
International Journal of Computer Applications (0975 – 8887)

Volume 73– No.6, July 2013

20

A New Architecture for Autonomous Grid

Saket Kumar Mishra

B.Tech
Computer Science &

Engineering Department,
Sikkim Manipal Institute of

Technology, Majhitar, Sikkim

Shekhar Pratap Sinha
B.Tech

Computer Science &
Engineering Department,
Sikkim Manipal Institute of

Technology, Majhitar, Sikkim

Chinmoy Kar
Assistant Professor

Computer Science &
Engineering Department,
Sikkim Manipal Institute of

Technology, Majhitar, Sikkim

ABSTRACT

Autonomous systems are inspired by biologically systems

which their goal is to manage themselves with minimal

involvement of managers. Autonomous is a concept that

brings together many fields of computing with the purpose of

creating any systems that self-manage. Autonomous strives to

make future systems even more receptive, resilient and

responsive. Autonomous is suitable for a computational grid

because of its dynamic and autonomous nature. Environment

of computational grid is inherently large, complex,

heterogeneous and dynamic and its state changes over time, so

continues monitoring by using Autonomous putting more of

the burden on the computers and less on the system

administrators. This paper proposed an architecture which

explain how Autonomous works on gird environment and

algorithms which increase reliability computational grid.

General Terms

Autonomous Grid

Keywords

Autonomous system, Grid scheduling

1. INTRODUCTION
T he concept of grid computing is gaining popularity as it is

all about using the unused resources connected to each other

through the network from anywhere in the world. Irrespective

of the location of the resources, it could be used to perform

many large computations without having to bother about the

availability of the resources. Thousands of heterogeneous

resources can leave or join the Grid at any point of time.

Therefore there is a need to manage and monitor [1] these

resources continuously in order to avoid any malfunctioning

of the resources which may affect the performance and the

efficiency of the grid [2]. Monitoring, adding and removing

resources in grid manually are not possible as the complexity

of the grid is increasing day by day. There is always the

possibility of security risk and resource failure [3] due to the

dynamic nature of the Grid. Hence the grid can be managed

more effectively using the dynamic algorithms which can

make decision based on the current situation.

To handle the above mentioned problems, there is a need to

introduce autonomic behavior in the grid which can deal with

the issues at the lower level and frees the administrator to

handle the issues at higher level [4]. Autonomic computing is

inspired from human autonomic system and is all about

making a system autonomic by implementing the autonomic

computing features in it. In this project a novel architecture

has been proposed which uses the Autonomic manager to

introduce the autonomic features in the grid which manages

and monitors the entire grid. The Autonomic Manager [5] also

protects the grid from any malfunctioning of any resource

while ensuring the utmost performance of the grid.

2. AUTONOMIC COMPUTING
Autonomic computing is a system which can self-configure,

self-optimize, self-protection and self-heal itself with

minimum human intervention. The term “autonomic” is

coined by the IBM and is a biological term. It is inspired by

the autonomic nervous system that takes care of the actions

such as respiration; digestion etc., without any external

assistance. It is not possible for us to take decision for every

action that our body requires to take. This term was proposed

by the International Business Machine (IBM) based on the

human autonomic nervous system which adapts itself without

needing any attention [6]. Therefore, Autonomic computing is

a self-managing system that can manage itself with minimal

intervention or assistance from outside.

2.1 Architecture of Autonomic Computing
IBM suggested architecture for autonomic computing which

has several basic components. These basic components work

together to achieve the autonomic behavior in any system.

These components make the decision based on the current

conditions and adapt to the conditions accordingly to changes

with the dynamically changing environment. IBM has given

several components [6] to achieve autonomic behavior in a

system. These components include manual managers,

autonomic managers, touch points and managed resources.

These components share the common knowledgebase and

takes decision accordingly.

2.2 Features of Autonomic computing
There are four basic features of the Autonomic Computing

that has been proposed by the IBM in 2001. Any system

which incorporates all these four features becomes a self-

managing system or in other words, to make a system

autonomic, these four features must be implemented on that

system. The following are the four features of the autonomic

computing:

2.2.1 Self-Configuration
This feature of autonomic computing deals with configuring

the resources to obtain the maximum performance. This also

deals with adapting with the changing environment with

minimal assistance from outside. Dynamically adding a

resource to a grid or removing a resource from a grid is one of

the examples of the self-configuration feature.

2.2.2 Self-Optimization
This feature of autonomic computing deals with using the best

resource from all the available resources. There may be more

than one available resource for performing one or more job.

Therefore, this optimizes the resources in the best possible

way using the algorithms that make decisions that is based on

the current scenario of the system and its resources.

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.6, July 2013

21

2.2.3 Self-Protection
This feature of autonomic computing deals with protecting the

system without requiring the attention of the administrators.

This protects the system against any external intrusion which

may cause the instability of the system.

2.2.4 Self-Healing
This feature of the Autonomic computing deals with healing

the infected system and protects the system from any further

damage. It isolates the infected resource or system and then

attempts to repair it. Once the resource is repaired, it is again

added to the system.

3. GRID COMPUTING
Grid consists of large number of heterogeneous resources

working in a dynamic environment and utilizes the resources

to the best of its capacity. Due to large number of resources

connected to each other, the grid is becoming very complex.

Any resource can join the grid anytime and also it can leave

the grid whenever it wants. Grid computing gathers all the

computing power of all the unutilized resource at one

platform named Grid to provide the computing power

wherever needed in the world. Grid removes the need to buy

additional resources to meet the demand of the customers

which is temporary. The additional resource can be acquired

temporarily from the grid to meet the demand which will be

more economic then buying separate resources for using it for

short period of time.

4. A NEW MODEL FOR AUTONOMOUS

GRID

4.1 Work flow of proposed model:

The following steps explain the proposed grid architecture.

The following steps numbers are also mention in figure 2.

1. Client will submit the job to the „Job Queue‟

1.1. „Job Receiver‟ will receive the job if any, from

other grid and will add it to the „Job Queue‟.

2. „Self-Optimization Manager‟ will check the „Temp

Job Queue for the Job.

3. „Self-Optimization Manager‟ will check the „Job

Queue, if no jobs are there in the „Temp Job

Queue‟.

4. „Self-Optimization Manager‟ will check for the

resources in the „Passive Resource‟. If there are no

resources in the „Passive Resource‟, it will then

check „Active Resource‟.

5. If there is no resource in either „Active Resource‟ or

„Passive Resource‟, then „Self Optimizer‟ will

submit the job to „Job Transmitter‟ in „Job

Exchange Manager‟.

6. If „Self Optimization Manager‟ finds the resource in

the „Passive Resource‟, it will schedule the job and

call the „Job Dispatcher‟. If „Self Optimization

Manager‟ finds the resource in „Active Resource‟

then it will wait for the resource to be transferred to

the passive resource.

7. „Job Dispatcher‟ will dispatch the job to the

respective resources.

8. „Monitoring Manager‟ will start creating

checkpoints for each resource executing the job and

will wait for an acknowledgement from the resource

either about the successful completion of the job or

an incomplete execution of the job.

8.1. „Self-Protection Manager‟ will start checking

for any malfunction in the resource while

executing the job.

9. If „Self-Monitoring Manager‟ receives an

acknowledgment about incomplete execution of the

job,

10. then it will add the partially executed job from the

latest checkpoint created by the „Monitoring

Manager‟ to the „Temp Job Queue‟.

11. „Monitoring Manager‟ will call the „Self

Configuration Manager‟ to remove the resource

from the „Active Resource‟ and add it to the „Faulty

Resource‟.

12. „Self-Configuration Manager‟ will remove the

resource from the „Active Resource‟ and will add it

to the „Faulty Resource‟.

13. If „Self Protection Manager‟ observes any kind of

malfunction, it will call „Self -Monitoring Manager‟

and will pass the resource id.

14. The „Self-Monitoring Manager‟ will add the

executing job in the resource reported by „Self-

Protection Manager „to the „Temp Job Queue‟ using

the latest job checkpoint created by „Monitoring

Manager‟.

15. „Monitoring Manager‟ will then call the „Self-

Configuration Manager‟ to remove the resource

reported by „Self-Optimization Manager‟ from the

„Active Resource.

16. „Self-Configuration Manager‟ will remove the

resource reported by the „Self-Protection Manager‟

and will add it to the „Faulty Resource‟.

17. If „Monitoring Manager‟ receives an

acknowledgement from the resource about the

successful completion of the

18. job then it will pass the result of the executed to the

„Job Return Manager‟.

19. The „Job Return Manager‟ will return the job to the

respective client.

20. „Monitoring Manager‟ will now call the „Self-

Configuration Manager‟ to remove the resource

from „Active Resource‟.

21. „Self-Configuration Manager‟ will remove the

resource from the „Active Resource‟ and will add it

to the „Passive Resource‟.

22. „Self-Healing Manager‟ will be always checking for

any resource in the „Faulty Resource‟. If it finds

any, then it will remove all the threats from the

resource.

23. „Self-Healing Manager‟ will be always checking for

any resource in the „Faulty Resource‟. If it finds

any, then it will remove all the threats from the

resource.

24. The „Self-Protection Manager‟ will check that

resource in the „Faulty Resource‟ if it is free of any

threats or not.

25. „Self-Protection Manager‟ will return true if the

resource is healed and false if it is not healed. If it

returns false, the „Self-Healing Manager‟ will again

start healing the resource.

26. If „Self-Protection Manager‟ returns true then „Self-

Healing Manager‟ will call the „Self-Configuration

Manager‟ to remove the resource from the „Faulty

Resource‟.

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.6, July 2013

22

SUBMIT JOB

(CLIENT)

JOB

POOL

AUTONOMIC

MANAGER

RESOURCE MANAGER

JOB

DISPATCHER

MONITORING

MANAGER

JOB RETURN MANAGER/
JOB EXCHANGE

MANAGER

NEW

RESOURCEJOB

QUEUE

TEMP JOB QUEUE

RESOURCES

JOB EXCHANGE MANAGER

LOCAL GRID G2

LOCAL GRID 3

LOCAL GRIG
4

LOCAL

GRID n

LOCAL GRID 1

Figure 1: Grid connected network

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.6, July 2013

23

Client

JOB

QUEUE

TEMP

JOB

QUEUE

SELF-CONFIGURATION

MANAGER

SELF-OPTIMIZATION

MANAGER

SELF-PROTECTION

MANAGER

SELF-HEALING MANAGER

MONITORING MANAGER

(checkpoint)

JOB

DISPATCHER

JOB RETURN

MANAGER

RESOURCE Rn

 RESOURCE R2

 RESOURCE R1

 NEW RESOURCE

PASSIVE

RESOURCE ACTIVE

RESOURCE

FAULTY

RESOURCE

JOB JOB

TRANSMITTER RECEIVER

JOB

POOL

AUTONOMIC

MANAGER

RESOURCES

RESOURCE MANAGER

1

1.1

2

3

4

5

6

7

8

8.1

9, 13

12

10, 14, 18

28

27, 29

16

17

25

 22

19, 30

20

21,234

11, 15, 24

26

LGn

31

33

32

JOB EXCHANGE MANAGER

Figure 2: Proposed architecture

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.6, July 2013

24

27. The „Self-Configuration Manager will remove the

resource from the „Faulty Resource‟ and add it to

the „Passive Resource‟.

28. If there is any resource who wants to join the grid

then it will send a request to the „Self-Configuration

Manager‟.

29. The „Self-Configuration Manager‟ will call the „Self-

Protection Manager‟ to check the resource.

30. The „Self-Protection Manager‟ will return either true

or false to the „Self-Configuration Manager‟.

31. If „Self-Protection Manager‟ will return false then

„Self -Configuration Manager‟ will discard the

resource request to add it in the grid.

32. If „Self-Protection Manager‟ will return true then

„Self-Configuration Manager‟ will add the resource

to the „Passive Resource‟.

33. The „Job Transmitter‟ will check the timestamp

against each job in the „Job Queue‟ and will send

the job with the largest time stamp to the nearest

local grid in the network.

34. The „Job Receiver‟ in „Job Exchange Manager‟ will

receive the job sent by the nearest grid.

35. The „Job Transmitter‟ will receive the job given by

the „Self-Optimizer Manager‟ in step 5 and will

send it to the nearest local grid.

4.2 Algorithm for Protection Manager
1. Get all the resources in ACTIVE RESOURCE

2. Use Negative Selection Algorithm to Check

Resources

3. If no threats detected then

Return True

4. Else

Return False

5. If return is equal to false

Pass the resource id to Monitoring

Manager

4.3 Algorithm for Self Healing Manager
1. Check the FAULTY RESOURCE for the resources

2. If Healed or Repaired

Call SELF-PROTECTION Manager

Call SELF- CONFIGURATION

MANAGER to add the resource to PASSIVE

RESOURCE

3. Else

Call SELF CONFIGURATION

MANAGER to remove the resource from

RESOURCE MANAGER

4.4 Algorithm for Self Optimization

Manager
1. If TEMP JOB QUEUE ! = NULL, then

Check for resource in PASSIVE

RESOURCE

IF PASSIVE RESOURCE is equal to

NULL

 CALL JOB TRANSMITTER

Else

 Schedule the job using

GENETIC ALGORITHM

 Call Job Dispatcher

2. Else

If JOB QUEUE != NULL, then

 Check for resource in PASSIVE

RESOURCE

 If PASSIVE RESOURCE IS

equal to NULL

 CALL JOB

TRANSMITTER

 Else

 Schedule the job

USING GENETIC ALGORITHM

 Call Job Dispatcher

Else

 Repeat step 1 to 2

4.5 Algorithm for Self Optimization

Manager
This manager will add and remove a resource R from

the Grid.

1. If a Resource send a request to autonomic

manager

2. Call self-Configuration manager

3. Self-configuration manager then invokes Self-

Protection manager which will check the

resource R for any defects or threat. (so that it

does not make the system unstable)

4. If resource R is good, then

Return True to Self-Configuration Manager

5. Add the resource to the Passive Resources

6. Else

7. Discard the Resource R Request

4.6 Remove a resource from the Grid
1. If a resource sends a request to autonomic

manager

2. Call configuration manager

3. If Resource R is in Passive Resource or Faulty

Resource, then

Remove the Resource R From resource

manager

4. else

5. Configuration Manager will send the resource

ID R to Monitoring Manager

6. Monitoring manager will add the partially

executed job to the Temp job queue and Return

TRUE

7. If TRUE

8. Self-configuration Manager will remove the

Resource R from Resource Manager

4.7 If a resource R quits while a job

execution is in progress
1. Monitoring manager will add the last

checkpoint of the job executing in resource R

to TEMP JOB queue.

Call self-configuration Manager to remove the

resource from ACTIVE RESOURCE

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.6, July 2013

25

5. CONCLUSION
Due to the inherent complexity, heterogeneous and dynamism

of Grid systems, achieving large-scale distributed computing

in Grids turns out to be an elaborated work. One way for this

problem is using autonomic computing, which can change its

behavior in response to changes in the status of the system.

We have presented an architecture which merges Grid

scheduling with automatic computing techniques in order to

provide self-managing behavior.

In this project autonomic computing features is used in Grid

to manage the grid more efficiently. We propose an

autonomic Grid architecture as a possible solution, which can

make decisions based on the current status of the system.

Finally, all resources are used appropriately which in turn

increases the performance of the Grid and at the same time the

Grid security has been taken into consideration in this

architecture. This architecture minimizes the risk of resource

failure as the resources are being monitored continuously by

the autonomic manager.

6. ACKNOWLEDGMENTS
Our special thanks to the Head of the Department of

Computer science and engineering and Dean R&D Dr (Prof.)

M.K.Ghosh of Sikkim Manipal Institute of Technology

Majhitar for granting permission to use the infrastructural

facility and Dr. (Prof.) C.T.Singh of Sikkim Manipal Institute

of Technology, Majhitar for his guidance.

7. REFERENCES
[1] Chinmoy Kar, V.K.Rakesh, Tapas Samanta and S.

Banerjee, 2012. A New Approach to Grid Scheduling

using Random Weighted Genetic Algorithm with Fault

Tolerance Strategy. International Journal of Computer

Applications (0975–8887), Volume 48- No.23.

[2] Ebrahim Aghaei, Mohammad Saniee Abadeh,

Mohammad Hossein Yektaie, , 2012. An adaptive

sheduling system for computational grid using autonomic

computing. International Journal of Computer

Application(0975-888),volume 47-No.13.

[3] Nandagopal, M. & Dr. Uthariaraj, V.R. 2010. Fault

tolerant scheduling strategy for computational grid

environment.International Journal of Engineering

Science and Technology. Vol. 2(9), 4361-4372.

[4] J. M. Schopf, 2003. Ten actions when grid scheduling ,in

Grid resource management Management. State of theArt

and Future Trends, first ed., Springer, pp. 15-23.

[5] M. Parashar, H. Liu and et al., 2006. AutoMate:Enabling

Autonomic Applications on the Grid. ClusterComputing,

vol. 9, no. 2, pp. 161-174.

[6] IBM White Paper, 2005. An Architectural Blueprint for

Autonomic Computing. 3th ed., IBM Corporation.

[7] Garg, R, Singh, A.K. May, 2011. Multi-objective

optimization to workflow grid scheduling using reference

point based evolutionary algorithm, International Journal

of Computer Application (0975-8887), Vol. 2(6).

IJCATM : www.ijcaonline.org

