
International Journal of Computer Applications (0975 – 8887)

Volume 73– No.8, July 2013

19

Exact Polynomial-time Algorithm for the Clique Problem

and P = NP for Clique Problem

Kanak Chandra Bora
Department of Computer Science & Engineering

Royal School of Engineering & Technology,
Betkuchi, Guwahati-781035, Assam, India.

Bichitra Kalita
Department of Computer Application (M.C.A.),

Assam Engineering College,
Jalukbari, Guwahati-781013, Assam, India.

ABSTRACT

In this paper, the Minimum Nil Sweeper Algorithm,

applicable to Clique problem has been considered. It has been

found that the Minimum Nil Sweeper Algorithm is not

applicable to Clique problem for all undirected graphs which

was previously claimed. A new algorithm has been developed

to study the all clique problems for arbitrary undirected graph

and its complexity is analysed. An experimental result is

cited. Finally, the P = NP has been proved for Clique problem.

A theorem related to intersection graph is developed.

General Terms

 P=NP for Clique

Keywords

Exact Polynomial-time Algorithm, Clique, Euler-diagram,

Complexity. P=NP

1. INTRODUCTION
Based on solving time, problems are divided into three

categories [1]. The class P consists of those problems that are

solvable in polynomial time. Intractable problems are those

which are unsolvable by polynomial-time algorithms. NP

problems are those problems that have no polynomial-time

algorithm. It has not yet been found [2], even though many

attempts have made.

 The concept of NP-complete problem had been

introduced by S. A. Cook in 1971 [3]. A problem C is NP-

complete [4] if it satisfies the following conditions

(a). C Є NP, and

(b). A ≤ pC for any problem A Є NP.

 The most important open problem in theoretical

computer science is whether P ≠ NP or P=NP? This question

has been one of the deepest, most perplexing open research

problems in theoretical computer science since it was first

posed in 1971 [3]. It is sufficient to present a polynomial time

algorithm for any NP-complete problems [4][5]. Here Clique

problem is considered and this is one of Richard Karp‟s 21

problems [6].

 A clique in an undirected graph G = (V, E) is a

complete sub graph of the graph G. The size of a clique is the

number of vertices it contains. The clique problem is one of

the optimization problems of finding a clique of maximum

size in a graph.

 The clique problem is NP-complete since we can

check in polynomial time whether some vertices of a graph

form a clique and 3-CNF-SAT ≤ p CLIQUE. Clique problem

has many applications like in social network, bioinformatics

and in computational chemistry [7].

 K. Makino and T. Uno discussed the enumeration of

maximal bipartite cliques in a bipartite graph [8]. E. Tomita et

al discussed the worst-case time complexity for generating

maximal cliques of an undirected graph [9]. Takeaki UNO

explained techniques for obtaining efficient clique

enumeration implementations [10].

Zohreh O. Akbari studied the clique problem and

presented “The Minimum Nil Sweeper Algorithm”, a

deterministic polynomial time algorithm for the problem of

finding the maximum clique in an arbitrary undirected graph

[11]. The Minimum Nil sweeper algorithm was made

considering all zeroes on the inaccessibility matrix. The basic

idea behind the algorithm was that the problem of omitting the

minimum number of vertices from the graph so that no zero

would remain except the main diagonal in the adjacency

matrix resulting sub graph.

Further, it has been proposed that, considering an

arbitrary undirected graph, maximum clique size of the graph

can be found using the “The Minimum Nil Sweeper

Algorithm”.[11]

It is known that heuristic algorithms can determine a

problem quickly but they are not guaranteed to give a definite

solution to all problems. Exact algorithms can determine a

problem and they are guaranteed to give a definite solution to

all problems.

 The paper is organized in three sections. Section 1

presents introduction part containing previous works of other

researchers including the Minimum Nil Sweeper Algorithm.

Section 2 presents a new general algorithm to solve the Clique

problem for an arbitrary undirected graph. Complexity of the

general algorithm has been analysed and finally P=NP for

Clique problem is proved. In section 3, some examples graphs

cited and are tested by both the algorithms. And finally a

theorem related to the intersection graph is stated.

2. GENERAL ALGORITHM & IT’S

COMPLEXITY
2.1 General Algorithm: One general algorithm is presented

here for finding the maximum clique size in an arbitrary

undirected graph. In the adjacency matrix of an undirected

graph, the elements which are 1, are only considered. In

addition to this, row wise clique size is considered and finally

maximum clique size is found. If the given graph is a

complete graph with n vertices then the maximum clique size

of the graph is n-1. If there is only one vertex in the graph

then clique size is 1 and if there are two vertices in the graph

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.8, July 2013

20

which are connected then the clique size is 2 and for these two

cases our algorithm is not required to apply.

Algorithm: we construct an adjacency matrix Aij for the given

graph whose total number of vertices are n. T, i, j, p, w, x, y,

K, R, Big are integer variables. B[], Clcount[], CL[],

BClique[], Bij, Clique[] are array of type integer.

// make the adjacency matrix

Aij = 1 if there is an edge from Vi to Vj

For (i =1; i<= n; i++)

{

For(j=1 ; j ≤ n; j++)

{

 Aij = 0 or 1;

}

}

For (i =1; i ≤ n; i++)

{

for (j= 1; j ≤ n; j++)

{

 While (i ≠ j)

 {

If (Aij != 1)

 Goto Lavelst;

 }

}

}

Printf(“ Maximum clique size is = n-1 “);

Goto Last;

Levelst: For (i=1; i ≤ n; i++)

{

 T = 1;

 For (j = 1; j ≤ n; j++)

 {

 If (Aij == 0)

 Continue;

 B[T] = j;

 T= T + 1;

 }

 K = 0;

LevelB: For (w = 1; w ≤ T – 2; w ++)

 {

 Clcount[w] = 0;

 R = 1 ;

 CL[R] = B[w];

 For (p = w; p ≤ T-2; p++)

 {

 If (AB[w]B[p+1] == 1)

 {

 Clcount[w]++;

 CL[++R] = B[p +1] ;

 }

 }

 IF(Clcount[w] == 0)

 {

 BClique[w] = 0;

 If(w == T-2)

 {

 Goto LavelBig;

 }

 Goto LevelB;

 }

 IF (Clcount [w]> 0)

 {

 If (Clcount[w] == 1)

 {

 BClique[w] = 3 ;

 If(w == T-2)

 {

 Goto LevelBig;

 }

 Else

 Goto LevelB;

 }

 Else

 {

 LevelA: For (x = 1 ; x ≤ Clcount[w] +1 ; x ++)

 {

 R = x;

 CL[0]=0;

 Z = CL[x-1] ;

 For (y =x + 1 ; y ≤ Clcount[w] + 2; y ++)

 {

 If (x = 1 and y ≠ 1)

 {

 K=CL[R];

 Bxy = AiK ;

 R++;

 If(Bxy == 0)

 {

 BClique [w]= 0;

 If(w == T-2)

 {

 Goto LevelBig;

 }

 Else

 {

 Goto LevelB;

 }

 }

 }

 If (x ≠ 1 and y ≠ 1)

 {

 K= CL[R];

 Bxy = AZK ;

 R++ ;

 If(Bxy == 0)

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.8, July 2013

21

 {

 BClique[w] = 0;

 If(w == T-2)

 {

 Goto LevelBig;

 }

 Else

 {

 Goto LevelB;

 }

 }

 }

 }

 }

BClique[w] = Clcount [w] + 2 ;

}

 LevelBig:Big = BClique[1];

 W = T-2

 For (u = 1; u <= W; u ++)

 {

 If (Big < = BClique[u])

 Big = BClique[u];

 }

 Clique[i] = Big ;

 }

 Big = Clique[1];

For (i = 1; i < n; i++)

{

If(Big < Clique[i])

Big = Clique[i];

}

If (Big==0)

Big=2;

Printf(“Maximum clique size =

Big “);

 Last: STOP END.

2.2 Complexity Analysis of the Algorithm:
Suppose number of vertices in the undirected graph is „n‟,

then complexity of the algorithm will be as follows

= n2 + n2 + 1 + n[n + (T -2){(T-2) + (count + 1)2 } + n] + n

= 2n2 +1 + n2 + n(T-2)2 + n(T-2)2 + n(T-2)(count + 1)2 + n2 +n

Here “T” and “count” can be considered as (n- something) ,

something < n, and by which complexity of the algorithm will

be = O(n4)

Since Clique problem is an NP-complete problem and from

the above General Algorithm[2.1], it is proved that Clique

problem can be solved in polynomial time, hence P = NP for

Clique problem.

3. TESTING OF ALGORITHM FOR

GRAPH

3.1 Case-1:
Let us verify the algorithms for the graph of figure-1

Figure 1

Minimum Nil Sweeper Algorithm gives the out put for the

graph figure 1, which shows that the vertices 5, 6,forms a

clique, which is not a maximum clique. After application of

the General Algorithm [2.1] , the maximum clique size = 3, is

found for the graph of figure 1,which is the correct result.

3.2 Case-2:
 Let us consider the graph of figure-2.

Figure 2

Again when the Minimum Nil Sweeper Algorithm is used,

then the vertices1, 2, 3 forms a maximum clique of size 3. The

same result is obtained after application of the General

Algorithm[2.1] .

3.3 Case-3:
Let us consider the graph of figure-3.

Figure 3

6

0
1

2

3 5

4

1 2

0 3

6 1 2

3

7
8

5
4

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.8, July 2013

22

For the graph of figure 3, the maximum clique of size 4 is

obtained after application of the Ggeneral Algorithm [2.1] .

3.4 Case-4:
Let us consider the graph of figure-4. This graph is considered

from a paper of reference number [12], which is known as

intersection graph.

Now applying the General Algorithm, it is found that

maximum clique size = 2. Hence the following theoretical

result has been established.

Theorem: There does not exist clique size greater than 2 for

any intersection graph obtained from a class of Euler diagram

[12]

Proof: It is found that the intersection graph does not contain

any closed circuit in which no pairwise adjacent vertices

exists. On the other hand, it has been established [9] that if

one go on adding number of curves horizontally as shown in

figure-5, which was discussed in [12].

 B

 A C

 E

 E

 G

F

 D

Figure 5

This process definitely increases the number of curves

horizontally and the intersection graph is obtained as

discussed in [12].Hence no closed circuit exist here as stated

above and this completes the proof of the theorem.

4. COMPARATIVE ANALYSIS OF

EXISTING TECNIQUES
Bron et al [13] implemented a depth-first search algorithm for

generating all maximal cliques of a graph and the computing

time of the algorithm was proportional to (3.14)n/3 for Moon-

Moser graph [14] of n vertices. Later on E. Tomita et al

proposed a depth-first search algorithm for generating all

maximal cliques of an undirected graph as in Bron-Kerbosch

algorithm. The worst-case time complexity was O(3n/3) ,

where n is the number of vertices in a graph. Tsukiyama et al

proposed another algorithm for enumerating a maximal

independent sets of a graph in O(nmµ)- time, where n,m, and

µ are the number of vertices, edges, and maximal independent

sets of the graph respectively [15]. The algorithm of

Tsukiyama et al was improved by Chiba and Nishizeki and

the complexity of the algorithm became O(a(G)mµ), where

a(G) is the arboricity of G with a(G) ≤ O(m1/2) for a connected

graph G and µ is the number of maximal cliques in graph G

[16]. K. Makino et al discussed two algorithms for finding

maximal bipartite cliques of a bipartite graph. One runs with

O(M(n)) time delay and the other runs with O(∆4) time delay

taking preprocessing time as O(nm) , where ∆ is the

maximum degree of the graph, and M(n) is the time needed to

multiply two n × n matrices, n is the number of vertices and m

is the number of edges of the graph G. Takeaki UNO

1

4

12

7

17

6 2

3 5

11 10
9

8
13

14
15

16

 Figure 4

 E

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.8, July 2013

23

proposed algorithm which takes polynomial delay at most

O(|V|) time for each clique and O(|V||E|) time for each

maximal clique.

 From the above existing algorithms it is observed

that some algorithms complexity depends on the maximum

degree of the graph, some algorithms complexity depends on

the number of edges and vertices of the graph, some

algorithms complexity depends on arboricity of G and

maximal cliques in G and some algorithms can be applied

only for bipartite graph. Therefore a theoretical comparison of

these algorithms is found to be difficult with the General

Algorithm 2.1, discussed here, as this algorithm is applicable

for any pattern of undirected graph in polynomial time.

5. CONCLUSION
 From the above examples [3.1 case-1 & 3.2 case 2] it is

found that the Minimum Nil Sweeper Algorithm cannot be

applied to find the maximum clique size in an arbitrary

undirected graph. On the other hand the General Algorithm

established here can be applied to find the maximum clique

size in an undirected arbitrary graph.

6. ACKNOWLEDGMENTS
We gratefully thank to the referee for giving an advice to

improve the paper in present form

7. REFERENCES
[1] Richard E. Neapolitan and Kumarss Naimipour,

“Foundations of Algorithms using C++ Pseudcode”, 3rd

ed, Jones and Bartlett Publishers, 2003, ch. 9.

[2] Michael Sipser, “Introduction to the Theory of

Computation”, 2nd ed., International Edition, Thomson

Course Technology, p 270, definition 7.19 and theorem

7.20, 2006.

[3] Stephen A. Cook, “The complexity of theorem-proving

procedures”, Proceedings of Third Annual ACM

Symposium on Theory of Computing, pages 151-158,

1971.

[4] Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, and Clifford Stein, “Introduction to Algorithms”,

2nd ed., MIT Press and McGraw-Hill, 2001, ch. 22 and

ch. 34.

[5] Stephen A. Cook, “The P versus NP problem”, Manuscript

prepared for the Clay Mathematics Institute for the

Millennium Prize Problems, 2000.

[6] Richard M. Karp, “Reducibility among combinational

problems”, In R. E. Miller and J. W. Thatcher (editors):

Complexity of Computer Computations, pages 85-103.

New York: Plenum Press, 1972.

[7] Alon, N.; Boppana, R. (1987), “The monotone circuit

complexity of Boolean functions”, Combinatorica 7(1):

1-22, doi:10.1007/BF02579196.

 [8] K. Makino and T. Uno, “New algorithms for enumerating

all maximal cliques,” In Proc. of the 9th Scandinavian

Workshop on Algorithm Theory (SWAT 2004), pp.260-

272. Springer-Verlag, 2004

[9] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-

case time complexity for generating all maximal cliques

and computational experiments,” Theoretical Computer

Science, vol.363, pp.28-42, 2006.

[10] Takeaki UNO, “Implementation issues of clique

enumeration algorithm”, Special issue: Theoretical

computer science and discrete mathematics, Progress in

Informatics, No.9, pp.25-30, (2012).

[11] Zohreh O. Akbari, “A Deterministic Polynomial-time

Algorithm for the Clique Problem and the Equality of P

and NP Complexity Classes”, World Academy of

Science, Engineering and Technology 45 2008.

[12] Rongdeep Pathok, Bichitra Kalita, “Properties of Some

Euler Graphs Constructed from Euler Diagram”, Int.

Journal of Applied Sciences and Engineering Research,

Vol. I, No. 2, 2012, pp.232-237.

[13] C. Bron, J. Kerbosch, Algorithm 457, finding all cliques

of an undirected graph, Comm. ACM 16 (1973) 575-577.

[14] J. W. Moon, L. Moser, On cliques in graphs, Israel J.

Math.3 (1965) 23-28.

[15] S. Tsukiyama, M. Ide, H. Ariyoshi, I. Shirakawa, A new

algorithm for generating all the maximal independent

sets, SIAM J. Comput. 6 (1977) 505-517.

[16] N. Chiba, T. Nishizeki, Arboricity and subgraph listing

algorithms, SIAJ J. Comput. 14 (1985) 210 – 223.

IJCATM : www.ijcaonline.org

