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ABSTRACT 

In this paper, the Minimum Nil Sweeper Algorithm, 

applicable to Clique problem has been considered. It has been 

found that the Minimum Nil Sweeper Algorithm is not 

applicable to Clique problem for all undirected graphs which 

was previously claimed. A new algorithm has been developed 

to study the all clique problems for arbitrary undirected graph 

and its complexity is analysed. An experimental result is 

cited. Finally, the P = NP has been proved for Clique problem. 

A theorem related to intersection graph is developed. 

General Terms 

 P=NP for Clique 

Keywords 

Exact Polynomial-time Algorithm, Clique, Euler-diagram, 

Complexity. P=NP 

1. INTRODUCTION 
Based on solving time, problems are divided into three 

categories [1]. The class P consists of those problems that are 

solvable in polynomial time.  Intractable problems are those 

which are unsolvable by polynomial-time algorithms. NP 

problems are those problems that have no polynomial-time 

algorithm. It has not yet been found [2], even though many 

attempts have made. 

 The concept of NP-complete problem had been 

introduced by S. A. Cook in 1971 [3]. A problem C is NP-

complete [4] if it satisfies the following conditions 

(a). C Є NP, and  

(b). A ≤ pC for any problem A Є NP. 

 The most important open problem in theoretical 

computer science is whether P ≠ NP or P=NP? This question 

has been one of the deepest, most perplexing open research 

problems in theoretical computer science since it was first 

posed in 1971 [3]. It is sufficient to present a polynomial time 

algorithm for any NP-complete problems [4][5]. Here Clique 

problem is considered and this is one of Richard Karp‟s 21 

problems [6]. 

 A clique in an undirected graph G = (V, E) is a 

complete sub graph of the graph G. The size of a clique is the 

number of vertices it contains. The clique problem is one of 

the optimization problems of finding a clique of maximum 

size in a graph. 

 The clique problem is NP-complete since we can 

check in polynomial time whether some vertices of a graph 

form a clique and 3-CNF-SAT ≤ p CLIQUE. Clique problem 

has many applications like in social network, bioinformatics 

and in computational chemistry [7]. 

 K. Makino and T. Uno discussed the enumeration of 

maximal bipartite cliques in a bipartite graph [8]. E. Tomita et 

al discussed the worst-case time complexity for generating 

maximal cliques of an undirected graph [9]. Takeaki UNO 

explained techniques for obtaining efficient clique 

enumeration implementations [10].     

Zohreh O. Akbari studied the clique problem and 

presented “The Minimum Nil Sweeper Algorithm”, a 

deterministic polynomial time algorithm for the problem of 

finding the maximum clique in an arbitrary undirected graph 

[11]. The Minimum Nil sweeper algorithm was made 

considering all zeroes on the inaccessibility matrix. The basic 

idea behind the algorithm was that the problem of omitting the 

minimum number of vertices from the graph so that no zero 

would remain except the main diagonal in the adjacency 

matrix resulting sub graph.    

Further, it has been proposed that, considering an 

arbitrary undirected graph, maximum clique size of the graph 

can be found using the “The Minimum Nil Sweeper 

Algorithm”.[11] 

It is known that heuristic algorithms can determine a 

problem quickly but they are not guaranteed to give a definite 

solution to all problems. Exact algorithms can determine a 

problem and they are guaranteed to give a definite solution to 

all problems. 

 The paper is organized in three sections. Section 1 

presents introduction part containing previous works of other 

researchers including the Minimum Nil Sweeper Algorithm. 

Section 2 presents a new general algorithm to solve the Clique 

problem for an arbitrary undirected graph. Complexity of the 

general algorithm has been analysed and finally P=NP for 

Clique problem is proved. In section 3, some examples graphs 

cited and are tested by both the algorithms. And finally a 

theorem related to the intersection graph is stated. 

 

  

2. GENERAL ALGORITHM & IT’S 

COMPLEXITY 
2.1 General Algorithm: One general algorithm is presented 

here for finding the maximum clique size in an arbitrary 

undirected graph. In the adjacency matrix of an undirected 

graph, the elements which are 1, are only considered. In 

addition to this, row wise clique size is considered and finally 

maximum clique size is found. If the given graph is a 

complete graph with n vertices then the maximum clique size 

of the graph is n-1. If there is only one vertex in the graph 

then clique size is 1 and if there are two vertices in the graph 
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which are connected then the clique size is 2 and for these two 

cases our algorithm is not required to apply. 

Algorithm: we construct an adjacency matrix Aij for the given 

graph whose total number of vertices are n. T, i, j, p, w, x, y, 

K, R, Big  are integer variables. B[], Clcount[], CL[], 

BClique[], Bij, Clique[]   are array of type integer. 

// make the adjacency matrix 

Aij = 1 if there is an edge from Vi to Vj  

For (i =1; i<= n; i++) 

{ 

For(j=1 ; j  ≤  n;  j++) 

{ 

 Aij = 0 or 1; 

} 

} 

For (i =1;  i ≤ n;  i++ ) 

{ 

for (j= 1; j ≤  n; j++ ) 

{ 

 While (i ≠ j) 

 { 

If (Aij != 1) 

   Goto Lavelst; 

 } 

  

} 

} 

Printf( “ Maximum clique size is = n-1 “); 

Goto Last;  

Levelst: For (i=1; i ≤ n; i++) 

{ 

  T = 1; 

  For (j = 1; j ≤ n; j++) 

  { 

  If (Aij == 0 ) 

   Continue; 

  B[T] = j; 

  T= T + 1; 

  } 

  K = 0; 

LevelB:  For (w = 1; w ≤ T – 2; w ++) 

  { 

  Clcount[w] = 0; 

  R = 1 ; 

  CL[R] = B[w]; 

  For (p = w; p ≤ T-2; p++) 

  { 

  If (AB[w]B[p+1] == 1) 

  { 

   Clcount[w]++; 

   CL[++R] = B[p +1] ; 

  } 

  } 

  IF(Clcount[w] == 0) 

  { 

   BClique[w] = 0; 

   If( w == T-2) 

   { 

    Goto LavelBig; 

   } 

   Goto LevelB; 

  } 

  IF ( Clcount [w]> 0) 

  { 

  If (Clcount[w] == 1) 

  { 

   BClique[w] = 3 ; 

   If( w == T-2) 

   { 

    Goto LevelBig; 

   } 

   Else  

    Goto LevelB; 

  } 

  Else 

  { 

 LevelA:  For (x = 1 ; x ≤ Clcount[w] +1 ; x ++ ) 

  { 

  R = x; 

  CL[0]=0; 

  Z = CL[x-1] ; 

  For (y =x + 1 ; y ≤ Clcount[w] + 2; y ++ ) 

  { 

   If (x = 1 and y ≠ 1 ) 

   { 

   K=CL[R]; 

   Bxy = AiK ; 

   R++; 

   If(Bxy == 0  ) 

   { 

   BClique [w]= 0; 

   If( w == T-2) 

   { 

   Goto LevelBig; 

   } 

   Else 

   { 

   Goto LevelB; 

   } 

   } 

   } 

   If (x ≠ 1 and y ≠ 1 ) 

   { 

   K= CL[R]; 

   Bxy = AZK  ; 

   R++ ; 

   If(Bxy == 0) 
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   { 

   BClique[w] = 0; 

   If( w == T-2) 

   { 

   Goto LevelBig; 

   }   

   Else  

   { 

   Goto LevelB; 

   } 

   } 

   }   

   } 

   } 

BClique[w] = Clcount [w] + 2 ;  

} 

  LevelBig:Big = BClique[1]; 

   W = T-2 

   For (u = 1; u <= W; u ++) 

   { 

   If (Big < = BClique[u]) 

    Big = BClique[u]; 

   } 

   Clique[i] = Big ; 

   } 

   Big = Clique[1]; 

For (i = 1; i < n; i++ ) 

{ 

If(Big < Clique[i]) 

Big = Clique[i]; 

} 

If (Big==0) 

Big=2; 

Printf(“Maximum clique size = 

Big “); 

                                       Last:           STOP  END. 

 

2.2 Complexity Analysis of the Algorithm: 
Suppose number of vertices in the undirected graph is „n‟, 

then complexity of the algorithm will be as follows 

= n2 + n2 + 1 + n[n + (T -2){(T-2) + (count + 1)2 } + n ] + n  

= 2n2 +1 + n2 + n(T-2)2 + n(T-2)2 + n(T-2)(count + 1)2 + n2 +n 

Here “T” and “count” can be considered as (n- something) , 

something < n, and by which complexity of the algorithm will 

be = O(n4)  

Since Clique problem is an NP-complete problem and from 

the above General Algorithm[2.1], it is proved that Clique 

problem can be solved in polynomial time, hence P = NP for 

Clique problem. 

 

 

 

 

 

 

3. TESTING OF ALGORITHM FOR 

GRAPH  

3.1 Case-1:  
Let us verify the algorithms for the graph of figure-1 

  

   

 

 

 

 

Figure 1 

Minimum Nil Sweeper Algorithm gives the out put for the 

graph figure 1, which shows that the  vertices 5, 6,forms a 

clique, which is not a maximum clique. After application of 

the General Algorithm [2.1] , the maximum clique size = 3, is 

found for the graph of figure 1,which is the correct result.  

3.2 Case-2: 
 Let us consider the graph of figure-2. 

    

    

          

 

Figure 2 

Again when the Minimum Nil Sweeper Algorithm is used, 

then the vertices1, 2, 3 forms a maximum clique of size 3. The 

same result is obtained after application of the General 

Algorithm[2.1] .  

3.3 Case-3: 
Let us consider the graph of figure-3.  

   

                

 

       

      

              

           

   

 

Figure 3 
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For the graph of figure 3, the maximum clique of size 4 is 

obtained after application of the Ggeneral Algorithm [2.1] . 

 

3.4 Case-4: 
Let us consider the graph of figure-4. This graph is considered 

from a paper of reference number [12], which is known as 

intersection graph.  

   

  

 

 

 

Now applying the General Algorithm, it is found that 

maximum clique size = 2. Hence the following theoretical 

result has been established. 

 

Theorem: There does not exist clique size greater than 2 for 

any intersection graph obtained from a class of Euler diagram 

[12] 

Proof:  It is found that the intersection graph does not contain 

any closed circuit in which no pairwise adjacent vertices 

exists. On the other hand, it has been established [9] that if 

one go on adding number of curves horizontally as shown in 

figure-5, which was discussed in [12]. 
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This process definitely increases the number of curves 

horizontally and the intersection graph is obtained as 

discussed in [12].Hence no closed circuit exist here as stated 

above and this completes the proof of the theorem. 

 

4. COMPARATIVE ANALYSIS OF 

EXISTING TECNIQUES 
Bron et al [13] implemented a depth-first search algorithm for 

generating all maximal cliques of a graph and the computing 

time of the algorithm was proportional to (3.14)n/3 for Moon-

Moser graph [14] of n vertices. Later on E. Tomita et al 

proposed a depth-first search algorithm for generating all 

maximal cliques of an undirected graph as in Bron-Kerbosch 

algorithm. The worst-case time complexity was O(3n/3) , 

where n is the number of vertices in a graph. Tsukiyama et al 

proposed another algorithm for enumerating a maximal 

independent sets of a graph in O(nmµ)- time, where n,m, and 

µ are the number of vertices, edges, and maximal independent 

sets of the graph respectively [15]. The algorithm of 

Tsukiyama et al was improved by Chiba and Nishizeki and 

the complexity of the algorithm became O(a(G)mµ), where 

a(G) is the arboricity of G with a(G) ≤ O(m1/2) for a connected 

graph G and µ is the number of maximal cliques in graph G 

[16]. K. Makino et al discussed two algorithms for finding 

maximal bipartite cliques of a bipartite graph. One runs with 

O(M(n)) time delay and the other runs with O(∆4) time delay 

taking preprocessing time as O(nm) , where ∆ is the 

maximum degree of the graph, and M(n) is the time needed to 

multiply two n × n matrices, n is the number of vertices and m 

is the number of edges of the graph G. Takeaki UNO  
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proposed algorithm which takes polynomial delay at most 

O(|V|) time for each clique and O(|V||E|) time for each 

maximal clique. 

 From the above existing algorithms it is observed 

that some algorithms complexity depends on the maximum 

degree of the graph, some algorithms complexity depends on 

the number of edges and vertices of the graph, some 

algorithms complexity depends on arboricity of G and 

maximal cliques in G and some algorithms can be applied 

only for bipartite graph. Therefore a theoretical comparison of 

these algorithms is found to be difficult with the General 

Algorithm 2.1, discussed here, as this algorithm is applicable 

for any pattern of undirected graph in polynomial time.        

5. CONCLUSION 
 From the above examples [3.1 case-1 & 3.2 case 2] it is 

found that the Minimum Nil Sweeper Algorithm cannot be 

applied to find the maximum clique size in an arbitrary 

undirected graph. On the other hand the General Algorithm 

established here can be applied to find the maximum clique 

size in an undirected arbitrary graph.  
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