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ABSTRACT 

Arithmetic compression scheme is one of the commonly used 

techniques to represent more amount of information using the 

available units of resources. It has been known that arithmetic 

coding has a better coding efficiency than other compression 

schemes. However, when used in an error prone environment, 

the poor error resistance property of the method is a severe 

disadvantage. It is difficult to locate an error when arithmetic 

coding is used and a large portion of a data must be discarded 

when an error occurs. In this paper, a novel technique is 

proposed to improve the error resilience of arithmetic coding, 

in which the decoder is less affected by the errors caused in 

the transmission of data over the network. A comparative 

study with the basic algorithm demonstrates that the time 

performance of the error resilient arithmetic coder is 

somewhat comparable to the basic algorithm. 
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1. INTRODUCTION 
By means of data compression, the aim is to reduce the 

redundancy in the data which is being stored or 

communicated, and thereby increase the data density.  Data 

compression has important applications in the areas of data 

storage and transmission. It allows a user to store more 

information in the memory device available than otherwise 

possible. There are many data handling applications which 

require the processing of large amount of data, and the 

number of such applications is constantly increasing. At the 

same time, the proliferation of computer communication 

networks is resulting in massive transfer of data over 

communication links. Compressing the data to be stored and 

transmitted helps to reduce the storage and communication 

costs involved in the process.  When the size of data being 

transmitted is reduced, the capacity or bandwidth of the 

communication channel is used more efficiently.  Similarly, 

compressing a file to lesser size helps to make use of the 

storage capacity of the medium more efficiently. Various 

methods have been suggested by researchers, and the  

information theory has been made use of in various ways to 

eliminate the  redundancies  to achieve better compression 

performances. 

The techniques used to compress data can be broadly 

classified into two.  They are lossless compression techniques 

and lossy compression techniques. Lossless compression 

reduces bits by identifying and eliminating statistical 

redundancy. No information is lost in lossless compression. 

Lossy compression reduces bits by identifying unnecessary 

information and removing it. 

Arithmetic compression scheme is one of the commonly used 

techniques to represent more amount of information using the 

available units of resources. It has been known that arithmetic 

coding has a better coding efficiency than other compression 

schemes. [1] discusses arithmetic coding scheme and claims 

to be superior in most respects to the better-known Huffman 

method. The present work mainly focuses on improving the 

error resilience of arithmetic coding.  

Arithmetic coding is based on the frequency of symbols, and 

the whole message is represented by a fractional number 

between 0 and 1. The exact range (within 0 and 1) in which 

the number belongs depends on the length of the data, the 

symbols and their locations and frequency within the data 

string. The number must be represented without any loss of 

precision.  As the message size becomes larger, the interval in 

which the number belongs becomes narrower. 

The most important advantage of arithmetic coding is its 

flexibility: it can be used in conjunction with any model that 

can provide a sequence of event probabilities. Optimality is 

another important advantage of arithmetic coding.  

A major disadvantage of arithmetic coding is its poor error 

resistance. A single bit error in the encoded file causes the 

decoder's internal state to be in error, making the remainder of 

the decoded file corrupted. Universal access to data is one of 

the major objectives of emerging communication systems. 

The extension of services offered to mobile users, from 

traditional voice traffic to complex data sources such as web-

pages, images, video and music demands higher quality of 

services in terms of data accuracy and speed. Arithmetic 

compressor allows the transfer of large volume of data with 

limited resources, but with less reliability. While using 

arithmetic compression, a single bit error may cause the 

retransmission of the entire data. 

2. RELATED WORKS 
Arithmetic coding is an active topic of research since for 

many decades. Some of the major disadvantages of 

Arithmetic coding are that its implementation is complex and 

time consuming, and the basic algorithm has no resiliency to 

coding errors.  There are a number of publications dealing 

with fast implementation and error resilience. Some of these 

works are reviewed briefly in the following: 

One of the important works is that by Witten et al. [1]. They 

present a good tutorial on arithmetic coding- how it works, its 

practical implementation and the efficiency of the arithmetic 

coding. Later in 1991, Alistair et al. [2] proposed a new 

implementation of arithmetic coding incorporating several 

improvements over a widely used earlier version. These 

https://en.wikipedia.org/wiki/Lossless_compression
https://en.wikipedia.org/wiki/Redundancy_%28information_theory%29
https://en.wikipedia.org/wiki/Redundancy_%28information_theory%29
https://en.wikipedia.org/wiki/Redundancy_%28information_theory%29
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improvements include fewer multiplicative operations, and 

greatly extended range of alphabet sizes and symbol 

probabilities. 

A major drawback of arithmetic coding is its slow speed due 

to the requirement of multiplications and divisions. A few 

attempts have been done to avoid multiplications and to 

improve the efficiency. Langdon and Rissanen [3] proposed a 

modified scheme for encoding a binary string by using shift-

and-add. Rissanen and Mohiuddin [4] proposed a 

multiplication-free algorithm for encoding general string. The 

method was further developed by Lei [5]. Howard and Vitter 

[6] described an efficient bit-level implementation that uses 

table lookup as a fast alterative to arithmetic operations. 

Bassiouni et al. [7] has proposed a variant of arithmetic 

coding scheme which can be used for data compression in 

supercomputers. The approach makes use the correlation of 

adjacent characters to improve the compression performance.  

The scheme is based on the observation that in many data 

files, data records exhibit strong locality behaviour of 

character reference.  

Another work that attempts to improve the computational 

performance is that by Jianjun Zhang and Xingfang Ni [8]. 

They present a new implementation of bit-level arithmetic 

coding using integer additions and shifts. The algorithm has 

less computational complexity and more flexibility, and thus 

is very suitable for hardware design. 

Several preprocessing techniques are discussed in [9], [10], 

[11]. In [9], they propose RIDBE (Reinforced Intelligent 

Dictionary Based Encoding). It is a reversible lossless, 

dictionary based text transformation algorithm. The basic idea 

of the secure compression they have proposed is to preprocess 

the text and transform it into some intermediate form which 

can be compressed with better efficiency and which exploits 

the natural redundancy of the language in making the 

transformation. 

As mentioned before, arithmetic decoder has poor error 

resilience property. David W. Redmill et al. [12] shows that 

without the Error Resilient Entropy Code, arithmetic coding is 

less resilient than Huffman coding and examines the use of 

arithmetic coding in conjunction with the error resilient 

entropy code. 

A technique to implement error detection as part of the 

arithmetic coding process by introducing a small amount of 

extra redundancy is described by Colin Boyd et al. [13]. 

Redundancy is introduced by adjusting the coding space so 

that some parts are never used by the encoder. During 

decoding, if the number defined by the received encoded 

string ever enters the restricted region, an error in 

communication must have occurred. 

A joint lossless-source and channel coding approach that 

incorporates error detection and correction capabilities in 

arithmetic coding is proposed by G .F. Elmasry in [14]. The 

encoded binary data representation allows the source decoder 

to recover the source symbols, even with channel errors. Later 

G .F. Elmasry in [15] modified his algorithm in such a way 

that the decoder utilizes Hamming distance, the knowledge of 

the source statistics, and the self-synchronization property of 

arithmetic coding to recover the encoded sequence of 

symbols. 

Zhi-Quan Cheng et al. [16] proposed an error resilient 

arithmetic coding algorithm for coding 3D content inspired by 

error resilient JPEG 2000 image coding standards. The 

approach makes use of an error resilient extended multiple 

quantization coder  which divides bit stream into small 

independent parts, employing periodic termination markers, 

which permits basic transmission error containment.  

Another proposal for error resilient arithmetic coding    is the 

JPEG2000 based one for wireless image transmission by 

Yipeng et al. [17].  The authors demonstrated the 

effectiveness of the proposal for improving end-to-end 

reconstructed image quality.  In still another work, H. Morita 

et al. [18] presented an error resilient variable length 

arithmetic code employing sync markers of fixed length. The 

approach found to provide suppression of error rate at the 

expense of increased redundancy. 

The rest of this paper is organized as follows:    Section 3 

describes the arithmetic coding and its implementation. The 

proposed improved arithmetic coder with probability Scaling 

and the error resilient coding algorithm are presented in 

Section 4.  Results and performance comparison of the 

proposed approach are discussed in Section 5, and finally the 

paper is concluded in Section 6. 

3. ARITHMETIC CODING 
This section deals with the working and implementation of the 

arithmetic coding based on that of Witten et al. [1]. 

3.1 Basic Algorithm 
The algorithm for encoding a file using this method works 

conceptually as follows [1]: 

1. The “current interval” [L,H) is initialized to [0,1). 

2. For each symbol that has to be encoded, do the 

following procedure: 

a) Subdivide the current interval into subintervals, 

one for each possible alphabet symbol. The 

size of a symbol's subinterval is proportional to 

the estimated probability that the symbol will 

be the next symbol in the file according to the 

model of the input. 

b) Select the subinterval corresponding to the 

symbol that actually occurs next in the file, and 

make it the new current interval. 

3. Output enough bits to distinguish the final current 

interval from all other possible final intervals. 

3.2 Implementation 
The basic implementation described above has two major 

difficulties: the shrinking of current interval requires high 

precision arithmetic and no output is produced until the entire 

file has been read. Witten et al. [1] has suggested a clever 

solution for preventing the current interval from shrinking too 

much when the end points are close to 1/2, but straddle 1/2. In 

that case nothing is known about the next output bit, but 

whatever it is, the following bit will have the opposite value; 

hence merely keep track of that fact and expand the current 

interval symmetrically about 1/2. This follow-on procedure 

may be repeated any number of times, so as to keep the 

current interval size longer than 1/4. This expansion process 

takes place immediately after the selection of the subinterval 

corresponding to an input symbol. Repeat the following steps 

as many times as possible: 
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a) If the new subinterval is not entirely within one of 

the intervals [0, 1/2), [1/4, 3/4), or [1/2, 1), stop 

iterating and return. 

b) If the new subinterval lies entirely within [0, 1/2), 

output 0 and any 1s leftover from previous symbols; 

then double the size of the interval [0, 1/2), 

expanding toward the right. 

c) If the new subinterval lies entirely within [1/2,1), 

output 1 and any 0s left over from previous 

symbols; then double the size of the interval [1/2,1), 

expanding toward the left. 

d) If the new subinterval lies entirely within [1/4, 3/4), 

keep track of this fact for future output; then double 

the size of the interval [1/4, 3/4), expanding in both 

directions away from the midpoint. 

4. PROPOSED MODEL 

4.1 Improved Arithmetic Coder with 

probability Scaling 
It is useful to divide the process of data compression into two 

logically disjoint activities: statistical modelling, and coding. 

One can think of the model as the “intelligence” of a 

compression scheme, which is responsible for deducing or 

interpolating the structure of the input, whereas the coder is 

the “engine room” of the compression system. The efficiency 

of the coder largely depends on the input provided by the 

modeller, i.e. how well the symbol probabilities are estimated. 

This modular division helps to develop a highly independent 

modeller and coder regions in the implementation.  

 

Fig 1: Stages in Arithmetic Coding/Decoding 

Given an alphabet with symbols S0, S1, ... Sn, the modeller 

produces the symbol probability table which says that each 

symbol has a probability of occurrence of p0, p1, ... pn. It is 

possible to represent each probability, pi, as a unique non-

overlapping range of values between 0 and ∑pi.  Using this 

information the coder encodes the input message and maps it 

to a range that denotes the entire message. 

The mechanism that achieves this operates as follows. 

Suppose that p i is the probability of the i th symbol in the 

alphabet, and that variables L and R are initialized to 0 and 1 

respectively. Value L represents the smallest binary value 

consistent with a code representing the symbols processed so 

far, and R represents the product of the probabilities of those 

symbols. To encode the next symbol, which (say) is the j th of 

the alphabet, both L and R must be refined: L is replaced by 

L+R*∑i=1
j-1pi and R is replaced by R* pj, preserving the 

relationship between L, R, and the symbols so far processed. 

At the end of the message, any binary value between L and L 

+ R will unambiguously specify the input message. The 

computational performance largely depends on how best the 

cumulative probability distribution is calculated, and how best 

the arithmetic is performed.  

Some architectures offer integer multiply and divide 

instructions in hardware, and execute them in the same time 

as other operations, for example, on an Intel Pentium Pro 

(200MHz). Except on those machines, the multiplications and 

divisions in the basic arithmetic coder is making it less 

efficient and slow. The simplest way to get rid of this 

disadvantage is to replace the multiplications and divisions by 

shift-and-add operations wherever possible. 

For this purpose, the probability values estimated by the 

modeller are scaled to values by means of which the 

multiplication can be easily replaced by shift-and-add 

operations. This scaling is in such a way that it will not affect 

the compression ratio of the arithmetic coder, but at the same 

time improves its time complexity. 

The approximation suggested here is to use 2-k(pi) , where k(pi) 

is an integer representing the bounds of probability range of 

the symbol pi in the probability symbol table. Since this value 

is a power of 2, the multiplications can be easily replaced with 

a left shift operation and a division operation can be easily 

replaced with a right shift operation. Therefore, it provides an 

excellent compromise between good performance and low 

complexity.  

4.2 Error Resilient Arithmetic Coder 
The major challenge faced by the emerging communication 

systems is the rapid, universal access to the data, without a 

compromise with accuracy. The extension of services offered 

to mobile users, from traditional voice traffic to complex data 

sources such as web-pages, images, video and music along 

with the constraints imposed by the environment are boosting 

a considerable amount of research in the field of wireless 

communications. The networks are often loaded with large 

quantity of data being transferred to various destinations, and 

it demands a system with enhanced methods to handle data 

without causing any errors, at the same time making use of 

available resources in an efficient manner. 

Compressing the data that has to be sent across the network is 

one of the widely used techniques to handle larger amount of 

data with the available bandwidth of the network. For this 

purpose a coder has to be present at the source, and the 

destination side has to be equipped with a decoder. Fig.2 

depicts this scenario. 

 

 

 

Fig 2: Transmission system block diagram 

 

 Currently, arithmetic coders are not widely accepted for this 

purpose even though they are much better than many other 

compressors. This is mainly because of the poor error 

resistance property of arithmetic coders. A single bit error in 
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the transmission stage affects the decoder badly and results in 

corrupted output. The bit change might be happening at the 

earlier stage of the transmission. That single bit change causes 

the entire message to be decoded into meaningless data. Fig.3 

depicts this scenario. 

 

Fig 3: Single bit error causes retransmission of the entire 

message 

In such cases, the retransmission of entire message can be 

avoided by making use of an error resilient arithmetic coder. 

A simple method to produce such a coder, Error Resilient 

Arithmetic Coder (ERAC) is suggested here. 

In ERAC, the message or file that has to be transmitted is 

divided into several blocks. The size of blocks can be varying 

as well as fixed. In the case of a corrupted output, the number 

of bytes that has to be retransmitted depends on this block 

size. There exists a trade-off between the block size and the 

compression ratio and hence it has to be carefully chosen. 

ERAC also makes use of an extra symbol to denote the end of 

a message block, in case the block size is varying. This helps 

the decoder to reconstruct the message without any errors. 

The ERAC encoding algorithm is as follows: 

1. Initialize the variables COUNT = 0, EOF_BLOCK 

= 256 

2. The “current interval” [L,H) is initialized to [0,1). 

3. For each symbol that has to be encoded, do the 

following procedure: 

a) Increment the value of COUNT by 1. 

b) If the value of count>BLOCK_SIZE, do: 

i. Encode the symbol EOF_BLOCK, 

denoting the end of a message block, 

so that the current interval denotes 

the message block that has been 

encoded so far. 

 

 

ii. Reset the value of current interval to 

[0,1], COUNT as 0 

c) Encode the symbol that has to be encoded, as 

done in the basic algorithm. 

4. Output enough bits to distinguish the final current 

interval from all other possible final intervals. 

 

 

Fig 4: Single bit error causing the retransmission of one 

message block only. 

The ERAC decoding algorithm is as follows: 

1. The “current interval” [L,H) is initialized to [0,1). 

2. Until end of file symbol is decoded, do the 

following procedure: 

a) Decode the encoded value into the 

corresponding symbol. 

b) If the symbol is not EOF_BLOCK, print 

it. 

c) Else, reset the current interval [L,H) to 

[0,1) and continue the decoding 

procedure. 

5. RESULTS AND DISCUSSION 
In addition to the error resilient property, ERAC provides a 

way to implement parallelism in basic arithmetic coders and 

decoders. 

The proposed technique yields significant improvement in 

terms of reliability and reconstruction of the message, while 

limiting the complexity and compression ratio at a reasonable 

level. With the block size as 64, a file of size 1GB has an 

additional overhead of 8mb only, assuming an average of 4 

bits for encoding an end of block symbol. The new algorithm 

has been implemented and compared with the implementation 

of the basic algorithm to demonstrate the performance. Table I 

shows the comparison results. 
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Table 1. Comparing ERAC time performance with naive 

algorithm 

Name  Org 

Size 

(mb) 

En.  

Time(basic 

algo) 

En. 

Time(ERAC) 

bible.txt 4 1m39.329s 1m40.781s 

E.coli 4.6 1m7.651s 1m9.125s 

world192.txt 2.5 1m5.768s 1m7.056s 

 

6. CONCLUSION 

A modified version of basic arithmetic compression scheme is 

proposed in this paper. The suggested model eliminates the 

poor error resistance property of the basic arithmetic coder 

and thus makes the decoder error resistant. The suggested 

ERAC makes the arithmetic compression scheme suitable for 

the use in network communications. The algorithm has been 

implemented and the comparison of results with basic scheme 

demonstrates the advantages of the proposed scheme. 
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