
International Journal of Computer Applications (0975 – 8887)

Volume 73– No.7, July 2013

1

Arithmetic Coding- A Reliable Implementation

Lakshmi Sasilal
CSED, NIT Calicut

Kerala

Dr. V. K. Govindan
CSED, NIT Calicut

Kerala

ABSTRACT

Arithmetic compression scheme is one of the commonly used

techniques to represent more amount of information using the

available units of resources. It has been known that arithmetic

coding has a better coding efficiency than other compression

schemes. However, when used in an error prone environment,

the poor error resistance property of the method is a severe

disadvantage. It is difficult to locate an error when arithmetic

coding is used and a large portion of a data must be discarded

when an error occurs. In this paper, a novel technique is

proposed to improve the error resilience of arithmetic coding,

in which the decoder is less affected by the errors caused in

the transmission of data over the network. A comparative

study with the basic algorithm demonstrates that the time

performance of the error resilient arithmetic coder is

somewhat comparable to the basic algorithm.

General Terms

Arithmetic Coding, Error Resilient Coder

Keywords

ERAC, Arithmetic compression,

1. INTRODUCTION
By means of data compression, the aim is to reduce the

redundancy in the data which is being stored or

communicated, and thereby increase the data density. Data

compression has important applications in the areas of data

storage and transmission. It allows a user to store more

information in the memory device available than otherwise

possible. There are many data handling applications which

require the processing of large amount of data, and the

number of such applications is constantly increasing. At the

same time, the proliferation of computer communication

networks is resulting in massive transfer of data over

communication links. Compressing the data to be stored and

transmitted helps to reduce the storage and communication

costs involved in the process. When the size of data being

transmitted is reduced, the capacity or bandwidth of the

communication channel is used more efficiently. Similarly,

compressing a file to lesser size helps to make use of the

storage capacity of the medium more efficiently. Various

methods have been suggested by researchers, and the

information theory has been made use of in various ways to

eliminate the redundancies to achieve better compression

performances.

The techniques used to compress data can be broadly

classified into two. They are lossless compression techniques

and lossy compression techniques. Lossless compression

reduces bits by identifying and eliminating statistical

redundancy. No information is lost in lossless compression.

Lossy compression reduces bits by identifying unnecessary

information and removing it.

Arithmetic compression scheme is one of the commonly used

techniques to represent more amount of information using the

available units of resources. It has been known that arithmetic

coding has a better coding efficiency than other compression

schemes. [1] discusses arithmetic coding scheme and claims

to be superior in most respects to the better-known Huffman

method. The present work mainly focuses on improving the

error resilience of arithmetic coding.

Arithmetic coding is based on the frequency of symbols, and

the whole message is represented by a fractional number

between 0 and 1. The exact range (within 0 and 1) in which

the number belongs depends on the length of the data, the

symbols and their locations and frequency within the data

string. The number must be represented without any loss of

precision. As the message size becomes larger, the interval in

which the number belongs becomes narrower.

The most important advantage of arithmetic coding is its

flexibility: it can be used in conjunction with any model that

can provide a sequence of event probabilities. Optimality is

another important advantage of arithmetic coding.

A major disadvantage of arithmetic coding is its poor error

resistance. A single bit error in the encoded file causes the

decoder's internal state to be in error, making the remainder of

the decoded file corrupted. Universal access to data is one of

the major objectives of emerging communication systems.

The extension of services offered to mobile users, from

traditional voice traffic to complex data sources such as web-

pages, images, video and music demands higher quality of

services in terms of data accuracy and speed. Arithmetic

compressor allows the transfer of large volume of data with

limited resources, but with less reliability. While using

arithmetic compression, a single bit error may cause the

retransmission of the entire data.

2. RELATED WORKS
Arithmetic coding is an active topic of research since for

many decades. Some of the major disadvantages of

Arithmetic coding are that its implementation is complex and

time consuming, and the basic algorithm has no resiliency to

coding errors. There are a number of publications dealing

with fast implementation and error resilience. Some of these

works are reviewed briefly in the following:

One of the important works is that by Witten et al. [1]. They

present a good tutorial on arithmetic coding- how it works, its

practical implementation and the efficiency of the arithmetic

coding. Later in 1991, Alistair et al. [2] proposed a new

implementation of arithmetic coding incorporating several

improvements over a widely used earlier version. These

https://en.wikipedia.org/wiki/Lossless_compression
https://en.wikipedia.org/wiki/Redundancy_%28information_theory%29
https://en.wikipedia.org/wiki/Redundancy_%28information_theory%29
https://en.wikipedia.org/wiki/Redundancy_%28information_theory%29

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.7, July 2013

2

improvements include fewer multiplicative operations, and

greatly extended range of alphabet sizes and symbol

probabilities.

A major drawback of arithmetic coding is its slow speed due

to the requirement of multiplications and divisions. A few

attempts have been done to avoid multiplications and to

improve the efficiency. Langdon and Rissanen [3] proposed a

modified scheme for encoding a binary string by using shift-

and-add. Rissanen and Mohiuddin [4] proposed a

multiplication-free algorithm for encoding general string. The

method was further developed by Lei [5]. Howard and Vitter

[6] described an efficient bit-level implementation that uses

table lookup as a fast alterative to arithmetic operations.

Bassiouni et al. [7] has proposed a variant of arithmetic

coding scheme which can be used for data compression in

supercomputers. The approach makes use the correlation of

adjacent characters to improve the compression performance.

The scheme is based on the observation that in many data

files, data records exhibit strong locality behaviour of

character reference.

Another work that attempts to improve the computational

performance is that by Jianjun Zhang and Xingfang Ni [8].

They present a new implementation of bit-level arithmetic

coding using integer additions and shifts. The algorithm has

less computational complexity and more flexibility, and thus

is very suitable for hardware design.

Several preprocessing techniques are discussed in [9], [10],

[11]. In [9], they propose RIDBE (Reinforced Intelligent

Dictionary Based Encoding). It is a reversible lossless,

dictionary based text transformation algorithm. The basic idea

of the secure compression they have proposed is to preprocess

the text and transform it into some intermediate form which

can be compressed with better efficiency and which exploits

the natural redundancy of the language in making the

transformation.

As mentioned before, arithmetic decoder has poor error

resilience property. David W. Redmill et al. [12] shows that

without the Error Resilient Entropy Code, arithmetic coding is

less resilient than Huffman coding and examines the use of

arithmetic coding in conjunction with the error resilient

entropy code.

A technique to implement error detection as part of the

arithmetic coding process by introducing a small amount of

extra redundancy is described by Colin Boyd et al. [13].

Redundancy is introduced by adjusting the coding space so

that some parts are never used by the encoder. During

decoding, if the number defined by the received encoded

string ever enters the restricted region, an error in

communication must have occurred.

A joint lossless-source and channel coding approach that

incorporates error detection and correction capabilities in

arithmetic coding is proposed by G .F. Elmasry in [14]. The

encoded binary data representation allows the source decoder

to recover the source symbols, even with channel errors. Later

G .F. Elmasry in [15] modified his algorithm in such a way

that the decoder utilizes Hamming distance, the knowledge of

the source statistics, and the self-synchronization property of

arithmetic coding to recover the encoded sequence of

symbols.

Zhi-Quan Cheng et al. [16] proposed an error resilient

arithmetic coding algorithm for coding 3D content inspired by

error resilient JPEG 2000 image coding standards. The

approach makes use of an error resilient extended multiple

quantization coder which divides bit stream into small

independent parts, employing periodic termination markers,

which permits basic transmission error containment.

Another proposal for error resilient arithmetic coding is the

JPEG2000 based one for wireless image transmission by

Yipeng et al. [17]. The authors demonstrated the

effectiveness of the proposal for improving end-to-end

reconstructed image quality. In still another work, H. Morita

et al. [18] presented an error resilient variable length

arithmetic code employing sync markers of fixed length. The

approach found to provide suppression of error rate at the

expense of increased redundancy.

The rest of this paper is organized as follows: Section 3

describes the arithmetic coding and its implementation. The

proposed improved arithmetic coder with probability Scaling

and the error resilient coding algorithm are presented in

Section 4. Results and performance comparison of the

proposed approach are discussed in Section 5, and finally the

paper is concluded in Section 6.

3. ARITHMETIC CODING
This section deals with the working and implementation of the

arithmetic coding based on that of Witten et al. [1].

3.1 Basic Algorithm
The algorithm for encoding a file using this method works

conceptually as follows [1]:

1. The “current interval” [L,H) is initialized to [0,1).

2. For each symbol that has to be encoded, do the

following procedure:

a) Subdivide the current interval into subintervals,

one for each possible alphabet symbol. The

size of a symbol's subinterval is proportional to

the estimated probability that the symbol will

be the next symbol in the file according to the

model of the input.

b) Select the subinterval corresponding to the

symbol that actually occurs next in the file, and

make it the new current interval.

3. Output enough bits to distinguish the final current

interval from all other possible final intervals.

3.2 Implementation
The basic implementation described above has two major

difficulties: the shrinking of current interval requires high

precision arithmetic and no output is produced until the entire

file has been read. Witten et al. [1] has suggested a clever

solution for preventing the current interval from shrinking too

much when the end points are close to 1/2, but straddle 1/2. In

that case nothing is known about the next output bit, but

whatever it is, the following bit will have the opposite value;

hence merely keep track of that fact and expand the current

interval symmetrically about 1/2. This follow-on procedure

may be repeated any number of times, so as to keep the

current interval size longer than 1/4. This expansion process

takes place immediately after the selection of the subinterval

corresponding to an input symbol. Repeat the following steps

as many times as possible:

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.7, July 2013

3

a) If the new subinterval is not entirely within one of

the intervals [0, 1/2), [1/4, 3/4), or [1/2, 1), stop

iterating and return.

b) If the new subinterval lies entirely within [0, 1/2),

output 0 and any 1s leftover from previous symbols;

then double the size of the interval [0, 1/2),

expanding toward the right.

c) If the new subinterval lies entirely within [1/2,1),

output 1 and any 0s left over from previous

symbols; then double the size of the interval [1/2,1),

expanding toward the left.

d) If the new subinterval lies entirely within [1/4, 3/4),

keep track of this fact for future output; then double

the size of the interval [1/4, 3/4), expanding in both

directions away from the midpoint.

4. PROPOSED MODEL

4.1 Improved Arithmetic Coder with

probability Scaling
It is useful to divide the process of data compression into two

logically disjoint activities: statistical modelling, and coding.

One can think of the model as the “intelligence” of a

compression scheme, which is responsible for deducing or

interpolating the structure of the input, whereas the coder is

the “engine room” of the compression system. The efficiency

of the coder largely depends on the input provided by the

modeller, i.e. how well the symbol probabilities are estimated.

This modular division helps to develop a highly independent

modeller and coder regions in the implementation.

Fig 1: Stages in Arithmetic Coding/Decoding

Given an alphabet with symbols S0, S1, ... Sn, the modeller

produces the symbol probability table which says that each

symbol has a probability of occurrence of p0, p1, ... pn. It is

possible to represent each probability, pi, as a unique non-

overlapping range of values between 0 and ∑pi. Using this

information the coder encodes the input message and maps it

to a range that denotes the entire message.

The mechanism that achieves this operates as follows.

Suppose that p i is the probability of the i th symbol in the

alphabet, and that variables L and R are initialized to 0 and 1

respectively. Value L represents the smallest binary value

consistent with a code representing the symbols processed so

far, and R represents the product of the probabilities of those

symbols. To encode the next symbol, which (say) is the j th of

the alphabet, both L and R must be refined: L is replaced by

L+R*∑i=1
j-1pi and R is replaced by R* pj, preserving the

relationship between L, R, and the symbols so far processed.

At the end of the message, any binary value between L and L

+ R will unambiguously specify the input message. The

computational performance largely depends on how best the

cumulative probability distribution is calculated, and how best

the arithmetic is performed.

Some architectures offer integer multiply and divide

instructions in hardware, and execute them in the same time

as other operations, for example, on an Intel Pentium Pro

(200MHz). Except on those machines, the multiplications and

divisions in the basic arithmetic coder is making it less

efficient and slow. The simplest way to get rid of this

disadvantage is to replace the multiplications and divisions by

shift-and-add operations wherever possible.

For this purpose, the probability values estimated by the

modeller are scaled to values by means of which the

multiplication can be easily replaced by shift-and-add

operations. This scaling is in such a way that it will not affect

the compression ratio of the arithmetic coder, but at the same

time improves its time complexity.

The approximation suggested here is to use 2-k(pi) , where k(pi)

is an integer representing the bounds of probability range of

the symbol pi in the probability symbol table. Since this value

is a power of 2, the multiplications can be easily replaced with

a left shift operation and a division operation can be easily

replaced with a right shift operation. Therefore, it provides an

excellent compromise between good performance and low

complexity.

4.2 Error Resilient Arithmetic Coder
The major challenge faced by the emerging communication

systems is the rapid, universal access to the data, without a

compromise with accuracy. The extension of services offered

to mobile users, from traditional voice traffic to complex data

sources such as web-pages, images, video and music along

with the constraints imposed by the environment are boosting

a considerable amount of research in the field of wireless

communications. The networks are often loaded with large

quantity of data being transferred to various destinations, and

it demands a system with enhanced methods to handle data

without causing any errors, at the same time making use of

available resources in an efficient manner.

Compressing the data that has to be sent across the network is

one of the widely used techniques to handle larger amount of

data with the available bandwidth of the network. For this

purpose a coder has to be present at the source, and the

destination side has to be equipped with a decoder. Fig.2

depicts this scenario.

Fig 2: Transmission system block diagram

 Currently, arithmetic coders are not widely accepted for this

purpose even though they are much better than many other

compressors. This is mainly because of the poor error

resistance property of arithmetic coders. A single bit error in

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.7, July 2013

4

the transmission stage affects the decoder badly and results in

corrupted output. The bit change might be happening at the

earlier stage of the transmission. That single bit change causes

the entire message to be decoded into meaningless data. Fig.3

depicts this scenario.

Fig 3: Single bit error causes retransmission of the entire

message

In such cases, the retransmission of entire message can be

avoided by making use of an error resilient arithmetic coder.

A simple method to produce such a coder, Error Resilient

Arithmetic Coder (ERAC) is suggested here.

In ERAC, the message or file that has to be transmitted is

divided into several blocks. The size of blocks can be varying

as well as fixed. In the case of a corrupted output, the number

of bytes that has to be retransmitted depends on this block

size. There exists a trade-off between the block size and the

compression ratio and hence it has to be carefully chosen.

ERAC also makes use of an extra symbol to denote the end of

a message block, in case the block size is varying. This helps

the decoder to reconstruct the message without any errors.

The ERAC encoding algorithm is as follows:

1. Initialize the variables COUNT = 0, EOF_BLOCK

= 256

2. The “current interval” [L,H) is initialized to [0,1).

3. For each symbol that has to be encoded, do the

following procedure:

a) Increment the value of COUNT by 1.

b) If the value of count>BLOCK_SIZE, do:

i. Encode the symbol EOF_BLOCK,

denoting the end of a message block,

so that the current interval denotes

the message block that has been

encoded so far.

ii. Reset the value of current interval to

[0,1], COUNT as 0

c) Encode the symbol that has to be encoded, as

done in the basic algorithm.

4. Output enough bits to distinguish the final current

interval from all other possible final intervals.

Fig 4: Single bit error causing the retransmission of one

message block only.

The ERAC decoding algorithm is as follows:

1. The “current interval” [L,H) is initialized to [0,1).

2. Until end of file symbol is decoded, do the

following procedure:

a) Decode the encoded value into the

corresponding symbol.

b) If the symbol is not EOF_BLOCK, print

it.

c) Else, reset the current interval [L,H) to

[0,1) and continue the decoding

procedure.

5. RESULTS AND DISCUSSION
In addition to the error resilient property, ERAC provides a

way to implement parallelism in basic arithmetic coders and

decoders.

The proposed technique yields significant improvement in

terms of reliability and reconstruction of the message, while

limiting the complexity and compression ratio at a reasonable

level. With the block size as 64, a file of size 1GB has an

additional overhead of 8mb only, assuming an average of 4

bits for encoding an end of block symbol. The new algorithm

has been implemented and compared with the implementation

of the basic algorithm to demonstrate the performance. Table I

shows the comparison results.

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.7, July 2013

5

Table 1. Comparing ERAC time performance with naive

algorithm

Name Org

Size

(mb)

En.

Time(basic

algo)

En.

Time(ERAC)

bible.txt 4 1m39.329s 1m40.781s

E.coli 4.6 1m7.651s 1m9.125s

world192.txt 2.5 1m5.768s 1m7.056s

6. CONCLUSION

A modified version of basic arithmetic compression scheme is

proposed in this paper. The suggested model eliminates the

poor error resistance property of the basic arithmetic coder

and thus makes the decoder error resistant. The suggested

ERAC makes the arithmetic compression scheme suitable for

the use in network communications. The algorithm has been

implemented and the comparison of results with basic scheme

demonstrates the advantages of the proposed scheme.

7. REFERENCES
[1] I. H. Witten, R. M. Neal, and J. G. Cleary. “Arithmetic

coding for data compression”. Commun. ACM. 1987,

30:520-540.

[2] ALISTAIR MOFFAT,RADFORD M. NEAL and IAN

H. WITTEN. “Arithmetic Coding Revisited”. ACM

Transactions on Information Systems, Vol. 16, No. 3,

July 1998, Pages 256–294.

[3] G. G. Langdon, and J. J. Rissanen. “A simple general

binary source code”. IEEE Trans. Inf. Theory. 1982, IT-

28:800-803.

[4] J. J. Rissanen, and K. M. Mohiuddin. “A multiplication-

free multialphabet arithmetic code”. IEEE Trans.

Commun.1989, 37: 93-98.

[5] Shaw-Min Lei. “Efficient multiplication-free arithmetic

codes”. IEEE Trans. Commun. 1995, 43: 2950-2958.

[6] P. G. Howard, and J. S. Vitter. “Arithmetic coding for

data compression”. Proc. IEEE. 1994, 82: 857-865.

[7] Bassiouni, M.A.; Ranganathan, N.; Mukherjee, A.; "A

scheme for data compression in supercomputers,"

Supercomputing '88. [Vol.1]. Proceedings. , vol., no.,

pp.272-278, 14-18 Nov 1988

[8] Jianjun Zhang and Xingfang Ni. “An Improved Bit-level

Arithmetic Coding Algorithm”. Journal of Information

and Computing Science Vol. 5, No. 3, 2010, pp. 193-198

[9] S. Senthil, S.J Rexiline and L. Robert. “RIDBE: A

Lossless, Reversible Text Transformation Scheme for

better Compression” International Journal of Computer

Applications (0975 – 8887) Volume 51– No.12, August

2012

[10] Fauzia S. Awan, Nan Zhang, Nitin Motgi, Raja T. Iqbal,

and Amar Mukherjee. “LIPT : A Reversible Lossless

Text Transform to Improve Compression Performance”,

Proceedings of the 2001 IEEE Data Compression

Conference, IEEE Computer Society Press, Los

Alamitos, California. Vol. 481. 2001.

[11] M. Burrows, D. J. Wheeler, M. Burrows, and D. J.

Wheeler, “A block-sorting lossless data compression

algorithm,” Tech. Rep., 1994.

[12] Redmill, David W., and David R. Bull. "Error resilient

arithmetic coding of still images." Image Processing,

1996. Proceedings, International Conference on. Vol. 1.

IEEE, 1996.

[13] BOYD, C., CLEARY, J.G., IRVINE, S.A., RINSMA

MELCHERT, I., and WITTEN, I.H.: „Integrating error

detection into arithmetic coding‟, ZEEE Trans.

Commun., 1997,45, (I), pp. 1-3

[14] ELMASRY, G.F.: „Arithmetic coding algorithm with

embedded channel coding‟, Electron. Lett., 1997, 33,

(20), pp. 1687-1688

[15] Elmasry, G.F., "Embedding channel coding in arithmetic

coding," Communications, IEE Proceedings- , vol.146,

no.2, pp.73,78, Apr 1999

[16] Cheng, Zhi-Quan, et al. "An Error-Resilient Arithmetic

Coding Algorithm for Compressed Meshes."

Cyberworlds, 2008 International Conference on. IEEE,

2008.

[17] Sun, Yipeng, et al. "Error resilient arithmetic coding for

wireless robust image transmission." Wireless

Communications and Signal Processing (WCSP), 2011

International Conference on. IEEE, 2011.

[18] Morita, Hiroyoshi, Ying Zou, and Adriaan J. van

Wijngaarden. "Design and analysis of synchronizable

error-resilient arithmetic codes." Global

Telecommunications Conference, 2009. GLOBECOM

2009. IEEE. IEEE, 2009.

IJCATM : www.ijcaonline.org

