
International Journal of Computer Applications (0975 – 8887)

Volume 73– No.6, July 2013

52

Survey of Compression of DNA Sequence

Dhajvir Singh Rai
M.Tech(Computer Science &

Engineering)
BTKIT, Dwarahat, Almora

 R.K.Bharti,Ph.D
Asst. Prof.(Deptt. Of Computer

Science)
BTKIT, Dwarahat Almora

 Bhawana Parihar
Asst. Prof.(Deptt. Of Computer

Science)
BTKIT, Dwarahat, Almora

ABSTRACT

Compression of large collections of data can lead to

improvements in retrieval times by offsetting the CPU

decompression costs with the cost of seeking and retrieving

data from disk. In this paper, the author has study the different

compression method which can compress the large DNA

sequence. In this paper, authors have explored the DNA

compression method that is COMRAD, which is used to

compare with the dictionary based compression method i.e.

LZ77, LZ78, LZW and general purpose compression method

RAY. In this, authors have analyzed which one algorithm is

better to compress the large collection of the DNA Sequence.

Compression table and the line graph show that which

compression algorithm has a better compression ratio and the

compression size. It also shows that which one has better

compression and decompression time.

Keywords

LZ77, LZ78, LZW, RAY, COMRA , DNA Sequence

1. INTRODUCTION
The increasing utilization of new sequencing technologies is

leading to changes in the kinds of genetic data that are being

gathered and stored. The Human Genome Project (HGP)

produced a consensus sequence for much of the human

genome, while similar work produced reference DNA data for

other organisms. Recently, there has been a shift toward

producing data that represent the sequences of individuals. In

addition to the original HGP genome, there are now sequences

for James Watson [1], two men of Nigerian [2] and Chinese

[3] descent, and five southern African genomes [4], among

many others. The falling cost of high-throughput sequencing

is enabling more ambitious activities such as the 1000

Genomes Project,1 which aims to determine the variations in

the human population by analyzing the genomes of at least

1,000 individuals; and the Personal Genomes Project,2 which

aims to improve the understanding of how genetics and the

environment affect human traits, beginning a gradual shift

toward personalizing medical treatment.

In the past, researchers were able to rely on the trend of

cheaper storage space to store the genomic data being

generated. However, certain trends in sequencing, such as the

maturation of second generation sequencing technologies, the

creation of cheaper sequencing machines and then third

generation of DNA sequencing technologies, are responsible

for an ever increasing number of genomes being sequenced.

These genomes are from both new species and more

individual creatures having their genomes sequenced. This

increasing rate of sequencing is outpacing Kryder's law even

after general purpose compression algorithms are applied [5].

The genome of an organism is the DNA within that organism.

DNA is comprised of nucleotides, also referred to as bases,

which can be represented by the characters A, C, G and T for

Adenine, Cytosine, Guanine and Thymine, respectively. In

addition to those four letters specifying specific bases, there

are letters which are wildcards and represent an arbitrary base

or set of bases such as N for a non-specified string of bases

and M for either Adenine or Cytosine. Converting the

physical DNA to a data file is called sequencing. The human

genome is about 3,000 megabytes of uncompressed data. In

comparison, the complete works of William Shakespeare is

about 5 megabytes.

DNA sequences may contain repeated substrings within a

sequence; however, in database of sequences, the most

significant repeats occur between sequences, usually those of

the same or similar species. To help manage large genomic

databases, compression algorithms that capture and efficiently

encode this repeated information are employed. Compression

algorithms specific to DNA sequences have been around for

some time [6, 7, 8, 9, 10, 11, 12]. How- ever, most existing

algorithms are unsuitable for compressing large datasets of

multiple sequences. More recently, algorithms that compress

large repetitive datasets, that also support random access and

search on the compressed sequences, known as self-indexes,

have emerged. Some of these algorithms are specific to DNA

compression and support random access queries [13, 14].

Others can compress general datasets and also implement

search queries on the compressed sequences [15].

The paper is organized as follows: Section I contains a brief

Introduction about Compression of DNA Sequence, Section II

presents a brief explanation about Dictionary based

compression techniques, Section III discusses about RAY

Algorithm, Section IV discusses about the COMRAD

algorithm Section V has its focus on comparing the

performance of Dictionary based compression technique,

RAY and COMRAD algorithm and the final section contains

the Conclusion.

2. DICTIONARY BASED

COMPRESSION
A dictionary-based compression scheme [18] reads in input

data and looks for groups of symbols that appear in a

dictionary. If a string match is found, then a pointer or index

into the dictionary can be output instead of the code for the

symbol[21]. The longer the match, the better the compression

ratio.

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2013

53

2.1 Static Dictionary
Choosing a static dictionary technique is most appropriate

when considerable prior knowledge about the source is

available. This technique is especially suitable for use in

specific applications. For example, if the task were to

compress the student records at a university, a static

dictionary approach may be the best. This is because we know

ahead of time that certain words such as "Name" and "Student

ID" are going to appear in almost all of the records. One of the

more common forms of static dictionary coding is diagram

coding. In this form of coding, the dictionary consists of all

letters of the source alphabet followed by as many pairs of

letters, called diagrams, as can be accommodated by the

dictionary. For example, suppose we were to construct a

dictionary of size 256 for diagram coding of all printable

ASCII characters. The first 95 entries of the dictionary would

be the 95 printable ASCII characters. The remaining 161

entries would be the most frequently used pairs of characters.

The diagram encoder reads a two-character input and searches

the dictionary to see if this input exists in the dictionary. If it

does, the corresponding index is encoded and transmitted. If it

does not, the first character of the pair is encoded. The second

character in the pair then becomes the first character of the

next diagram. The encoder reads another character to

complete the diagram, and the search procedure is repeated.

2.2 Adaptive Dictionary
Most adaptive-dictionary-based techniques have their roots in

two landmark papers by Jacob Ziv and Abraham Lempel in

1977 [20] and 1978. These papers provide two different

approaches to adaptively building dictionaries, and each

approach has given rise to a number of variations. The

approaches based on the 1977 paper are said to belong to the

LZ77 family (also known as LZl), while the approaches based

on the 1978 paper are said to belong to the LZ78, or LZ2,

family. The transposition of the initials is a historical accident

and is a convention we will observe in this book. In the

following sections, we first describe an implementation of

each approach followed by some of the more well-known

variations.

2.2.1 LZ77 Approach:
The first compression algorithm described by Ziv and Lempel

is commonly referred to as LZ77. In the LZ77 approach, the

dictionary is simply a portion of the previously encoded

sequence.

 The encoder examines the input sequence through a sliding

window as shown in Figure 1. The window consists of two

parts, one is a search buffer that contains a portion of the

recently encoded sequence, and another is a look-ahead buffer

that contains the next portion of the sequence to be encoded.

In Figure 1, the search buffer contains eight symbols, while

the look-ahead buffer contains seven

symbols

 Fig 1 “sliding window”

The encoding algorithm

1. Set the coding position to the beginning of the input

stream;

2. find the longest match in the window for the

lookahead buffer;

3. output the pair (P,C) with the following meaning:

o P is the pointer to the match in the

window;

o C is the first character in the lookahead

buffer that didn't match;

4. if the lookahead buffer is not empty, move the

coding position (and the window) L+1 characters

forward and return to step 2.

Decoding

The window is maintained the same way during encoding.

The algorithm reads a pair (P,C) from the input in each step. It

outputs the sequence from the window specified by P and the

character C.

For many types of data, compression ratio this method

achieves is very good, but the encoding can be quite time-

consuming, since there is many comparisons to perform

between the lookahead buffer and the window. On the other

hand the decoding is very easy to apply and fast. Low

memory is required for both the encoding and the decoding.

Advantage:-

1- It able to compress the text well using a small

amount of memory and fast speed.

2- Compression ratio of this method is achieved very

good of many type of data.

3- It compress speed and decompress speed of data is

very good.

4- Memory requirement are low for both encoding and

decoding.

Disadvantage:

1- Encoding of the data can be time consuming.

2.2.2 LZ78 Approach:
The LZ78 program takes a different approach for building and

then maintaining the dictionary. LZ78 [21] makes its

dictionary out of all of the previously seen symbols in the

input text instead of having a limited-size window into the

preceding text. A dictionary of strings make a character at a

time, instead of having carte blanche access to all the symbol

strings in the preceding text,. The first time the string “Size”

is seen, for example, the string “Si” is added to the

dictionary[18]. The next time, “Siz” is added. If “Size” is seen

again, it is added to the dictionary.

LZ78 inserts single or multi-character, non-overlapping,

different patterns of the message to be encoded in a

Dictionary. The multi-character patterns are in the form: C0C1

. . . Cn-1Cn. The prefix of a pattern consists of all the pattern

characters except the last: C0C1 . . . Cn-1.

The encoding algorithm

1. At the start, the dictionary and P are empty;

2. C := next character in the charstream;

3. Is the string P+C present in the dictionary?

a. if it is, P := P+C (extend P with C);

b. if not,

i. output these two objects to the

codestream:

 the code word corresponding to P (if P is

empty, output a zero);

 C, in the same form as input from the

charstream;

ii. add the string P+C to the dictionary;

iii. P := empty;

c. are there more characters in the charstream?

 if yes, return to step 2;

 if not:

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2013

54

i. if P is not empty, output the code word

corresponding to P;

ii. END

The decoding algorithm

1. At the start the dictionary is empty;

2. W := next code word in the codestream;

3. C := the character following it;

4. output the string.W to the codestream

(this can be an empty string), and then

output C;

5. add the string.W+C to the dictionary;

6. are there more code words in the

codestream?

i. if yes, go back to step 2;

ii. if not, END.

Advantage:

1- The biggest advantage over the LZ77 algorithm is

the reduced number of string compression in each

encoding speed.

2- It compress the large amount of the data into

smaller amount which have the less memory

required for storing the compress data.

3- Compression ratio is better than the LZ77.

4- Compression and decompression speed is more

better than the LZ77.

Disadvantage:

1- It is expensive to store all symbols from the input.

2- Substring are added to the dictionary arbitrarily.

Therefore, some entry may newer be referred to, so

the dictionary consume more space than necessary.

2.2.3 LZW Approach:
LZW is a loss less compression algorithm. This method was

invented and published by Lempel and Ziv, which is known

as LZ78. LZW [22] algorithm replaces strings of characters

with single codes. It doesn’t do any analysis of the incoming

text. Instead, it adds every new string of characters to a table

of strings. When a single code is output instead of a string of

characters then compression occurs.

The code that LZW algorithm outputs can be of any arbitrary

length but instead of a single character it must have more bits

in it. By default, the first 256 codes are assigned to standard

character set and then he remaining codes are assigned to

strings as the algorithm proceeds [23]. This means codes 0-

255 refer to individual bytes where as codes 256-4095 which

is the maximum limit of the dictionary refer to sub strings.

LZW compression provides a better compression ratio in most

applications, that is why it became the first widely used

general-purpose method on computers. It typically reduces to

about half of its original size On large English texts. Other

kinds of data are also quite usefully compressed in many

cases.

LZW encoding algorithm:

Initialize Dictionary with 256 single character

strings and their corresponding ASCII codes;

Prefix first input character;

CodeWord 256;

while(not end of character stream){

 Char next input character;

 if(Prefix + Char exists in the Dictionary)

 Prefix Prefix + Char;

 else{

 Output: the code for Prefix;

 insertInDictionary((CodeWord , Prefix +

Char)) ;

 CodeWord++;

 Prefix Char;

 }

}

Output: the code for Prefix;

Advantage:

1- It is a lossless compression algorithm. Hence ho

information is lost

2- One need not pass the code table between the two

compression and the decompression.

3- Simple fast and good compression.

4- There is no need to analyze the incoming text.

Disadvantage:

1- What happen when the dictionary become too large.

2- One approach is to throw the dictionary array when

it reaches a certain size.

3- Useful only for a large amount of text data where

the redundancy is high.

4- Although the algorithm is pretty simple but

implementation is complicated mainly because

management of string table.

5- The method is good for the text file but not for the

other type of file.

3. RAY ALGORITHM

Ray[16] is a general-purpose compression algorithm that is

possible to use compressing the DNA sequence. The ray

algorithm is similar to Re-pair, except the occurrence od

many. The algorithm also supports random access into the

compressed data. Unlike Re-pair and Sequitur, RAY is a

multi-pass algorithm. The algorithm has follows:

Input:
-input string

-frequency threshold f

Algorithm:
Step 1. Create frequency dictionary of symbols pairs.

Step 2. Determine the symbol pairs that could be replaced

(Candidates) by through triplet and if the left most

pair has higher frequency then the right most pair and

count of the left most pair is at least f, then increment

the candidates count of the left most pair by one.

Step 3. The symbols pair with counts of at least two from the

step 2 are selected to replaced so they are added to

the dictionary.

Step 4. Update the frequency dictionary to be consistent with

a new string. Step2-4 are repeated until a

terminating condition is satisfied.

The decompression algorithm of RAY is similar to Re-pair.

The dictionary can either be stored in memory as the

hierarchy of rules, or the right-hand sides of rules can be

expanded to support fast decompression at the cost of storing

expanded substrings. As each symbol is decoded, if it is a

non-terminal, the dictionary is used to retrieve the substring

represented by that non-terminal.

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2013

55

Advantage:

1- Ray detect the global repeats and use less iteration

2- Ray compresses better than gzip and compress

3- It has faster decompression

4- Ray can access substring from the dataset faster

than accessing the same segments from the

uncompress collection on disk

5- It can randomly access the substring from the

dataset.

Disadvantage:

1- Algorithm required multiple passes through the

input to find repetition.

2- Repeats are detected globally, the memory usage of

dictionary may be high for the large input.

3- It has slower compression

4. COMRAD ALGORITHM

Comrad [17] is a dictionary compression algorithm that

detects repeated substrings in the input, and encodes them

efficiently to achieve compression. Comrad also operates in

multiple iterations, however, it is a DNA-specific disk-based

algorithm designed to compress large DNA datasets. Instead

of replacing pairs of frequent symbols, Comrad replaces

repeated substrings of longer lengths to reduce the number of

iterations. The first iteration of COMRAD counts distinct L

length substrings and the repeated substrings from most

frequent to least frequent are replaced with nonterminals and a

dictionary is formed. The input sequence now consists of a

combination of terminals and non-terminals. In subsequent

iterations, the counts of distinct substrings that satisfy a

certain set of patterns is recorded (see [13]), and again

substrings from most frequent to least are replaced with non-

terminals. The iterations continue until there are no substrings

of the above form remaining with at least a count of F (only

substrings with frequency F are eligible for replacement). The

algorithm outputs the input sequence with repeated substrings

replaced by non-terminals, and like Re-pair, a dictionary

containing the non-terminals mapping to the substrings they

replace. As with the Re-pair dictionary, we expand non-

terminals and append them to create a reference sequence.

 Algorithm:

Input:
 1: Set of DNA sequences S0

 2: Iteration 1 substring length L

 3: Minimum frequency threshold F

 4: Set of patterns P

Output:
 1: Compress DNA sequences Sk

 2: Dictionary of symbols D

Algorithm:
 1: Create the frequency dictionary D1 of all L length

substring, with frequency of at least F, for the

input DNA sequences S0

 2: Encode the input sequences S0 to get sequences S1

 3: k<- 2

 4: while the dictionary continues to grow do

 5: Create the frequency dictionary Dk of all substring

matching pattern in P, with the frequency at least F,

for the input sequences Sk-1

 6: Encode the input sequences Sk-1 to get sequences Sk

 7: k<- k+1

 8: end while

 9: Cleanup Dictionary D to remove infrequent non-

terminals and make numbering consecutive

Advantage:

1- Less iteration required

2- It is fast to compress smaller collection

3- Decompression speed is very fast.

Disadvantage:

1- It is slower to compress large collection

2- It is need more memory during the compression

5. RESULT AND COMPARISON

In this section we focus our attention to compare the

performance of Dictionary based algorithm (like LZ77, LZ78

& LZW), Ray and COMRAD algorithm. Research works

done to evaluate the efficiency of any compression algorithm

are carried out having three important parameters.

Table1: comparison of compression size and compression ratio of an algorithm are achieved.

DNA Sequence tatsgs.txt atef1a23.txt atrdnai.txt chmpxx.txt humdystrop.txt humghcsa.txt

Input Size 9647 6022 5287 15180 38770 66495

LZ77

Compression

Size(Byte)

3971 2579 2209 5793 15101 25300

Compression Ratio 2.428981 2.334222 2.392984 2.620404 2.567358 2.628261

LZ78

Compression

Size(Byte)

3190 2148 1876 4473 10755 17188

Compression Ratio 3.023654 2.830354 2.817479 3.393696 3.604835 3.868575

LZW

Compression

Size(Byte)

3190 2148 1876 4473 10755 17188

Compression Ratio 3.023654 2.830354 2.817479 3.393696 3.604835 3.868575

RAY

Compression

Size(Byte)

1753 869 799 3175 7873 5922

Compression Ratio 5.503137 6.929804 6.617621 4.781102 4.924425 11.22847

COMRAD

Compression

Size(Byte)

3594 1695 1563 6110 16240 29356

Compression Ratio 2.685691 3.552802 3.382597 2.484452 2.387021 2.265125

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2013

56

One is the compression ratio and second is the compression

sized achieved and the other is the time used by the encoding

and decoding algorithms.

The compression sized and compression ratio achieved for the

LZ77, LZ78 and LZW is presented in table1. The

compression ratio of LZ77 fall in the range of 2.334222 to

2.628261.

Compression ratio achieved for the LZ78 fall in the range of

2.817479 to 3.868575. so compression ratio achieved by this

algorithm is better than the LZ77.

Compression ratio achieved for the LZW fall in the range of

2.817479 to 3.868575. the compression ratio is achieved by

this algorithm is better than the LZ77 & LZ78. After

comprehensive analysis, LZW is better than LZ77 & LZ78 in

case of compression ratio.

LZW requires less memory space to store compressed data

than LZ77 and LZ78.

The compression time and decompression time achieved for

the LZ77, LZ78 and LZW are presented in Table2.

Figure2.(a): Line chart Shows the comparison of

compression ratio of above algorithm in table1

After comprehensive analysis compression time of the LZ77,

LZ78 and LZW are similar but LZW has better

decompression time than LZ77 and LZ78.

 Figure2.(b): Line Chart shows the comparison of Compressed

size of algorithms in table1

The compression sized and compression ratio achieved for the

RAY and COMRAD is presented in table1. Line chart shows

compression algorithm (LZ77,LZ78 & LZW), RAY and

COMRAD in figure2.(a) and Compression size in figure2.(b).

decompression time achieved for the RAY and COMRAD are

presented in Table2. COMRAD is very slow to compress the

data but decompression is better than RAY algorithm. Finally,

we analyzed that COMRAD algorithm is very slow to

compress the data but it is very fast during the decompression

than LZ77, LZ78, LZW and RAY.

Line chart shows the comparison of compression and of

Dictionary based compression algorithm (LZ77,LZ78 &

LZW), RAY and COMRAD in figure3.(a) and decompression

time in figure3.(b)

Table2: comparison of compression Time and Decompressed Time of an algorithms are achieved

DNA Sequence tatsgs.txt atef1a23.txt atrdnai.txt chmpxx.txt humdystrop.txt humghcsa.txt

Input Size 9647 6022 5287 15180 38770 66495

LZ77

Compression

Time(milis)

37767 20467 17566 64482 408439 1191156

Decompression

Time(milis)

312 125 78 624 2543 3838

LZ78

Compression

Time(milis)

37003 14773 14211 82118 520198 1467105

Decompression

Time(milis)

265 124 125 468 2060 4868

LZW

Compression

Time(milis)

29749 17535 15163 74365 544987 1492174

Decompression

Time(milis)

29765 13775 8050 82384 540213 1576992

RAY

Compression

Time(milis)

7254 5319 9032 6131 545081 1464561

Decompression

Time(milis)

140 78 31 243 453 687

COMR

AD

Compression

Time(milis)

50684 68103 33571 308163 7122074 11525853

Decompression

Time(milis)

140 94 109 172 514 527

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2013

57

Figure3.(a): Line chart shows the comparison of

compression time of algorithms in table2.

Figure3(b): Line chart shows the comparison of

compression time of algorithms in table2.

6. CONCLUSION
We have taken up the dictionary based compression

algorithm(LZ77,LZ78 and LZW), RAY and COMRAD

algorithm for our study to examine the performance in

compression. In this, we analyzed that LZW algorithm is

better than the LZ77 and LZ78 in the compression ratio. It

also require less memory to store the compress data. but it

take too much time during the decompression data. other

algorithm is COMRAD which is very slow during the

compression but this algorithm take fewer during

decompression than the other algorithm like LZ77, LZ78,

LZW and RAY. Its compression ratio is good and required

less memory to store the compressed data.

7. REFERENCE
[1] D. Wheeler et al., “The Complete Genome of an

Individual by Massively Parallel DNA Sequencing,”

Nature, vol. 452, no. 7189, pp. 872-876, 2008.

[2] D. Bentley et al., “Accurate Whole Human Genome

Sequencing Using Reversible Terminator Chemistry,”

Nature, vol. 456, no. 7218, pp. 53-59, 2008.

[3] J. Wang et al., “The Diploid Genome Sequence of an

Asian Individual,” Nature, vol. 456, no. 7218, pp. 60-65,

2008.

[4] S. Schuster et al., “Complete Khoisan and Bantu Genomes

from Southern Africa,” Nature, vol. 463, no. 7283, pp.

943-947, 2010.

[5] L. Stein. The case for cloud computing in genome

informatics. Genome Biology, 11(5):207, 2010.

[6] B. Behzadi and F. L. Fessant. DNA compression challenge

revisited: A dynamic programming approach. In Proc.

16th Annual Symposium on Combinatorial Pattern

Matching (CPM'05), pages 190{200, 2005.

[7] M. D. Cao, T. Dix, L. Allison, and C. Mears. A simple

statistical algorithm for biological sequence compression.

In Proc. Data Compression Conference (DCC'07), pages

43{52, 2007.

[8] X. Chen, S. Kwong, and M. Li. A compression algorithm

for DNA sequences and its applications in genome

comparison. In Proc. 4th Conference on Research in

Computational Molecular Biology (RECOMB'00), pages

107-117, 2000.

[9] X. Chen, M. Li, B. Ma, and J. Tromp. DNACompress: fast

and effective DNA sequence compression.

Bioinformatics, 18(12):1696-1698, 2002.

[10] S. Grumbach and F. Tahi. Compression of DNA

sequences. In Proc. Data Compression Conference

(DCC'93), pages 340-350, 1993.

[11] S. Grumbach and F. Tahi. A new challenge for

compression algorithms: Genetic sequences. Information

Processing & Management, 30(6):875-886, 1994.

[12] E. Rivals, J. Delahaye, M. Dauchet, and O. Delgrange. A

guaranteed compression scheme for repetitive DNA

sequences. In Proc. Data Compression Conference

(DCC'96), page 453, 1996.

[13] S. Kuruppu, B. Beresford-Smith, T. Conway, and J.

Zobel. Iterative dictionary construction for compression

of large dna datasets. IEEE/ACM Transactions on

Computational Biology and Bioinformatics, 2011. To

appear.

[14] S. Kuruppu, S. J. Puglisi, and J. Zobel. Relative Lempel-

Ziv compression of genomes for large-scale storage and

retrieval. In Proc. 17th Symposium on String Processing

and Information Retrieval (SPIRE'10), pages 201-206,

2010.

[15] V. M akinen, G. Navarro, J. Sir en, and N. V alim aki.

Storage and retrieval of highly repetitive sequence

collections. Journal of Computational Biology,17(3):281-

308, 2010.

[16] A. Cannane and H. Williams, “General-Purpose

Compression for Efficient Retrieval,” J. Am. Soc. for

Information Science and Technology, vol. 52, no. 5, pp.

430-437, 2001.

[17] S. Kuruppu, B. Beresford-Smith, T. Conway, and J.

Zobel. Iterative dictionary construction for compression

of large dna datasets. IEEE/ACM Transactions on

Computational Biology and Bioinformatics, 2011. To

appear.

[18] MarkNelson and Jean-loup Gailly” The Data

Compression Book”

http://staff.uob.edu.bh/files/781231507_files/The-Data-

Compression-Book-2nd-edition.pdf

[19] Reference Sequence Construction for Relative

Compression of Genomes Shanika Kuruppuy Simon J.

Puglisiz Justin Zobely arXiv:1106.3791v1 [q-bio.QM]

20 Jun 2011

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, ___________ 2013

58

[20] L. Felician and A. Gentili, A nearly optimal Huffman

technique in the microcomputer environment, Inf. Sys.

12, 4 (1987), 371.

[21] Mark Nelson and Jean-loup Gailly, The Data

Compression Book,

http://read.pudn.com/downloads153/ebook/675728/The_

Data_Compression_Book_By_Mark_Nelson.pdf

[22] Mamta Sharma,” Compression Using Huffman Coding”,

IJCSNS International Journal of Computer Science and

Network Security, VOL.10 No.5, May 2010

[23] Ziad M. Alasmer, Bilal M. Zahran, Belal A. Ayyoub,

Monther A. Kanan,” A Comparison between English and

Arabic Text Compression”, Contemporary Engineering

Sciences, Vol. 6, 2013, no. 3, 111 – 119 HIKARI Ltd,

www.m-hikari.com

IJCATM : www.ijcaonline.org

