5b also eliminates the operation for 

determining region coordinates. Algorithms given in Figure 

6a and 6b show basic implementation codes for striped and 

mixed methods respectively.  

 

 
Fig 6: a) Striped approach b) Mixed approach 

The striped approach as shown Figure 6a requires additional 

definitions for starting coordinates for a region and load per 

thread which specifies the number of pixels operations. A 

counter is defined to help break the operation when the thread 

achieved its allocated task. The mixed approach given in 

Figure 6b is simpler to implement. Start coordinates are 

determined according to thread id and are increased by the 

steps determined according to the number of threads. The 

method filterPixel() defines the convolution filtering 

operations according to specified filter weights. It accepts the 

pixel at (x,y) coordinates from the input image applies the 

convolution filter and returns the filtered pixel. 

3.3 Implementation with Dynamic Load 

Scheduling 

The efficiency of the parallel algorithm strictly depends on 

execution times of parallel running threads where the 

computational load is distributed. It is necessary for 

performance increase to start all threads by the same time for 

parallel run and that to terminate all threads by the same. 

However, context switches in some cores may occur during 

the execution of threads due to other running processes. These 

types of interferences usually delay the execution of some 

threads which in consequence delay the whole process. Figure 

7 shows an illustrating example for fixed load approach using 

three parallel running threads with some delays. These delays 

cause deteriorations in the overall performance of parallel 

algorithm. 

 

 

 

 
 

 

Fig 7: An illustration for thread delays for three parallel 

running threads 

A control mechanism can be used to utilize the faster threads 

to compensate thread delays by assigning more loads. For this 

purpose, a self-scheduling parallelism where a shared variable 

as a counter for organizing the loads of threads can be used 

during running [16,17]. According to this approach, each 

thread increases the counter and uses the increased value for 

determining the start coordinates to continue filtering. 

Because the counter is defined as synchronized it can only be 

increased by a unique thread at a time. Therefore filtering the 

same region more than one thread is prevented. The period of 

increasing the counter for task demand can be varied from one 

pixel to a number of pixels filtering operations. As will be 

discussed in the experimental results keeping the period of 

control tight may result in overhead as will be discussed in 

experimental results. Figure 8a and 8b show the example 

distributions of pixels for 10×10 image using three threads. 

Figure 8a shows the case where uniform distribution of load 

to cores is fully satisfied. The non - uniform distribution is 

illusrated in Figure 8b where a period utilizes a two core for 

example.  

 

Fig 8: Example distributions for three thread executions a) 

uniform b) non-uniform 

The algorithm using dynamic load scheduling for the class 

where the parallel running objects instantiated was simply 

implemented using the pseudo code given by the Figure 9. 

Dynamic control of the loads of the threads is realized by a 

synchronized method which is used to increase a static class 

field as counter. When a thread finishes its running period, it 

tries to increase the counter to determine new working 

coordinates. During an increase, the counter is locked and 

other threads wait till it is released. Following the counter 

increase, the variable can be accessed from other threads. 
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These operations continue till synchronized counter reach its 

max value. 

 
Fig 9: Pseudo code for dynamic load scheduling 

4. EXPERIMENTAL RESULTS 
In this section, comparative experimental results to show the 

efficiency of presented approaches were investigated. 

Because, the focus of the paper is the implementation of the 

parallel processing algorithm on a single - chip multi - core 

computer for practical purposes, the experimental results were 

obtained a desktop computer which has a six core CPU. The 

model of the processor used to obtain experimental results is 

AMD Phenom II 1055T which has 128 KB L1 and 512KB L2 

cache memory per core and 6MB L3 cache memory. The 

results were obtained on Windows 7 operation system where 

Java version 1.7.0_03. Image read/write operations in this 

study was realized by BufferedImage class which is included 

in a foundation package called java.awt.image. For higher 

speed, complete image is read as an array instead of calling 

getRGB method during filtering for reading image pixels. 

4.1  Comparison of the shared and 

partitioned approaches 
In this experiment performance of the parallel algorithm was 

evaluated in view of the two design approaches where the 

image is defined as shared and partitioned data types.  

Comparative results given by the Table 1 show that shared 

and partitioned approaches give the same execution times of 

individual threads. Because all cores access the memory using 

the same hardware utilities, shared approach provides a 

similar performance while eliminating the additional cost of 

dividing image data into the number of parallel threads. 

Table 1. Example measurements in milliseconds (Image 

size: 1800 × 1800, filter size: 3 × 3) 

 Shared Partitioned 

Threads Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 

Thread 1 37.65 37.97  38.19  37.59 37.63 38.55 

Thread 2 38.47 38.62 38.72  37.76  38.35 37.86 

Thread 3 37.62  37.59  37.66  37.42  38.54  38.23 

Thread 4 38.51 38.64  38.65  37.99 37.86  38.34 

Thread 5 38.61 38.62  38.31 38.49  37.56 38.26 

Thread 6 38.68  38.85  38.70  38.24  38.43  37.75 

4.2 Comparison of the fixed load and 

dynamic load scheduling approaches 
The experimental results obtained above either shared or 

partitioned approaches use fixed load assignment to threads. 

However, when one or more core isn’t available due to 

context switches, threads may not finish their task by the same 

time and therefore differences in the times may occur. 

Because of the fork - join structure, a delay in a thread also 

delays the whole process. A more efficient approach for 

coping with duration irregularities can be implemented by 

using shared approach. While partitioned approach provides 

higher data locality, share approach takes the advantage of 

large L3 cache memory. For this purpose, a synchronized 

counter to keep track of the block operations for dynamic load 

scheduling can be used, as discussed previously. Because all 

of the threads try to access the same variable for determining 

filtering coordinate, frequent accesses may results in 

significant overheads during running. On the other hand, the 

overhead may be reduced by keeping the chunk sizes over 

some specified number of pixels operations. Before 

experiments for testing the effect of chunk size, the overhead 

time in parallel run can be measured by the Equation (2) [18]. 

p

nT
pnTpnTo

)1,(
),(),(    (2) 

Where T(n,p) shows execution time of a parallel algorithm, 

T(n,1) shows execution time for single core implementation, n 

is the load and p is the number of processors. In practice 

T(n,1) determined approximately from example runs. In order 

to measure the efficiency of the dynamic load scheduling 

approach to fixed one Equation 2 can be reorganized as in 

Equation 3. 

),(),,(),,( pnTipnTipnT fixeddynamico 
  

(3) 

Where Tdynamic(n,p,i) shows the time of dynamic algorithm, 

Tfixed(n,p,i) shows the time of fixed algorithm and i shows the 

number of pixels operations per block or in other words chunk 

size. Overhead measurement for dynamic algorithm relative to 

fixed algorithm can simply be expressed in terms of percent 

ratio as in Equation 4, 

( , , )
% 100
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o
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T n p i
T

T n p
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Experimental results to measure overhead percent versus the 

chunk size were measured as given by Table 3 for a 

1200×1200 image using 3×3 filter mask. Load per thread 

represents number of pixels operations per thread. Control 

period shows the parameter, after how many number of pixels 

operation the synchronized counter will be increased to 

determine new running coordinates. The results show that 

smaller control period raises the overhead at serious levels. 

After about 100 pixels of control period the overhead falls to 

reasonable levels. The results become closer to fixed approach 

after about 100 pixels. However, as the number of pixels 

operation within a block size is increased, it becomes more 

sensitive to delays caused by other applications. Therefore it 

is desired to keep the control period at minimum level for 

preventing load imbalance. Example execution times for 

threads versus fixed load and dynamic load scheduling were 

presented in Figure 11. During experiments, some of the cores 

are made almost completely busy to see its effect on the 

performance of the parallel algorithm. 
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Fig 10: Experimental results for approximate To% 

(1200×1200 mask size 3 × 3) 

 

 

Fig 11: Example threads activations during dynamic load 

scheduling (Image size: 1200 × 1200, filter size: 3 × 3, 

chunk size: 1000 pixels) 

According to example consecutive runs, fixed load show 

serious fluctuations in the running times when compared to 

dynamic load scheduling. Figure 11a and 11b shows the 

example results for no core busy and one core busy cases 

respectively. While, in the first case small differences 

occurred in the running times, for the other cases running 

times are increased to about two times. The execution times 

obtained by dynamic load scheduling significantly low for no 

core busy and one core busy cases as shown in Figure 11d, 

11e and 11f respectively. Therefore idle durations of the 

threads that finish their tasks in advance were utilized to 

compensate the delays in other threads by means of dynamic 

load scheduling approach. Figure 12 shows random execution 

results under variable conditions where some of the cores 

were made artificially almost half busy by setting about 5 ms 

busy and 5 ms idle actions. Figure 12a and 12b shows the 

execution times of the algorithm under busy conditions. 

According to results, considerable reductions when compared 

to fixed load implementation were achieved. Thread loads 

which show their activation in the process were presented in 

Figure 13. The number of pixels operation per thread is close 

to each other as shown in Figure 13a and 13b for fixed and 

dynamic methods respectively. For this experiment, there is 

no artificially busy core during running. Figure 13c and 13d 

show the example results where one of the cores was made 

artificially busy using fixed and dynamic methods 

respectively. The thread activations for fixed method show 

that one of the threads didn’t process any pixel of the image 

during processing. This increases the execution duration by 

two fold. This is eliminated in dynamic method by 

distributing the load during runtime. 

 

 

Fig 12: Example test results for artificially busy cases 

(image: 1800 × 1800, filter: 3 × 3, chunk size: 1000 pixels) 
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Fig 13: Running times for example cases. (Image 

size:1200×1200, filter size: 3×3, chunk size: 500 pixels) 

4.3 Speed - up and parallel efficiency  
In this experiment, it was shown how the number of processor 

affects the performance. The success of the parallel algorithm 

was evaluated by comparing it to single core application. 

Measurement of the performance is usually calculated by 

using “Speedup” value referring to how many times the 

algorithm runs faster than the sequential one [18]. Speedup is 

determined by dividing the execution time of the single - core 

application to multi - core application as given by Equation 5. 

( ,1)

( , )

T n
Speedup =

T n p
 

  (5) 

In another criterion called “Parallel Efficiency”, the number of 

cores used in execution is also incorporated. It reveals the 

contribution of a core to the performance of parallel 

algorithm. It is calculated by dividing the speedup to the 

number of cores as given by Equation 6. The resulting value 

varies between 0-1 where 1 shows full efficiency of the 

parallel running cores. 

p

Speedup
fficiency=Parallel E   (6) 

Experimental results that measuring the speed up and parallel 

efficiency of the parallel image filter are given in Figure 14a 

and 14b respectively. Speed up versus the number of threads 

show good performance results. However, as the number of 

threads is increased, performance characteristics deviate from 

linearity. The same behavior was also observed in the parallel 

efficiency evaluations. It can also be concluded that 

increasing the image size has the improving effect on the 

parallel performance as the number of pixels operation is 

increased per core. 

 

 
Fig 14: a) Speedup and b) Parallel efficiency results 

(image size: 1200 × 1200, filter size: 3 × 3, chunk size: 1000 

pixels ) 

5. CONCLUSIONS 
Support for multithreading application in Java, enables an 

efficient and practical way to implement image convolution 

filter without additional libraries. According to experiments, 

the success of the shared image and partitioned image data 

approaches were close to each other. Shared definition of 

image data considerably simplifies the parallel algorithm by 

eliminating the splitting operations, merging and image 

padding of sub images. Shared approach provides the threads 

with the freedom of processing any pixels of the input image. 

This property was shown to simplify implementing a control 

mechanism for the dynamic load scheduling of the threads. 

Comparisons between fixed and dynamic load scheduling 

approaches showed that the irregularities in the running times 

of parallel threads were reduced by a simple dynamic control. 

Although, check intervals for load scheduling should be 

selected to over a certain number of pixels operations, for 

tested values satisfying results were observed. The results 

show that good speed up and parallel efficiency can be 

obtained practically on widely used multicore computers and 

Java platform. 
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