
International Journal of Computer Applications (0975 – 8887)

Volume 74– No.1, July 2013

25

Designing Graph Database Models from Existing
Relational Databases

Subhrajyoti Bordoloi
Dept. Of Computer Applications

Assam Engg. College, Guwahati, Assam

Bichitra Kalita
Dept. Of Computer Applications

Assam Engg. College, Guwahati, Assam

ABSTRACT
In this paper, a method for transforming a relational

database to a graph database model is described. In this

approach, the dependency graphs for the entities in the

system are transformed into star graphs. This star graph

model is transformed into a hyper graph model for the

relational database, which, in turn, can be used to

develop the domain relationship model that can be

converted in to a graph database model.

General Terms

Dependency Graph, Hypergraps, Graph Database,

Reference Graph, Star Graph, Candidate keys,

Keywords

Tuple Dependencies (TuD), Domain Dependencies

(DoD).

1. INTRODUCTION
Graphs and hyper graphs are extensively used to describe

various concepts in database technology- ranging from

data modeling to data processing. There are many graph

based approaches applied in RDBMS [1], 3], [13].

Recently the Graph Database is a hot topic of research in

database technology [4], [6], [7], [9]. Graph database is

becoming popular because it addresses a set of complex

data related application domains such as WWW, social

networking, genomics.[3][5][6][7][10][12] Hyper graphs

and graphs are very much used in describing graph

database structures, the complex interactions among the

data[1][11]. The interactions among the data items forms

a complex graph and the prime objective of graph

database is to find a certain pattern(sub graph) in the

complex graph using graph theory and graph algorithms.

It is difficult to manage the complex interactions in

relational databases and studies show that graph database

is better than any RDBMS [3] [8].

In this paper, few concepts of graph oriented design

methodologies used in DBMS are discussed. A novel

method to construct graph database models from existing

relational and object oriented database is proposed. For

discussion, the SUPPLIER-PART database [2] is

considered.

2. GRAPH BASED APPROACH IN

DATABASE DESIGN
Figure 1 shows the dependency graph for the supplier-

part database. Considering the dependencies available

among the attributes of the entities, the candidate keys

are identified [4]. For example, there are two candidate

keys(S# and SNAME) for the entity SUPPLIER and one

candidate key (P#) for the entity PART. Choosing S# as

the primary key for SUPPLIER and P# for PART, the

star graphs for these entities as shown in Fig.2 are

obtained.. This analysis will determine the attributes

from the entities SUPPLIER and PART which will be

included in the relationship set (intersecting portions

marked as X in Fig.1.).

Figure 1 : Dependency Graph for SUPPLIER-PART

database

Figure 2: Star Graphs for SUPPLIER and PART

Finally, a dependency graph for the relationship

SHIPMENT as shown in Fig.3 (a) is obtained. From this

dependency graph, the star graph for SHIPMENT can be

drawn as shown in Fig.3 (b). Finally, the following

reference graph for the database as shown in Fig.4 is

obtained.

Figure 3: Dependency Graph and the Star Graph for

SHIPMENT

QTY

S#,P#

DATE

S#, P#, DATE

QTY

(a) (b)

SNAME

CITY S#

CITY

COLOR
STATUS

WEIGHT

PNAME

P#

(a) (b)

QTY

P#

 CITY

COLOR

 PNAME WEIGHT

DATE

X
X

S#

SNAME

STATUS

CITY

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.1, July 2013

26

Figure 4: Reference Graph for SUPPLIER PART

Database

Figure 5: Hyper Graph Model for SUPPLIER-PART

Database

Figure 6: B-Arc Structure for SHIPMENT

3. GRAPH DATA MODEL USING

TUPLE ORIENTED DEPENDENCY
The graph structure of the database can be deduced from

the mathematical model [13] of the database. If xi be the

attributes in the key set, kS of the set S representing a

database table, then the central node of the star graph

will contain xi. The mathematical model for the

SUPPLIER-PART database is as follows.

DRS NAME = SUPPLIER-PART

SET SUPPLIER= {{{S#}},{{SNAME},{STATUS},

 {CTIY}}}

SET PART = {{{P#}},{{PNAME},{COLOR},

 {WEIGHT},{CITY}}}

SET SP = {{{S#},{P#},{DATE}},{{QTY}}}

To find the relationships among these sets (tables) take

the intersection of the sets as follows.

SUPPLIER ∩ PART=φ -------- (1)

SHIPMENT ∩ SUPPLIER= {{S#}} -------- (2a)

{S#} Є KS -------- (2b)

SHIPMENT ∩ PART= {{P#}} -------- (3a)

{P#} Є KP -------- (3b)

[Note that, Equation 2(a) and Equation 3(a) can be

obtained from the reference graph shown in Fig. 4]

From this it is found that there is a relationship (m: n)

between SUPPLIER and PART through SHIPMENT.

The central node of the star graph for SHIPMENT will

contain S#, P#, DATE (see Fig.3 (b)). Therefore, a graph

(hyper graph) representation of the database (see Fig.5)

can be obtained from the mathematical model of the

database. To convert the database to a graph (hyper

graph) model, the mathematical model of the database is

required. This mathematical model can also be obtained

from the database tables in the system by using a reverse

engineering approach [13] or from the schema diagram.

Consider the following relational data model instance of

the SUPPLIER-PART database.

Table 1: SUPPLIER

S# SNAME STATUS CITY

S1 RAM 20 KOLKOTTA

S2 HARI 20 KOLKOTTA

S3 BOB 40 MUMBAI

Table 2: PART

P# PNAME COLOR WEIGHT CITY

P1 NUT RED 12 KOLKOTTA

P2 BOLT GREEN 15 CHENNAI

P3 SCREW BLUE 13 MUMBAI

P4 BOLT RED 15 CHENNAI

Table 3: SHIPMENT

S# P# DATE QTY

S1 P1 1/1/13 100

S1 P2 1/1/13 200

S2 P1 1/1/13 200

S2 P3 2/1/13 300

S3 P1 2/1/13 300

S3 P3 2/1/13 200

In Fig.7, nodes are created for each attribute values in the

database instance. All nodes in this model are simple

nodes. The hyper edges can also store information. The

suppliers and the parts are connected by shipments, so

the hyper edges can be labeled as shown in Fig.8. In this

model, S1, S2, S3 are nodes representing star graphs for

SUPPLIERs. P1, P2, P3, P4 that represent the nodes for

PARTs. Moreover, the tuple oriented dependency is

considered here. The attribute level dependencies are not

considered

QTY

S#

P#

DATE

STATUS

SNAME

S#

CITY

QTY
DATE

CITY

COLOR

WEIGHT

PNAME

P#

SUPPLIER

P# S#

PART

SHIPMENT

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.1, July 2013

27

Figure 7: Hyper Graph Model for SUPPLIER-PART

Database Instance using Tuple Oriented

Dependencies.

Figure 8: The graph model for SUPPLIER-PART

Database instance using Tuple Oriented

Dependencies

4. GRAPH DATA MODELS USING

DOMAIN ORIENTED DEPENDENCY

Domain dependency is the dependency among the

domain values. In this representation, number of nodes is

substantially reduced, hence the complexity is reduced.

A very small number of values from a domain are used

several times in the database tables. The dependencies in

the star graph and the relationships among the star graphs

are also described by using the domain dependencies. So,

a domain relationship diagram can be drawn to describe

a relational database. The graph data model of Fig. 7 is

represented using domain oriented dependencies as

shown in Fig. 9.

Figure 9: Hyper Graph Model for SUPPLIER-PART

database Instance using Domain Oriented

Dependencies.

The domain relationship model for the SUPPLIER-

PART database is represented in Fig.10. The

relationships among the domains of the attributes are

considered. The prime focus is now the domains in the

system, not the entities. Entities share domains. For

example, as shown in Fig.10, entities SUPPLIER and

PART share the same domain (CITY) values. Therefore,

graph database model can be created from existing

relational database by considering the relationships

among domains in the system. The dependencies among

the domains in the star graph can be 1: n or n: 1. For

P3

BLUE

13

S1

RAM

KOLKOTTA

S2

HARI

20

S3

BOB

30

MUMBAI

100

1/1/13

20

0

2/1/13

P2

GREEN

BOLT

P1

RED

NUT

12

P4

1

CHENNAI

300

15

SCREW

e5 2/1/13::300

e2 1/1/13::200

 e3 1/1/13::200

e4 2/1/13::300

e1 1/1/13::100

e6 2/1/13::200

SUPPLIER

SHIPMENT

PART

 S1*

S2

S3

P1

P3

P4

* Nodes include all information about a supplier

P2

P3

MUMBAI

BLUE

SCREW

13

S1

RAM

20

KOLKOTTA

S2

HARI

20

KOLKOTTA

S3

BOB

30

MUMBAI

1/1/13
100

1/1/13
20

0

1/1/1

3

200

2/1/13

2/1/13

300

2/1/13
200

P2

CHENNAI

GREEN

BOLT

15

P1

KOLKOTTA

RED NUT

12

P4

CHENNAI

RED
BOLT

15

300

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.1, July 2013

28

example, one CITY can be related to may S# or any

number of P#.

Figure 10: Domain Relationship Model for

SUPPLIER-PART Database

So, in the database instance for the SUPPLIER-PART

database, only one node for one CITY value

“KOLKOTTA” will be created and there may be many

edges to connect it to many nodes for different S#-values

and many different P# -values (See Fig. 11).

Figure 11: Connection of KOLKOTTA to three

different S# vales and P# values

For an m: n relationship, a hyper edge is created

connecting the m-side key node, the n-side key node and

the other key nodes to any dependent node. Note that, for

the composite keys in the relational database, hyper

edges are created to connect the nodes for the attributes

(domains) in the composite keys to any node for

dependent attributes (domains). Therefore, the domain

relationship model can be represented as a hyper graph

(see Fig. 12). If a graph model for a database instance of

SUPPLIER-PART database is created, then this model

will follow the structure as shown in Fig. 12.

Figure 12: Hyper graph model for Domain

Relationship Diagram for SUPPLIER-PART

Database

By considering the domain dependencies and creating

only one node for a particular domain value appearing

several times in a table (or in many tables), the data

retrieval speed is enhanced and reduces the extra

processing of node data as well. For example, consider

the graph data model in Fig.8 and Fig.9. In the data

model in Fig.8 a query to find all suppliers and parts in

KOLKOTTA needs seven node accesses and lots of

processing of node information. But in the data model in

Fig.9, this query needs to locate the first supplier (links

in the look-up index for S#) node which has a

relationship to the node “KOLKOTTA” and once the

node “KOLKOTTA” is located, all S#s and P#s can be

located in constant time. This is because it is assumed

that a node in the graph database knows which node(s)

are at the other end of the edge (relationship). The

dominating factor in the search is the time required to

find the first node having the search-key or the node in

the look-up index which has a relationship to the node

having the search–key. In this case, the node for the

search key “KOLKOTTA” is located through the first

node in the look-up for S#. The number of node accessed

is 4 in the model with domain oriented dependency,

whereas, the number of node accessed is 7 in the model

with tuple oriented dependency [see Table 4].

In the next section, a method to create a graph model for

the database instance of a relational database is

discussed.

5. CREATING GRAPH MODEL FOR

A RELATIONAL DATABASE

INSTANCE
In this approach, the tables in the database are read once

for a particular period (session) say for a day and a graph

model is created for these data. This graph is stored in

the server’s memory. All subsequent transactions are

performed on this graph model. Adding data to the tables

requires creating nodes for the domain values and

creating edges to connect these nodes accordingly. If a

node for the domain value is already in the graph we just

need to create the appropriate edges in the graph to

represent the relationship.

5.1 Creating the Domain Relationship

Diagram
If we observe the mathematical model, we cannot find

the cardinality of the relationship directly. But the

cardinality information is hidden in the model.

Let A and B are two set representing two tables in the

database.

If A∩B=bi such that bi Є B and bi = kB but bi does not

belong to KA, where KA is the key set of A, then the

cardinality of the relationship between A and B is 1:1 or

1:n. Therefore the relationship between aj and bi is

assumed to be 1: n. Now, let us consider a set C (table)

with kA and kB , where kA and kB are the keys of A and

B. If kA and kB does not belong to KC then there are two

relationships, one between A and C and the other

between B and C which are 1: n, i.e. C is related with

both A and B. If kA Є KC and kB Є KC , then there is one

m:n relationship between A and B. So, for independent

set or the set having a 1: n relationship with other set, a

1: n relationship from each describing attribute to the key

attribute in the set is created. For a derived set create an

m: n relationship between the foreign keys of the sets.

For all attributes in the key set of the derived set, create

m: n relationship to the relationship created between the

<PNAME>

<DATE>

<STATUS>

<QTY>

<SNAME>

<CITY>

<WEIGHT>

<COLOR>

<P#>

<S#>

COLOR S#

CITY

SNAME

STATUS

P#

QTY DATE

WEIGHT

PNAME

KOLKOTTA

S1

S2

P1

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.1, July 2013

29

MUMBAI

S1

RAM

20

KOLKOTTA

Figure 13: (b) A shipment of Part P3 by Supplier S3

Figure 13: (a) Graph models for Supplier S1

13

P3

MUMBAI

BLUE

SCREW

S3

BOB

30 2/1/13

200

CITY

CITY
WEIGHT

COLOR
DATE

SNAME

STATUS PNAME

QTY

STATUS

SNAME

CITY

foreign keys. For other attributes in the describing set of

the derived set, create n: 1 relationship from the

relationship created between the foreign keys.

5.2 Algorithm 1:

[Creating Domain Relationship model]

Step 1: Develop an E-R model by using reverse

engineering approach. [13] Identify the unique

domains for the attributes.

Step 2: Develop the Domain Relationship Model

2.1. For the entities create relationships (1: n) from

the key attribute to all describing attributes. For

entities having composite key we get an n-ary

relationship.

2.2 For n:1 relationship in the E-R model, create

an 1:n relationship from the key of n-side

entity to the key of the 1-side entity. For m:n

relationship in the E-R model, create m:n n-

ary relationship from the keys of the

participating entities in the m:n relationship

and other distinguishing attributes in the m:n

relationship to the describing attributes of the

m:n relationship.

5.3 Algorithm2:

[Creating Graph Database Model from

the Table data]

Step2: Read the table data and find the distinct domain

values in the database.

Step3: Create nodes for these distinct domain values.

Step4: Create edges for the relationship following the

Domain Relationship Diagram.

 For each row in a table create edges from the

domain value for the key in the table to other

non-key domain values and label the edge with

the attribute names as shown in Fig. 13(a). If the

table has composite key then create a hyper edge

to connect the key domain values to other non-

key domain values as shown in Fig. 13(b).

 [Fig.18 shows the complete graph data model

created by following the Algorithm 2.]

6. QUERYING DATA FROM THE

GRAPH MODEL
The graph data model for the SUPPLIER-PART

database basically consists of four graph patterns G1, G2,

G3 and G as shown in Fig.15. Querying from the

database is now equivalent to mining sub graphs from

the graph model.

Figure 14: Four Sub Graphs in SUPPLIER-PART

Graph Database

6.1 Get all supplier details.
This query is equivalent to matching the graph pattern

(G1) of Fig.15 from the graph data model.

Figure 15: Sub GraphG1 of the graph in Fig.14

QTY

S#

P#

DATE

 CITY

COLOR

 PNAME

WEIGHT

STATUS

SNAME

G3

G1

G2

G

S#

 CITY

STATUS

SNAME

G1

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.1, July 2013

30

QTY

S#

P#

DATE

G3

6.2 Get all parts details.
This query is equivalent to matching the graph pattern

(G2) of Fig.16 from the graph data model.

Figure 16: Sub Graph G2 of the graph in Fig.14

6.3 Get all shipments details.
This query is equivalent to matching the graph pattern

(G3), shown in Fig.17, from the graph data model

7. COMPARISON OF THE

APPROACHES

Figure 17: Sub Graph G3 of the graph in Fig.14

A comparison between Tuple Oriented Dependency

model and Domain Oriented Dependency model is

shown in Table 4. The last column(8) of the table shows

the number of nodes accessed to find all suppliers in

KOLKOTTA and all parts produced in KOLKOTTA in

the respective models. The number of nodes required to

model the data in table SUPPLIER in tuple oriented

model is 12 and 10 in the domain oriented model. If the

complete database is modeled in tuple oriented approach

the number of nodes is 44 whereas the number of nodes

is 29 in domain oriented approach for the complete

database (see column 6 in Table 4).

P#

CITY

COLOR

PNAME

WEIGHT

G2

BLUE

SCREW

13

S1

RAM

KOLKOTTA

S2

HARI

20

BOB

30

MUMBAI

1/1/13

100

200

300

P2

CHENNAI

GREEN

BOLT

P1

RED

NUT

12

P4

2/1/13

15

SNAME

SNAME

SNAME

PNAME

PNAME
PNAME

PNAME

STATUS

STATUS

STATUS

CITY

COLOR

CITY

CITY

CITY

CITY

COLOR

COLOR

WEIGHT

WEIGHT

WEIGHT

COLOR

CITY

WEIGHT

DATE

DATE

DATE

DATE

DATE

QTY

QTY

QTY

QTY

S#

S#

S#

S#

S#

S#

P#

P#

P#

P#

QTY

QTY

P#

S3 P3

DATE

Figure 18: Hyper Graph Model for SUPPLIER-PART Database Instance Using Domain

Dependencies

CITY

International Journal of Computer Applications (0975 – 8887)

Volume 74– No.1, July 2013

31

Table 4: Nodes Requirements for individual Tables

and the Database

8. CONCLUSION
In this paper, an approach to design graph database

model from existing relational databases is discussed.

This approach can be used to design new graph databases

models. This approach can also be applied to derive

graph database models from existing object-oriented

databases. This approach can also be automated. Study is

going on to implement it by using Neo4j graph database.

9. REFERENCES
[1] Ronald Fagin , “Degrees of Acyclicity for

Hypergraphs and Relational Database Schemes”,

Journal of the Association for Computing

Machinery,Vol-30, No 3, July 1983, pp 514-550 .

[2] C.J.Date, “An Introduction to Database System” 3rd

Edition,Vol. 1, Addison-Wesley/Narosa Indian

Student Edition, ISBN 85015-58-9 .

[3] J. Fong, H.K. Wong, Z. Cheng ,”Converting

relational database into XML documents with

DOM” Information and Software Technology

45(2003)335 –355.

[4] S.G. Shrinivas et. al. “APPLICATIONS OF

GRAPH THEORY IN COMPUTER SCIENCE AN

OVERVIEW” International Journal of Engineering

Science and Technology Vol. (9), 2010, 4610-4621.

[5] Philippe Cudré-Mauroux,Sameh Elniketyt. ”Graph

Data Management Systems for New Application

Domains” Proceedings of the VLDB Endowment,

Vol. 4, No. 12, 2011.

[6] Darshana Shimpi ,Sangita Chaudhari “An overview

of Graph Databases”, International Conference in

Recent Trends in Information Technology and

Computer Science (ICRTITCS - 2012) Proceedings

published in International Journal of Computer

Applications® (IJCA) (0975 – 8887.

[7] Michal Laclavík ,et. al.,“Emails as Graph: Relation

Discovery in Email Archive”WWW2012

Companion, April 16–20, 2012, Lyon, France.

ACM 978-1-4503-1230-1/12/04.

[8] Shalini Batra, Charu Tyagi ,“Comparative Analysis

of Relational And Graph Databases” International

Journal of Soft Computing and Engineering (IJSCE)

Volume-2, Issue-2, May 2012 ,pp-509-512.

[9] Sherry Verma “ COMPARING MANUAL AND

AUTOMATIC NORMALIZATION

TECHNIQUES FOR RELATIONAL DATABASE

”International Journal of Research in Engineering &

Applied Sciences, Vol- 2,Issue -2 , 2012, pp 59-67.

[10] Prashish Rajbhandari, et. al.,“Graph Database

Model for Querying, Searching and Updating“,

International Conference on Software and Computer

Applications (ICSCA) ,2012) ,vol-41,pp-170-175.

[11] Mike Buerli,“The Current State of Graph

Databases” Department of Computer Science, Cal

Poly San Luis Obispo,mbuerli@calpoly.edu,

December 2012.

[12] Borislav Iordanov, HyperGraphDB: A eneralized

GraphDatabase”Kobrixsoftware,Inc.http://www.kob

-rix.com, Lecture Notes in Computer Science:

HyperGraphDB .

[13] S. Bordoloi, B. Kalita, “E-R Model to an Abstract

Mathematical Model for Database Schema using

Reference Graph”, International Journal of

Engineering Research and Development, 2013, Vol

6, Issue 4, pp. 51-60.

(1)

NUMBER OF NODES

(2) (3) (4) (5) (6) (7) (8)

A
P

P
R

O
A

C
H

S
U

P
P

L
IE

R

(A

)

P
A

R
T

(B

)

S
H

IP
M

E
N

T
 (

C
)

T
O

T
A

L
 (

A
+

B
+

C
)

 S

U
P

P
L

IE
R

-P
A

R
T

D
A

T
A

B
A

S
E

 (

D
)

(A
+

B
+

C
)-

D

 T

O
 F

IN
D

A

L
L

 S
#

 A
-N

D
 P

#

 R

E
L

A
T

E
D

 T
O

 “
K

O
L

K
O

T
T

A
”

Tuple

Oriented 12 20 18 50 44 6 7

Domain

Oriented 10 16 11 47 29 18 4

IJCATM : www.ijcaonline.org

