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ABSTRACT
In this paper, the Bayes estimators of the unknown parameters
of the Lomax distribution under the assumptions of gamma pri-
ors on both the shape and scale parameters are considered. The
Bayes estimators cannot be obtained in explicit forms. So we pro-
pose Markov Chain Monte Carlo (MCMC) techniques to gen-
erate samples from the posterior distributions and in turn com-
puting the Bayes estimators. Point estimation and confidence in-
tervals based on maximum likelihood and bootstrap methods are
also proposed. The approximate Bayes estimators obtained un-
der the assumptions of non-informative priors, are compared with
the maximum likelihood estimators using Monte Carlo simula-
tions. One real data set has been analyzed for illustrative purposes.
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1. INTRODUCTION
Record values and the associated statistics are of interest and
importance in many areas of real life applications involving datd
relating to meteorlogy, sport, economics and lifetesting. Many
authors have studied records and associated statistics. Among
them are Resnick [25], Nagaraja [21], Ahsanulla [3, 4], Arnold
et al. [6,7], Raqab and Ahsanulla [24], Raqab [23] and Abd Ellah
[1, 2].
The Lomax distribution belongs to the class of decreasing failure
rate distributions see also Chahkandi and Ganjali, [9] Sometimes
it is called Pareto distribution of the second kind or Pareto Type-
II distribution. It was introduced by Lomax [18] as a model for
business failure data. For its applications as lifetime distribution
and extensions, we refer to Marshall and Olkin [19] Bryson [8]
has argued that Lomax distributions provide a very good alterna-
tive to common lifetime distributions like exponential, Weibull,
or gamma distributions when the experimenter presumes that the
population distribution may be heavy-tailed. Details on Pareto
distributions as well as areas of application can be found in
Arnold [5], Lomax distribution can be considered as a mixture of
the exponential gamma distribution. Lomax distribution includes
increasing and decreasing hazard rates as well. Lomax distribu-
tion has been shown to be useful for modeling and analizing the
life time data in medical and biological sciences, engineering,

etc. So, it has been received the greatest attention from theoret-
ical and applied statisticians primarily due to its use in reliabil-
ity and lifetesting studies. Many statistical methodes have been
developed for this distribution, for a review of Lomax distribu-
tion see Habibullh and Ahsanullah [15], Upadhyay and Pesh-
wani [29] and Abd Ellah [1, 2] and references of them. Agreat
deal of research has been done on estimating the parameters of a
Lomax using both classical and Bayesian techniques.
Therefore, the purpose of this paper is to develops the Bayes es-
timates and Markov Chain Monte Carlo (MCMC) techniques to
compute the credible intervals and bootstrap confidence intervals
of the unknown parameters of Lomax distribution under the up-
per record values.
Let X1,X2,X3, · · · be a sequence of independent and identi-
cally distributed random variables with cdf F (x) and pdf f (x).
Set Yn = max (X1,X2,X3, · · · ,Xn), n ≥ 1, Xj is said to be
an upper record and is denoted by XU(j) if Yj > Yj−1, j > 1.
Let XU(1),XU(2),XU(3), · · · ,XU(n) be the first upper record
valuse of size n arising from a sequence {Xi} of i.i.d Lomax
variables with the probability density function pdf

f(x) = αβα(x+ β)−(α+1), x ≥ 0, α, β > 0. (1)

and cumulative distribution function cdf

F (x) = 1− βα(x+ β)−α, x ≥ 0, α, β > 0, (2)

where β is the scale parameter and α is the shape parameter.
The rest of the paper is organized as follows. In Section 2, give a
brief description of Markov chain Monte Carlo (MCMC). MLE
and parametric bootstrap confidence interval are discussed in
Section 3 and 4. Section 5 describes Bayes estimates and con-
struction of credible intervals using the MCMC techniques. Sec-
tion 6 contains the analysis of a real life data set to illustrate our
proposed method. A simulation studies are reported in order to
give an assessment of the performance of the different estimation
methods in Section 7. Finally we conclude with some comments
in Section 8.

2. MARKOV CHAIN MONTE CARLO
TECHNIQUES

Markov chain Monte Carlo (MCMC) methods use computer
simulation of Markov chains in the parameter space Gilks et
al. [14] and Gamerman [11]. The Markov chains are defined in
such a way that the posterior distribution in the given statisti-
cal inference problem is the asymptotic distribution. This allows
to use ergodic averages to approximate the desired posterior ex-
pectations. Several standard approaches to define such Markov
chains exist, including Gibbs sampling, Metropolis-Hastings and
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reversible jump, see for example Metropolis et al. [20] and Hast-
ings [17] Using these algorithms it is possible to implement pos-
terior simulation in essentially any problem which allow point-
wise evaluation of the prior distribution and likelihood function.

2.1 Gibbs sampler
The Gibbs sampling algorithm is one of the simplest Markov
Chain Monte Carlo algorithms. It was introduced by Geman and
Geman [13]. The paper by Gelfand and Smith [12] helped to
demonstrate the value of the Gibbs algorithm for a range of prob-
lems in Bayesian analysis. The scheme can best be described in
the following steps:
Algorithm 1

1. Choose an arbitrary starting point Φ(0) = (Φ
(0)
1 , · · · ,Φ(0)

d )
for which g

(
Φ(0)

)
> 0.

2. Generate Φ
(t)
1 from conditional distribution g(Φ1 |

Φ
(t−1)
2 ,Φ

(t−1)
3 , · · · ,Φ(t−1)

d ).

3. Generate Φ
(t)
2 from conditional distribution g(Φ2 |

Φ
(t)
1 ,Φ

(t−1)
3 , · · · ,Φ(t−1)

1 ).

4. Finally, generate Φ
(t)
d from conditional distribution g(Φd |

Φ
(t)
1 ,Φ

(t)
2 ,Φ

(t)
3 , · · · ,Φ(t−1)

d−1 ).

5. Repeat steps 2-4.

Often we treat the initially generated values as burn-in values
which are to be discarded. Usually, one will discard the first 1000
value or so.

2.2 The Metropolis-Hastings algorithm
Suppose that our goal is to draw samples from some distribution
f (Φ|x) = νg (Φ), where ν is the normalizing constant which
may not be known or very difficult to compute. The Metropolis-
Hastings (M-H) algorithm provides a way of sampling from
f (Φ|x) without requiring us to know ν. Let q

(
Φ(b)|Φ(a)

)
be

an arbitrary transition kernel, that is the probability of mov-
ing or jumping from current state Φ(a) to Φ(b). This is some-
times called the proposal distribution. The following algorithm
will generate a sequence of values Φ(1),Φ(2) · · · , which form a
Markov Chain with stationary distribution given by f (Φ|x).
Algorithm 2

1. Choose an arbitrary starting point Φ(0) for which
f
(
Φ(0)|x

)
> 0.

2. At time t, sample a candidate point or proposal Φ∗ from the
proposal distribution q

(
Φ∗|Φ(t−1)).

3. Calculate the acceptance probability

ρ
(
Φ(t−1),Φ∗

)
= min

[
1,

f (Φ∗|x) q
(
Φ(t−1)|Φ∗

)
f (Φ(t−1)|x) q (Φ∗|Φ(t−1))

]
. (3)

4. Generate U ∼ U (0, 1) .

5. If U ≤ ρ
(
θ(t−1),Φ∗

)
accept the proposal and set Φ(t) = Φ∗.

Otherwise, reject the proposal and set Φ(t) = Φ(t−1).

6. Repeat steps 2-5.

If the proposal distribution is symmetric, so q (Φ|Ψ) =
q (Ψ|Φ) for all possible Ψ and Φ then, in particular, we have
q
(
Φ(t−1)|Φ∗

)
= q

(
Φ∗|Φ(t−1)), so that the acceptance proba-

bility (3) is given by

ρ
(
Φ(t−1),Φ∗

)
= min

[
1,

f (Φ∗|x)

f (Φ(t−1)|x)

]
. (4)

3. ESTIMATION OF THE PARAMETERS
This section, estimate α and β, by considering the maximum
likelihood and compute the observed Fisher information based
on the likelihood equations. These will enable us to develop piv-
otal quantities based on the limiting normal distribution, the re-
sulting pivotal quantities can be used to develop interval esti-
mates.

3.1 Maximum likelihood estimation (MLE)
Suppose that x = x

U(1)
, x

U(2)
, ..., x

U(n)
be the first upper

record values of size n from Lomax (α, β). The likelihood func-
tion for observed record x given by see Arnold et al. [6]

`(α, β|x) = f(xu(n))

n−1∏
i=1

f(xu(i))

1− F (xu(i))
, (5)

where f(.) and F (.) are given, respectively, by (1) and (2) sub-
stituting f(.) and F (.) in the likelihood function obtain

`(α, β|x) = αnβα(xu(n) + β)−α
n∏
i=1

(xu(i) + β)−1. (6)

The log-likelihood function may then be written as

L(α, β|x) = log `(α, β|x)

= n logα+ α log β − α log
(
xu(n) + β

)
−

n∑
i=1

log
(
xu(i) + β

)
,

(7)

Upon differentiating (7) with respect to α, and β, and equat-
ing each result to zero, two equations must be simultaneously
satisfied to obtain MLE of α̂ and β̂, The maximum likelihood
equations of α, and β can be obtained as the solution of

∂L(α, β|x)

∂α
=
n

α
+ log β − log

(
xu(n) + β

)
, (8)

and

∂L(α, β|x)

∂β
=
α

β
− α(

xu(n) + β
) − n∑

i=1

1(
xu(i) + β

) . (9)

Solving ∂L(α,β|x)
∂α

= 0 for α gives, from (8)

α̂ =
n

log
(
xu(n) + β

)
− log β

(10)

Using (10) in (9) we obtain

n

β
[
log
(
xu(n) + β

)
− log β

] − n∑
i=1

1(
xu(i) + β

)
− n(

xu(n) + β
) [

log
(
xu(n) + β

)
− log β

] = 0.

(11)

Since (11) cannot be solved analytically some numerical meth-
ods such as Newton-Raphson iteration scheme must be em-
ployed.to solve (11) and get the MLE, β̂, and hence α̂, by using
the equation

α̂ =
n

log
(
xu(n) + β̂

)
− log β̂

(12)

3.2 Observed Fisher information
The asymptotic variances and covariances of the MLE for pa-
rameters α, and β are given by elements of the inverse of the
Fisher information matrix

Iij = E

[
− ∂2L

∂α∂β

]
; i, j = 1, 2. (13)
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Unfortunately, the exact mathematical expressions for the above
expectations are very difficult to obtain. Therefore, we give the
approximate (observed) asymptotic varaince-covariance matrix
for the MLE, which is obtained by dropping the expectation op-
erator E −

∂2L(α, β|x)

∂α2
−∂

2L(α, β|x)

∂α∂β

−∂
2L(α, β|x)

∂β∂α
−∂

2L(α, β|x)

∂β2


−1

(α̂,β̂)

=

[
var(α̂) cov(α̂, β̂)

cov(β̂, α̂) var(β̂)

]
,

with

∂2L(α, β|x)

∂α2
= − n

α2
, (14)

∂2L(α, β|x)

∂α∂β
=
∂2L(α, β|x)

∂β∂α
=

1

β
− 1(

xu(n) + β
) , (15)

∂2L(α, β|x)

∂β2
=
−α
β2

+
1(

xu(n) + β
)2 +

n∑
i=1

1(
xu(i) + β

)2 .
(16)

The asymptotic normality of the MLE can be used to compute
the approximate confidence intervals for parameters α, and β.
Therefore, (1 − γ)100% confidence intervals for parameters
α, and β become

α̂± Zγ/2
√
var(α̂) and β̂ ± Zγ/2

√
var(β̂), (17)

where Zγ/2 is the percentile of the standard normal distribution
with right-tail probability γ/2.

4. BOOTSTRAP CONFIDENCE INTERVALS
This subsection, propose to use confidence intervals based on the
parameteric bootstrap methods (i) percentile bootstrap method
(Boot-p) based on the idea of Efron [10]. (ii) bootstrap-t method
(Boot-t) based on the idea of Hall [16]. The algorithms for es-
timating the confidenc eintervals using both methods are illus-
trated as follows.

4.1 Percentile bootstrap method
Algorithm 3

1. From the original data x = x
U(1)

, x
U(2)

, ..., x
U(n)

compute

the ML estimates of the parameters α̂ and β̂ by equations
(11) and (12).

2. Use α̂ and β̂ to generate a bootstrap sample x∗ = x∗
U(1)

,

x∗
U(2)

, ..., x∗
U(n)

.

3. As in step 1, based on x∗ compute the bootstrap sample es-
timates of α and β, say α̂∗and β̂∗.

4. Repeat steps 2-3 N times representing N bootstrap MLE’s
of (α, β) based on N different bootstrap samples.

5. Arrange all α̂∗′s and β̂∗′s, in an ascending order to obtain
the bootstrap sample (ϕ[1]

l , ϕ
[2]
l , ..., ϕ

[N ]
l ), l = 1, 2 (where

ϕ1 ≡ α̂∗, ϕ2 ≡ β̂∗).

Let G(z) = P (ϕl ≤ z) be the cumulative distribution function
of ϕ1.Define ϕlboot = G−1(z) for given z. The approximate
bootstrap 100(1− γ)% confidence interval of ϕl is given by

[ϕlboot(
γ

2
), ϕlboot(

1− γ
2

)].

4.2 Bootstrap-t method
Algorithm 4

1. From the original data x = x
U(1)

, x
U(2)

, ..., x
U(n)

compute

the ML estimates of the parameters: α̂ and β̂ by equations (11)
and (12).

2. Using α̂ and β̂ generate abootstrap sample {x∗1, x∗2, ..., x∗n}.
Based on these data, compute the bootstrap estimate of α and β
using (11 and 12), say α̂∗and β̂∗ and following statistics

T ∗1 =

√
n(α̂∗ − α̂)√
V ar(α̂∗)

and T ∗2 =

√
n(β̂∗ − β̂)√
V ar(β̂∗)

where V ar(α̂∗) and V ar(β̂∗) are obtained using the Fisher in-
formation matrix.

3. Repeat step 2, N boot times.

4. For the T ∗1 and T ∗2 values obtained in step 2, determine the
upper and lower bounds of the 100(1− γ)% confidence interval
of α and β as follows: let H(x) = P (T ∗i ≤ x), i = 1, 2 be
the cumulative distribution function of T ∗1 and T ∗2 . For a given x,
define

α̂Boot−t(x) = α̂+ n−1/2
√
V ar(α̂)H−1(x)

and

β̂Boot−t(x) = β̂ + n−1/2
√
V ar(β̂)H−1(x).

Here also, V ar(α̂) and V ar(β̂) can be computed as same
as computing the V ar(α̂∗) and V ar(β̂∗). The approximate
100(1− γ)% confidence interval of α and β are given by

[
α̂Boot−t(

γ

2
), α̂Boot−t(1−

γ

2
)
]

and[
β̂Boot−t(

γ

2
), β̂Boot−t(1−

γ

2
)
]
.

5. BAYES ESTIMATION USING MCMC
The use of Bayesian MCMC to obtain inferences for popula-
tion parameters is attractive because it: (i) allows a full Bayesian
analysis of the data including appropriate descriptions of the un-
certainty in any function of the parameters, (ii) it allows a wide
range of descriptions of the joint distribution of uncertainties
in the data including the magnitude of historical peaks and ex-
ceedance thresholds, and (iii) the numerical procedures are rel-
ative straightforward without significant increase in complexity
or computational effort with additional descriptions of data un-
certainty, nor does it require that the parameter space be rep-
resented by a grid for numerical integration. The Bayesian ap-
proach is introduced and its computational implementation with
MCMC algorithms is described. Gibbs sampling procedure and
the MH method are used to generate samples from the posterior
density function and in turn compute the Bayes point estimates
and also construct the corresponding credible intervals based on
the generated posterior samples. Considering model (1), assume
the following gamma prior densities for α and β as

π1(α|a, b) =


ba

Γ(a)
αa−1 exp (−bα) if α > 0

0 if α ≤ 0.
(18)
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and

π2(β|c, d) =


dc

Γ(c)
βc−1 exp (−dβ) if β > 0

0 if β ≤ 0.
(19)

Multiplying π1(α|a, b) by π2(β|c, d) we obtain the joint prior
density of α and β; given by

π(α, β) =
badc

Γ(a)Γ(c)
αa−1βc−1 exp (−bα− dβ) (20)

Based on the likelihood function of the observed sample is same
as (6) and the joint prior in (20), the joint posterior density of α
and β given the data is

π∗(α, β|x) =
`(α, β|x)× π(α, β)∫∞

0

∫∞
0
`(α, β|x)× π(α, β)dαdβ

, (21)

therefore, the Bayes estimate of any function of α and β say
g(α, β), under squared error loss function is

g̃(α, β) = Eα,β|data(g(α, β))

=

∫∞
0

∫∞
0
g(α, β)`(α, β|x)π(α, β)dαdβ∫∞

0

∫∞
0
`(α, β|x)π(α, β)dαdβ

. (22)

Generally, the ratio of two integrals given by (22) can not be ob-
tained in a closed form. In this case, use the MCMC method
to generate samples from the posterior distributions and then
compute the Bayes estimator of g(α, β) under the squared er-
rors loss (SEL) function. Therefore, we propose the approaches
of MCMC technique to approximate (22) . See, for example,
(Robert and Casella [27]) and Recently, (Rezaei et al. [26], Soli-
man et al. [28].

5.1 MCMC approach
Consider the MCMC method to generate samples from the pos-
terior distributions and then compute the Bayes estimates of
the parameters α and β under the squared errors loss (SEL)
function. A wide variety of MCMC schemes are available, and
it can be difficult to choose among them. An important sub-
class of MCMC methods are Gibbs sampling and more general
Metropolis-within-Gibbs samplers. The advantage of using the
MCMC method over the MLE method is that we can always
obtain a reasonable interval estimate of the parameters by con-
structing the probability intervals based on the empirical poste-
rior distribution. This is often unavailable in maximum likeli-
hood estimation. Indeed, the MCMC samples may be used to
completely summarize the posterior uncertainty about the pa-
rameters and , through a kernel estimate of the posterior distri-
bution. This is also true of any function of the parameters.
The expression for the joint posterior can be obtained up to pro-
portionality by multiplying the likelihood with the joint prior and
this can be written as

π∗(α, β) ∝ αn+a−1βα+c−1×

exp[−(bα+ dβ + α log(xu(n) + β)]

n∏
i=1

(
xu(i) + β

)−1 (23)

from (23) it is clear that the posterior density function of α given
β is proportional to

π∗1(α|β) ∝ αn+a−1 exp−α
[
b+ log(xu(n) + β)− log β

]
.

(24)
Therefore, the posterior density function of α given β, is gamma
with parameters (n+a) and

(
b+ log(xu(n) + β)− log β

)
and,

therefore, samples of α can be easily generated using any gamma
generating routine.

The posterior density function of β given α can be written as

π∗2(β|α) ∝ βα+c−1×

exp

[
−dβ − α log(xu(n) + β)−

n∑
i=1

log(xu(i) + β)

]
(25)

The posterior distribution of β given α Eq. (25) cannot be re-
duced analytically to well known distributions and therefore it is
not possible to sample directly by standard methods, but the plot
of it (see Figure. 1) show that it is similar to normal distribution.
So to generate random numbers from this distribution, we use the
Metropolis-Hastings method with normal proposal distribution.
The choice of the hyperparameters (a, b, c, d) which make (25)
close to the proposal distribution and obviously more conver-
gence of the MCMC iteration. We propose the following MCMC
algorithm to draw samples from the posterior density functions;
and in turn compute the Bayes estimates and also, construct the
corresponding credible intervals.
Algorithm 5

1. β0 = β̂, M = nburn.
2. Generate α1 from gamma distribution π∗1(α|β).

3. Generate β1 from π∗2(β|α) using (MH) algorithm in subsec-
tion (2.2).
4. Compute α(t) and .β(t).

5. Repeat steps 2-4 N times.
6. Obtain the Bayes estimates of α and β with respect to the
SEL function as

Ê(α|data) =
1

N −M

N∑
i=M+1

αi. ,.

Ê(β|data) =
1

N −M

N∑
i=M+1

βi. .

7. To compute the credible intervals of α and β, α1, ..., αN or-
der and β1, ..., βN as α(1) < ... < α(N) and β(1) < ... < β(N).
Then the 100(1 − γ)% symmetric credible intervals of α and β
become

(α
(N

γ
2
)
, α

(N(1− γ
2
))

) and (β
(N

γ
2
)
, β

(N(1− γ
2
))

).

6. ILLUSTRATIVE EXAMPLE
To illustrate the inferential procedures developed in the preced-
ing sections, we choose the real data set which was also used in
Lawless (1982-pp 185). These data are from (Nelson [22]) con-
cerning the data on time to breakdown of an insulating fluid be-
tween electrodes at a voltage of 34 k.v. (minutes). The 19 times
to breakdown are

0.96 4.15 0.19 0.78 8.01 31.75 7.35
6.50 8.27 33.91 32.52 3.16 4.85 2.78
4.67 1.31 12.06 36.71 72.89

Therefore, we observe the upper record values from the observed
data as follows: 0.96, 4.15, 8.01, 31.75, 33.91, 36.71, 72.89.
Amodel suggested by engineering considerations is that, for a
fixed voltage level, time to breakdown has a Lomax distribu-
tion. Based on these seven upper record values, we compute the
approximate MLEs, Bootstrap (Boot-p, Boot-t) and Bayes esti-
mates of α and β using MCMC method, since we do not have
any prior information availiable, we used noninformative priors
(a = b = c = d = 0) on both α and β.The density func-
tion of π∗2(β|α) as given in (25) is plotted Figure 1. It can be
approximated by normal distribution function as mentioned in
Subsection 5.1. Also the 95%, approximate maximum likeIhood

10
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estimation (AMLE) confidence intervals, Bootstrap confidence
intervals and approximate credible intervals based on the MCMC
samples, the results are given in Table 1. The plot of histogram
of α and β generated by MCMC method are given in Figures 2
and 3. This was done with 1000 bootstrap sample and 10 000
MCMC sample and discard the first 1000 values as ‘burn-in’.

Fig. 1. Posterior density function of β given α

Table 1. Results obtained by MLE, Bootstrap and
MCMC method of α and β.

Method (α, β) Point Interval Length
MLEs α 3.0448 [-1.6138, 7.7034] 9.3172

β 8.1311 [-19.686, 35.949] 55.6348
Boot-p α 2.9237 [1.28610, 6.4212] 5.1351

β 9.2354 [2.0133, 18.9971] 16.9838
Boot-t α 2.8397 [3.36570, 9.6159] 6.2502

β 8.8782 [2.7398, 19.6096] 16.8698
MCMC α 2.8864 [0.76820, 6.9523] 6.1841

β 8.2531 [0.1675, 26.9346] 26.7671

Fig. 2. Histogram of Alpha generated by MCMC method

Fig. 3. Histogram of Beta generated by MCMC method

7. SIMULATION STUDY
To evaluate the behavior of the proposed methods, we simulated
1000 upper record samples from a Lomax distribution.
Use different sample of sizes (n), different hyperparameters
(a, b, c, d) and three sets of parameter values (α, β) = (2.2) ,
(1, 2) , (1, 1) mainly to compare the MLEs and different Bayes
estimators and also to explore their effects on different parameter
values. First, use the noninformative gamma priors for both the
parameters, that is, when the hyperparameters are 0. Call it prior
0: a = b = c = d = 0. Note that as the hyperparameters go to 0,
the prior density becomes inversely proportional to its argument
and also becomes improper. This density is commonly used as
an improper prior for parameters in the range of 0 to infinity, and
this prior is not specifically related to the gamma density. For
computing Bayes estimators, other than prior 0, also used infor-
mative prior, including prior 1, a = 2, b = 1, c = 2 and d = 1,
we used the squared error loss function to compute the Bayes
estimates. Also computed the Bayes estimates and 95% credi-
ble intervals based on 10 000 MCMC samples and discard the
first 1000 values as ‘burn-in’. Average Bayes estimates, mean
squared errors (MSEs) and coverage percentages. For compar-
ison purposes, we also compute the MLEs and the 95% confi-
dence intervals based on the observed Fisher information matrix.
Finally, use the same 1000 replicates to compute different esti-
mates Tables 2-4 report the results based on MLEs and the Bayes
estimators (using both the Gibbs sampling procedure) using non-
informative prior and informative prior on both α and β.

Table 2. Average values of the different estimators, the
corresponding MSEs and coverage percentages when (α, β) = (2, 2).

n MLE MCMC(Prior 0) MCMC(Prior 1)
α β α β α β

5 1.8676 2.3165 1.7207 2.3148 1.7668 2.1863
0.5432 0.3713 0.5348 0.3051 0.2149 0.1801
0.951 0.970 0.955 0.997 0.985 0.998

7 1.9983 2.4212 1.8743 2.4492 1.8693 2.1855
0.5287 0.3326 0.5171 0.3024 0.2102 0.1778
0.960 0.970 0.975 0.985 0.975 0.987

9 2.0783 2.3297 1.9918 2.4593 1.9553 2.1544
0.5106 0.3205 0.4888 0.3005 0.2069 0.1730
0.935 0.980 0.965 0.986 0.990 0.985

12 2.1487 2.3616 2.0917 2.546 2.0441 2.1774
0.5007 0.3093 0.4639 0.2972 0.2018 0.1696
0.970 0.975 0.970 0.998 0.990 0.977

15 2.0757 2.1450 2.0448 2.4396 2.0301 2.1337
0.4432 0.2456 0.4430 0.2330 0.2000 0.1675
0.955 0.939 0.965 0.999 0.970 0.993

18 2.0913 2.2884 2.0616 2.5471 2.0471 2.1752
0.3029 0.2303 0.2774 0.2259 0.1869 0.1380
0.945 0.960 0.945 0.997 0.950 0.999

20 2.0999 2.2256 2.0734 2.4950 2.0652 2.1500
0.2444 0.2044 0.2288 0.2001 0.1595 0.1345
0.965 0.965 0.970 0.999 0.981 0.977

23 2.1479 2.3117 2.1252 2.6028 2.1044 2.1957
0.2396 0.1998 0.2144 0.1833 0.1455 0.1335
0.975 0.980 0.975 0.963 0.980 0.999

25 2.0209 2.0786 2.0076 2.4299 2.0125 2.0993
0.1960 0.1658 0.1864 0.1534 0.1104 0.1035
0.980 0.940 0.980 0.997 0.982 0.973

Note: The first figure represents the average estimates,with
the corresponding MSEs and coverage percentages

reported below it in parentheses.

8. CONCLUSION
In this paper consider the Bayes estimation of the unknown

parameters of the Lomax distribution when the data are upper
record values. We assume the gamma priors on the unknown
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parameters and provide the Bayes estimators under the
assumptions of squared error loss functions. It is observed that
the Bayes estimators can not be obtained in explicit forms and
they can be obtained using the numerical integration. Because
of that we have used MCMC technique to generate posterior

sample. we observe the following.

(i) From the results obtained in Tables 2 and 4. It can be seen
that the performance of the Bayes estimators with respect to the
noninformative prior (prior 0) is quite close to that of the MLEs.

(ii) Tables 2-4 report the results based on noninformative prior
(prior 0) and informative prior, (prior 1) also in these case the
results based on using the Gibbs sampling procedure are quite
similar in nature when comparing the Bayes estimators based on
informative prior clearly shows that the Bayes estimators based
on prior 1 perform better than the MLEs, in terms of MSEs.

(iii) From Tables 2-4, it is clear that the Bayes estimators based
on informative prior perform much better than noninformative
prior and the MLEs in terms of MSEs.

Table 3. Average values of the different estimators, the
corresponding MSEs and coverage percentages when (α, β) = (1, 2).

n MLE MCMC(Prior 0) MCMC(Prior 1)
α β α β α β

5 0.9803 2.2879 0.8836 2.1301 1.1004 2.279
0.1920 0.2534 0.1433 0.2215 0.1117 0.1787
0.935 0.985 0.955 0.999 0.996 0.995

7 1.0592 2.2741 0.9907 2.2714 1.1493 2.2668
0.1453 0.2384 0.1141 0.2156 0.1106 0.1584
0.965 0.990 0.975 0.986 0.995 0.988

9 1.0759 2.1478 1.0293 2.2829 1.1531 2.2360
0.1316 0.2249 0.1108 0.2092 0.1073 0.1231
0.960 0.995 0.980 0.966 0.990 0.993

12 1.0558 2.1032 1.0236 2.2877 1.1238 2.2016
0.1142 0.2193 0.1060 0.2031 0.0939 0.1177
0.980 0.990 0.981 0.995 0.994 0.974

15 1.0687 2.3804 1.0369 2.3984 1.1135 2.227
0.0964 0.1871 0.0863 0.1750 0.0818 0.1011
0.975 0.990 0.970 0.988 0.965 0.979

18 1.023 2.2201 0.9993 2.3238 1.0678 2.1784
0.0860 0.1618 0.0759 0.1591 0.0729 0.1004
0.970 0.985 0.971 0.966 0.955 0.964

20 1.0174 2.3071 0.9961 2.3551 1.0593 2.202
0.0727 0.1498 0.0651 0.1385 0.0612 0.0966
0.967 0.958 0.963 0.982 0.947 0.961

23 1.009 2.1160 0.9899 2.1267 1.0429 2.3568
0.0621 0.1263 0.0541 0.1180 0.0498 0.0913
0.958 0.964 0.947 0.963 0.934 0.967

25 0.9989 1.9931 0.9958 2.167 0.9799 2.13
0.0492 0.1040 0.0349 0.1010 0.0325 0.0869
0.964 0.975 0.947 0.981 0.968 0.992

Note: The first figure represents the average estimates,with
the corresponding MSEs and coverage percentages

reported below it in parentheses.

Table 4. Average values of the different estimators, the
correspondingMSEs and coverage percentages when (α, β) = (1, 1).

n MLE MCMC(Prior 0) MCMC(Prior 1)
α β α β α β

5 1.1804 1.1832 1.1168 1.1987 1.0987 1.1592
0.2165 0.2207 0.1978 0.2094 0.1694 0.1968
0.925 0.995 0.945 0.960 0.962 0.974

7 1.0902 1.0398 1.0561 1.0356 1.0275 1.1005
0.2077 0.2171 0.1969 0.2022 0.1670 0.1893
0.965 0.995 0.975 0.998 0.985 0.999

9 1.1776 1.8380 1.1396 1.0661 1.2678 1.1074
0.2017 0.2024 0.1888 0.1985 0.1506 0.1754
0.985 0.995 0.965 0.958 0.965 0.991

12 1.1023 1.687 1.0791 1.9906 1.1873 1.0587
0.1835 0.1928 0.1636 0.1759 0.1479 0.1616
0.960 0.995 0.955 0.974 0.950 0.988

15 1.1076 1.2317 1.0874 1.0586 1.1748 1.0663
0.1552 0.1847 0.1508 0.1681 0.1260 0.1387
0.965 0.985 0.955 0.949 0.955 0.963

18 1.0670 1.3539 1.0502 1.3696 1.1277 1.0213
0.1264 0.1679 0.1103 0.1543 0.1091 0.1135
0.965 0.985 0.940 0.966 0.945 0.978

20 1.0586 1.3334 1.0438 1.2404 1.1151 1.2933
0.0973 0.1360 0.0618 0.1282 0.0599 0.0995
0.960 0.985 0.975 0.996 0.970 0.999

23 1.0782 1.1933 1.0647 1.0137 1.1255 1.026
0.0668 0.1102 0.0525 0.1052 0.0449 0.0891
0.961 0.990 0.950 0.963 0.945 0.973

25 1.0141 1.2294 1.0513 1.2461 1.0101 1.0042
0.0391 0.0926 0.0385 0.0899 0.0356 0.0688
0.956 0.968 0.964 0.978 0.963 0.986

Note: The first figure represents the average estimates,with
the corresponding MSEs and coverage percentages

reported below it in parentheses.
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