
International Journal of Computer Applications (0975 – 8887)

Volume 73– No.3, July 2013

18

Improving Fault Prediction using ANN-PSO in Object
Oriented Systems

Kayarvizhy N

Associate Professor,
Department of Computer
Science and Engineering,
AMC Engineering College

Bangalore – 560076, India

Kanmani S
Professor, Department of
Information Technology,

Pondicherry Engineering
College, Puducherry – 605014,

India

Rhymend Uthariaraj V
Professor & Director,

Ramanujam Computing Centre
Anna University, Chennai, India

ABSTRACT

Object oriented software metrics are computed and used in

predicting software quality attributes of object oriented

systems. Mapping software metrics to software quality

attributes like fault prediction is a complex process and

requires extensive computations. Many models have been

proposed for fault prediction. Since accuracy is of prime

importance in prediction models they are being constantly

improved through various research studies. Artificial Neural

network (ANN) has gained immense popularity due to its

adaptability to the problem at hand by training with known

data. Back propagation is a widely used ANN training

technique. However the back propagation technique leads to

slow convergence rate and an impending threat of getting

caught in local minima. In this paper we explore the Particle

Swarm Optimization (PSO) technique as an alternative to

optimize the weights of ANN for fault prediction in object

oriented systems. We evaluate the effect on prediction

accuracy that PSO brings to ANN compared to other

techniques like BP and Genetic Algorithm (GA). We also

evaluate prediction accuracy improvements by optimizing the

various parameters of PSO.

General Terms

Software Quality, Object Oriented Metrics and Particle

Swarm Optimization.

Keywords

swarm intelligence, particle swarm optimization, object

oriented metrics, artificial intelligence, software quality.

1. INTRODUCTION
Software quality is the most sought after aspect of an object

oriented software system during and after its development.

Software quality could be affected by a variety of factors and

occurrence of faults negatively impacts quality. Early

detection and removal of faults from the system is a major

step towards good quality software. Bellini et al [1] compared

the different models of fault prediction and concluded that

software quality has become one of the most important

requirements of a software system and that fault prediction

could be the key in controlling the quality of software

systems. Early prediction of the modules that could

potentially have a large number of faults saves a lot of effort,

time and cost and allows a focused approach for quality

enhancement measures.

A software quality model attempts to map an external quality

attribute (in this case faults) of software to its internal

attributes like size, inheritance, coupling, and cohesion. When

the internal attributes are measured and assigned a value; they

are referred as software metrics. Once the quality attributes

(external) are predicted using the software metrics (internal),

it becomes easy to control the quality of the product. During

the development of a software product the internal attributes

are measured and fed to the model. Based on the prediction

made by the model for the quality indicator, necessary

corrective and preventive actions can be taken. This ensures

that quality is managed even during the design and

development stage of a software product. Many software

quality prediction models have been proposed in the literature

[2] [3] [4] [5] [6] [7] [8]

Prediction accuracy is an important criterion that

differentiates software quality prediction models, the better

the prediction accuracy the more useful its application. Hence

strong emphasis is placed on improving the prediction

accuracy of models. So research efforts are focused not only

on proposing newer prediction models but also on improving

the prediction accuracy of existing, already proposed models.

Artificial neural network (ANN) is a non-linear mapping

model, representing the functioning of a human brain. ANN is

a powerful tool for modeling and have been successfully

applied to many areas like bankruptcy prediction [9] [10] [11],

handwriting recognition [12] [13], product inspection [14]

[15], and in fault detection [16] [17]. ANN is also a widely

accepted choice of fault prediction model [18] [19] [20] [21].

ANN is adaptive as it can change its structure based on the

information that flows through the network. This adaptability

is achieved by training the ANN with known data set. In an

ANN based prediction model, prediction accuracy can be

improved by optimizing the parameters of the model. ANN

parameters like number of input neurons, hidden layers,

hidden neurons, activation function, weights, etc can be

optimized. Since weights are the key to a well trained ANN,

which can map the inputs to outputs accurately, optimizing

weights of ANN has been considered in many research

studies.

ANN can be trained using many techniques. Back propagation

(BP) algorithm is probably the most widely used ANN

training technique in practical applications due to its inherent

simplicity and ease of implementation. BP technique is based

on gradient descent method. The concept is to have an error

function and use hill climbing or descent to find the weights.

This would optimize the task at hand. However studies have

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.3, July 2013

19

confirmed that back propagation is prone to the following

problems – it may get stuck at a local optimum [22] and it

may take a very long time to converge [23]. This led

researchers to attack the ANN training problem with other

methods.

Another technique for ANN weight optimization is by using

Genetic algorithms (GA). GA introduced in 1970s by John

Holland, are a family of evolutionary computation models

inspired by the concepts of genetics and evolution. GA

encodes the ANN weights as possible solutions for the

problem in the chromosomes of simulated biological

organisms. In each generation the organisms with best

chromosomes are chosen for reproduction. The probability of

crossover and mutation can be adjusted to determine the

outcome of the final result. This continues for a predefined

number of generations or until the problem is sufficiently

optimized. GA has parallel search strategy and global

optimization characteristics which helps the ANN to have a

higher prediction accuracy and faster convergence compared

to BP [24]. However the genetic operators like crossover and

mutation are inherently complex and hence make the

computational cost to increase exponentially [25]. The

convergence speed of GA, though better than BP, is still slow

and even stagnates as it approaches the optimum [26]. In this

paper our focus would be on ANN weight optimization using

Particle Swarm Optimization (PSO), PSO like GA, is an

evolutionary computation technique developed by Russel

Eberhart and Kennedy in 1995 [27] inspired by social

behavior of a flock of birds or school of fish. In PSO,

potential solutions like the weights of ANN are considered as

particles moving in the problem space. Iteratively, the

particles learn from each other and arrive at the optimal

solution for a given problem. PSO algorithm is used in many

applications involving prediction and forecasting like

prediction of chaotic systems [28], electric load forecasting in

[29], time series prediction [30] and stock market decision

making in [31] [32]. PSO is known to have a strong ability in

training ANN [33] [34] [35] for fault prediction. Unlike GA,

PSO has no evolution operators such as crossover and

mutation. Another advantage that PSO has over GA is that

there is no special requirement of encoding and decoding

operators for training the neural network.

The aim of our research is to have ANN trained by PSO

technique and observe the changes to prediction accuracy. We

compare the prediction accuracy of ANN-PSO with the

prediction accuracy of ANN models trained by BP and GA

techniques. We also explore optimizing the various

parameters of the PSO algorithm and how such optimization

affects the ANN-PSO prediction accuracy. For these

experiments we have considered data sets available online. In

section 2 we describe the Artificial Neural Network (ANN)

and its training mechanism. In Section 3 we introduce Particle

Swarm Optimization (PSO) algorithm and the steps involved

in it. We then introduce the ANN-PSO model where the

optimization of weights of ANN is done by the PSO

algorithm. Section 4 describes the experimental setups with

ANN-BP, ANN-GA and ANN-PSO and the comparative

results for them. Further experiments which consider the

various PSO parameters and the resulting optimum

parameters values are also shown in Section 4. Section 5

provides the conclusions and future course of actions derived

from this study.

2. FAULT PREDICTION USING ANN

2.1 Artificial Neural Network
Artificial Neural Network (ANN) is a simplified model of the

human nervous system. It is composed of many artificial

neurons that co-operate to perform the desired functionality.

ANN is an approximation function mapping inputs to outputs.

The ability to learn and adapt to the data set makes ANN

applicable in a variety of fields. A single neuron in ANN,

shown in Figure 1, takes its weighed inputs and produces a

single output as given by formula (1).

(1)

Fig 1: Artificial Neuron

The artificial neurons can be combined to form an artificial

neural network. A typical artificial neural network has three

layers – input, hidden and output. There are „n‟ input neurons

to map the inputs and „m' hidden neurons in a single hidden

layer. There could be more than one hidden layer as well. The

output neurons depend on the number of output variables that

we plan to map. Weights are used between input and hidden

and hidden and output layers respectively.

ANN exhibits some remarkable properties like adaptability,

learning by examples and generalization which makes it an

ideal candidate for pattern classification problems. Fault

prediction is a subset of classification problem where the fault

prone modules need to be identified and tagged. In the case of

object oriented systems the lowest level of abstraction is a

class. The prediction models like ANN identify classes that

could be faulty and tag them. The development team can then

work on the tagged classes and design them better.

The first step in the creation of a good fault prediction model

based on ANN, involves providing known information with

which the model can be trained. In our case we need to have

class level metrics data along with the fault details. The ANN

model is trained using this information. Once trained the ANN

model is ready to be used on fresh data set where only the

metrics are known and fault has to be predicted. The ANN

model is used to predict whether the classes in the fresh data

set are likely to be faulty or not. A properly trained ANN

would have a higher probability of prediction the faultiness of

classes. The probability is captured by the prediction accuracy

which is the percentage of correct classifications compared to

the overall classification. Though the prediction accuracy of

an ANN fault prediction model depends on various factors

like dataset, domain etc, the selection of good ANN

parameters is a major contributor.

w1

11

∑

∑

x1

x2

xn

Synaptic

Weights

Activation

function

y

ϴ
Threshold

w2

11

wn

11

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.3, July 2013

20

2.2 ANN Parameter Optimization
ANN is a complex model and its prediction accuracy can be

improved by optimizing its parameters. The parameters that

can be optimized in an ANN can be grouped under the

following categories

 Architecture

o Number of input neurons

o Number of hidden layers and hidden

neurons

o Number of output neurons

 Training

o Weights

o Training algorithm

o Training epochs

 Transfer function

 Data

o Selection

o Pre-processing

o Quantity and quality

The major challenge in constructing an ANN model is to find

the right values for all these parameters. Among these

parameters, weight optimization is considered an important

criterion that affects the performance of an ANN. ANN has to

be trained to get the optimal values for the weights. The

method employed is to have known samples of data with both

independent and dependent variables and alter the weights

based on how well the ANN predicts the dependent variable

(output) for given independent variables (inputs). The

difference in the values between predicted and actual is the

error. The aim is to minimize this error. This training can be

done in a variety of ways like gradient descent, GA, PSO,

Fuzzy Logic etc.

The training of an ANN is independent of the ANN structure

and hence can be decoupled and worked on separately. For

example, the same ANN, could be trained using different

algorithms like BP, GA, Fuzzy etc and we could then compare

how each of the training algorithm fared in predicting the

faults. This would help us to narrow down on the best training

algorithm for ANN with the given data set.

3. TRAINING ANN USING PSO

3.1 PSO
PSO employs social learning concept to problem solving. It

was developed by James Kennedy and Russell Eberhart in

1995. This is an evolutionary computation method based on

the intelligence gained by a swarm through co-operation and

sharing of information. Birds flocking together generally

exchange valuable information on the location of the food.

When a bird learns of a promising location, its experience

grows about the surrounding. This is hugely enhanced when

the birds share the information with one another, boosting the

swarm‟s intelligence. This helps other birds to converge on

the most promising food location. PSO is widely applied in

many research areas and real world applications as a powerful

optimization technique. Simulating the natural behavior, the

PSO algorithm has a set of particles that fly around an n-

dimensional problem space in search of an optimal solution.

To start with, the particles are distributed randomly in the

solution space. Each particle P in the swarm S is represented

as {X, V} where X = {x1, x2, x3… xn} represents the

position of the particle and V = {v1, v2, v3… vn} represents

the velocity of the particle. In every iteration, the particles

learn from each other and update their knowledge regarding

the whereabouts of a good solution. Each particle keeps track

of its best solution with its corresponding position in pbest

and the swarm‟s best position is tracked in gbest. Each

particle will have the influence of its current direction shown

in dotted arrows, the influence of its memory (particle‟s local

best - pbest) shown as plain arrows and the influence of the

swarm‟s intelligence (global best – gbest).

The particles update their velocity and position based on the

formula given in Equation (2). Here „i‟ represents the particle

number, „d‟ represents the dimension, „V‟ is the velocity, „p‟

is the pbest, „g‟ represents gbest, „w‟ is the inertia weight, c1

and c2 are the constants for controlling the influence of pi and

g respectively, „x‟ is the current position and „rp‟ and „rg‟ are

random numbers between 0 and 1.

(2)

Pseudo code of PSO algorithm

1. For each particle i = 1, ..., S do:

a. Initialize the particle's position with a

uniformly distributed random vector: xi with

values between the lower and upper

boundaries of the search-space.

b. Initialize the particle's pbest to its initial

position: pi ← xi

c. If (Objf(pi) < Objf(g)) update the swarm's best

known position: g ← pi

d. Initialize the particle's velocity vi randomly

between the min and max velocity

2. Until a termination criterion is met (Total iterations

reached or adequate objective function value is found),

repeat:

a. For each particle i = 1, ..., S do:

i. For each dimension d = 1, ..., n do:

1. Pick random numbers: rp,

rg between 0 and 1

2. Update the particle's

velocity using equation (2)

ii. Update the position: xi ← xi + vi

iii. If (Objf(xi) < Objf(pi)) do:

1. Update the particle's best

known position: pi ← xi

2. If (Objf(pi) < Objf(g))

update the swarm's best

known position: g ← pi

3. Now g holds the best found solution.

PSO is simple to implement with less number of parameters to

adjust. PSO has been used successfully in function

optimization, neural network training and many more fields

requiring optimization

3.2 ANN-PSO
Adapting the PSO algorithm to train the ANN involves the

following steps. Since the weights of the ANN need to be

optimized they need to be tracked as the position of the

particles in the PSO algorithm. The problem space contains

the combinations of all possible weight values for the ANN.

This search space is of n-dimensions where n is the total

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.3, July 2013

21

number of weights that needs to be optimized. Each particle

has a position vector and a velocity vector of n-dimensions.

The PSO particles fly around this search space and come up

with the optimal set of weights. While evaluating the fitness

of a particle in PSO, the weights are assigned to the ANN and

its prediction accuracy is found. This provides the fitness for

the particle. If the fitness is the best so far for the particle it

will be taken as its personal best and if it is the best so far for

the swarm, it would be considered as global best. The global

best position after a desired number of iterations yield the

optimized weights for the ANN. The steps for a PSO

optimized ANN is given below.

Pseudo code of ANN-PSO algorithm

Define the ANN architecture – number of input, hidden and

output neurons.

Identify the fitness function which returns the error as

difference of actual and predicted output for the ANN

Initiate a swarm of ‘x’ particles with random weights of ‘n’

dimension where n is the total number of weights that needs to

be optimized for the ANN

For each iteration do this to the x particles

 Find the fitness of each particle as defined in Step 2

 Update pbest if the fitness is better than pbest

 Update gbest if the fitness is better than gbest

 Update velocity and position

Do the steps till the iterations are completed

gbest has the best weights for the ANN which yields the

highest prediction accuracy.

4. EXPERIMENT AND ANALYSIS
We conducted two kinds of experiments. The first experiment

was to compare the prediction accuracy of ANN-PSO against

other ANN optimization techniques like Back propagation

(ANN-BP) and Genetic Algorithm (ANN-GA). The second

experiment was to explore various values for the ANN-PSO

parameters and see their effect in prediction accuracy. To

conduct these experiments we used six projects from the

Promise data set [37] including different versions of the

projects resulting in a total of 7773 samples. Each data set

sample consisted of twenty object oriented metric values and

their corresponding bug data. Table 1 gives the snapshot of

the metric values – minimum, maximum, mean and standard

deviation. The list of metrics is described in Appendix A.

Table 1. Snapshot of the Metric Values

Metric Min Max Mean SD

WMC 0.00 413.00 10.21 17.61

DIT 0.00 8.00 2.12 1.47

NOC 0.00 52.00 0.47 2.46

CBO 0.00 448.00 10.68 17.53

RFC 0.00 583.00 28.66 39.30

LCOM 0.00 41713.00 117.16 1017.58

CA 0.00 446.00 5.39 15.95

CE 0.00 101.00 5.58 6.94

NPM 0.00 231.00 7.51 12.29

LCOM3 0.00 2.00 1.10 0.68

LOC 0.00 23683.00 275.17 792.85

DAM 0.00 1.00 0.55 0.47

MOA 0.00 41.00 0.74 1.76

MFA 0.00 1.00 0.39 0.42

CAM 0.00 1.00 0.48 0.25

IC 0.00 5.00 0.43 0.73

CBM 0.00 25.00 0.93 2.32

AMC 0.00 894.50 21.67 34.27

MAX_CC 0.00 236.00 4.60 8.11

AVG_CC 0.00 28.67 1.42 1.25

4.1 Comparison of ANN Models
Three different prediction models were constructed for this

experiment, one each for ANN-BP, ANN-GA and ANN-PSO.

In all the models 70% of the data was used for training and

30% for validation. Each data set was submitted five times to

the models and the average prediction accuracy was

computed. This was done to avoid any bias resulting from a

skewed single run. ANN-BP model was constructed in Matlab

using the Neural Network Toolbox. For the ANN architecture

we chose 20 input neurons, one hidden layer with 25 neurons

and one output neuron. The input neuron number was chosen

to match the number of metrics and the output was chosen to

match the bug data results. The training was done for a

hundred epochs using BP and gradient descent. The hidden

neurons and epochs were based on the earlier experimental

attempts by other researchers. This number was probed

further in the second set of experiments that we had

conducted. The ANN-GA prediction model was done using a

tool taken from an open source code project [38] and

modifying it as required. The tool was originally developed to

help in a facial recognition model. The tool also had a

requirement that the data set given as input needs to be split as

buggy and bug-free samples, we wrote a simple script to

partition the data set before submitting it to the ANN-GA tool.

The GA parameters were adjusted as given in Table 2 based

on recent research in GA.

Table 2. Control Parameters for GA in ANN-GA

Parameter Value

Number of Population 20

Number of Generation 200

Crossover Probability 0.50

Mutation Probability 0.001

Selection function Roulette Wheel

Fitness Prediction accuracy

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.3, July 2013

22

The ANN-PSO algorithm was developed as a tool in Visual

Studio by the authors to aid in this study. The tool takes in the

metrics and bug information from a comma separated data file

and computes the prediction accuracy. The tool randomizes

the data before making the 70%-30% split for training and

validation.

Table 3 provides the control parameters used for running PSO

in the ANN-PSO model. These parameters were taken from

earlier PSO research experiments and have been optimized

our second set of experiments.

Table 3. Control Parameters for PSO in ANN-PSO

Parameter Value

Number of Particles 20

Number of Iterations 100

Inertia Weight 0.529

Local Weight (c1) 1.4944

Local Weight (c2) 1.4944

Fitness Prediction accuracy

Table 4 and Figure 2 provide the prediction accuracy values

for the various experimental setups. We find that ANN-GA

predicts compared to ANN-BP by an average of 4.11%. The

prediction accuracy of ANN-PSO is better compared to the

prediction accuracy of ANN-BP by 5.94% and marginally

better compared to the prediction accuracy of ANN-GA by

1.82%. Also for every dataset ANN-PSO predicts better than

the corresponding ANN-GA and ANN-BP models.

Table 4. Prediction accuracy of ANN models

Project Classes ANN-BP ANN-GA ANN-PSO

Camel 2786 79.48 82.33 84.79

Ivy 593 86.82 91.68 92.23

Jedit 1749 80.15 85.21 86.05

Synapse 653 73.55 77.82 83.75

Tomcat 858 82.23 88.98 89.53

Xerces 893 85.10 85.99 86.61

Fig 2: Comparison of ANN Training Algorithms

4.2 PSO Parameter Optimization
The second set of experiments that we carried out was to

optimize the various parameters of ANN-PSO and identify

values for those parameters which resulted in maximum

prediction accuracy. The following parameters were

considered for optimization

 Number of Particles

 Number of Iterations

 Inertia weight

 Weights for global and local bests

 Number of hidden neurons

4.2.1 Number of Particles
The number of particles in ANN-PSO signifies the

amount of area that could be covered in the problem space, in

every iteration of the loop. We investigated the ANN-PSO

with 5, 10, 20, 50, 75 and 100 particles. ANN-PSO was not

able to perform well at 5 and 10 particles since the space

covered in the problem is not sufficient. As the number of

particles increased to 20 and 50, the prediction accuracy

improved. However once the number reached 50, further

increase did not result in improvement. In fact with 100

particles we saw a fall in the prediction accuracy as there

could have been an over fit of the data. Also the optimization

time was getting longer as the number of particles was

increased. This is because the optimization time is directly

dependent on the solution space covered and with more

particles we had to cover more of the space at the expense of

time.

Table 5 shows the performance of ANN-PSO with the

different number of particles considered. Figure 3 shows the

prediction accuracy mapped for the various numbers of

particles.

Table 5. Optimization of Particle number

Particles Accuracy

5 82.16

10 85.35

20 89.80

50 90.44

75 90.44

100 73.44

Fig 3: Number of particles affecting Accuracy

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.3, July 2013

23

4.2.2 Number of Iterations
ANN-PSO is investigated with 5, 25, 50, 100 and 200

numbers of total iterations. Table 6 compares the effect that

the various values had on prediction accuracy. As the number

of iterations increases more of the problem space gets covered

and hence the accuracy improves. At 5 and 25 iterations the

ANN-PSO is under trained and unable to approximate the

underlying function of metrics to faults. After the iterations

reached 50, the prediction accuracy did not improve any

further, but the time taken for optimization kept on increasing

with increase to the iterations. Figure 4 captures these

findings.

Table 6. Optimization of Iterations

Iterations Accuracy

5 78.34

25 85.98

50 90.44

100 90.44

200 90.44

Fig 4: Number of iterations affecting Accuracy

4.2.3 Different c1 and c2 values
The constants c1 and c2 are the accelerations constants that

pull the particle towards its global or personal best. The c1

indicates the influence that the global best has on the particle

and c2 indicates the level of influence that the personal best

has on the particle. Reasonable results were obtained when the

values of c1 and c2 were ranging between 1.2 and 1.7. With

the value of 1.0 the acceleration was not enough to cover the

problem space well and resulted in poorer prediction

accuracy. There was again a mild drop in prediction accuracy

when the acceleration constants reached 2.0. Table 7 gives the

prediction values for the various values of c1 and c2. Figure 5

provides the same information as a graph between prediction

accuracy and c1/c2 values.

Table 7. Optimization of c1 and c2 values

c1/c2 Accuracy

1.0 70.56

1.2 88.53

1.5 90.44

1.7 90.44

2.0 89.80

Fig 5: c1/c2 values affecting Accuracy

4.2.4 Number of hidden neurons
The PSO-ANN was investigated with 20, 25, 30, 35 and 40

hidden neurons in the hidden layer of the architecture. This is

not a PSO parameter but a parameter of the ANN architecture

in the ANN-PSO model. Table 6 presents the results of this

study. At a low value of 20 hidden neurons, the network does

not have sufficient flexibility to learn and adapt to the data.

This results in low prediction accuracy. Similarly for hidden

neurons greater than 30, the ANN taken a long time to get

trained and may also be over fitting the data. So the optimum

number of hidden neurons was found to be between 25 and

30. The results are captured in Table 8 and Figure 6.

Table 8. Optimization of hidden neurons

Neurons Accuracy

20 80.17

25 90.44

30 90.44

35 89.80

40 84.44

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.3, July 2013

24

Fig 6: Number of hidden neurons affecting Accuracy

4.2.5 Optimal Configuration for ANN-PSO
The optimal configuration for ANN-PSO network was found

to be as given in Table 9.

Table 9. Optimum configuration values for ANN-PSO

Parameter Value

Number of Particles 25

Number of Iteration 50

Local Weight (c1) 1.4944

Local Weight (c2) 1.4944

Hidden Neurons 25 to 30

5. CONCLUSIONS
We explored the particle swarm optimized technique as a

training algorithm for artificial neural network (ANN-PSO) to

predict the fault proneness of object oriented systems. We

found that compared to BP and GA, PSO was able to improve

the fault prediction accuracy and speed up the convergence

simultaneously. The experimental results conducted on six

data sets from promise data repository revealed that PSO is a

promising training algorithm for fault prediction in OO

systems using OO metrics and its potential should be explored

further in this area.

We also experimented with different values for the ANN-PSO

configuration parameters. We were able to conclude on the

values for configuring the ANN-PSO model to give the best

possible prediction accuracy. Future studies could include

optimizing more than one parameter of ANN using

simultaneous optimization techniques like co-operative PSO

and multi objective PSO. Studies can also be done where

empirical analysis is done on a wide variety of data set

especially industrial projects.

6. REFERENCES
[1] Bellini P. (2005), “Comparing Fault-Proneness

Estimation Models”, 10th IEEE International Conference

on Engineering of Complex Computer Systems

(ICECCS'05), China, pp. 205-214.

[2] Khosgoftaar TM, Gao K, Szabo RM (2001) An

Application of zero-inflated poisson regression for

software fault prediction, Proceedings of 12th

international symposium on software reliability

engineering, pp:63-73

[3] Eman K, Benlarbi S, Goel N, Rai S (2001). Comparing

case-based reasoning classifiers for predicting high risk

software components. Journal of System software

55(3):301-310

[4] Khosgoftaar TM, Seliya N (2002). Tree-based software

quality estimation models for fault prediction. METRICS

2002. 8th IIIE Symposium on Software Metrics. pp:203-

214

[5] Munson J, Khoshgoftaar T (1990). Regression Modeling

of Software Quality: An Empirical Investigation. J. Info.

Software Technol. 32(2):106-114.

[6] Pai G.J Empirical Analysis of Software Fault Content

and Fault Proneness Using Bayesian Methods, IEEE

transaction on software Engineering, oct 2001, 33(10)

:675-686

[7] K. Elish, M. Elish, “Predicting defect-prone software

modules using support vector machines,” Journal of

System and Software, vol. 81, 649-660.

[8] T.M. Khoshgaftaar, E.D. Allen, J. Deng, Using

regression trees to classify fault-prone software

modules,” IEEE Transactions on Reliability, vol. 51, no.

4, 455–462, 2002.

[9] [A]K. K. Aggarwal, Yogesh Singh, Arvinder Kaur, and

Ruchika Malhotra "Application of Artificial Neural

Network for Predicting Maintainability using Object-

Oriented Metrics " World Academy of Science,

Engineering and Technology 22 2006

[10] [B]S. Kanmani, V.R. Uthariaraj, V. Sankaranarayanan,

and P.Thambidurai, “Object-oriented software fault

prediction using neural networks,” Information and

Software Technology, vol. 49, 483–492, 2007.

[11] [C]K.K. Aggarwal, Y. Singh, A Kaur, R. Malhotra,

“Application of Artificial Neural Network for Predicting

Fault Proneness Models,” in International Conference on

Information Systems, Technology and. Management

(ICISTM 2007), March 12-13, New Delhi, India, 2007.

[12] [D]Khoshgaftaar, T., M., Allen, E., D., Hudepohl, J., P.,

Aud, S., J., Application of neural networks to software

quality modeling of a very large telecommunications

system, IEEE Transactions on Neural Networks, vol. 8,

no. 4, 902-909, 1997.

[13] [No ref]Rumelhart, D.E., Hinton, G.E., Williams, R.J.:

Learning Representations by Back propagating Errors.

Nature. 323 (1986) 533-536

[14] [F]Sexton, R.S., Dorsey, R.E.: Reliable classification

using neural networks: A genetic algorithm and back

propagation comparison. Decision support systems. 30

(2000) 11-22

[15] [G]Yang. J.M., Kao. C. Y.: A Robust Evolutionary

Algorithm for Training Neural Networks. Neural

Computing and Application. 10 (2001) 214-230

[16] [H]Franchini, M.: Use of A Genetic Algorithm

Combined with A Local Search Method for the

Automatic Calibration of Conceptual Rainfall-runoff

Models. Hydrological Science Journal. 41 (1996) 21-39

[17] [I]E. I. Altman, G. Marco, and F. Varetto, “Corporate

distress diagnosis: Comparisons using linear discriminant

analysis and neural networks (the Italian experience),” J.

Bank. Finance, vol. 18, pp. 505–529, 1994.

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.3, July 2013

25

[18] [J]R. C. Lacher, P. K. Coats, S. C. Sharma, and L. F.

Fant, “A neural network for classifying the financial

health of a firm,” Eur. J. Oper. Res., vol. 85, pp. 53–65,

1995.

[19] [k]K. Y. Tam and M. Y. Kiang, “Managerial application

of neural networks: The case of bank failure

predictions,” Manage. Sci., vol. 38, no. 7, pp. 926–947,

1992.

[20] [L]I. Guyon, “Applications of neural networks to

character recognition,” Int. J. Pattern Recognit. Artif.

Intell., vol. 5, pp. 353–382, 1991.

[21] [M]S. Knerr, L. Personnaz, and G. Dreyfus,

“Handwritten digit recognition by neural networks with

single-layer training,” IEEE Trans. Neural Networks,

vol. 3, pp. 962–968, 1992.

[22] [N]T. Petsche, A. Marcantonio, C. Darken, S. J. Hanson,

G. M. Huhn, and I. Santoso, “An autoassociator for on-

line motor monitoring,” in Industrial Applications of

Neural Networks, F. F. Soulie and P. Gallinari, Eds,

Singapore: World Scientific, 1998, pp. 91–97.

[23] [O]J. Lampinen, S. Smolander, and M.Korhonen, “Wood

surface inspection system based on generic visual

features,” in Industrial Applications of Neural Networks,

F. F. Soulie and P. Gallinari, Eds, Singapore: World

Scientific, 1998, pp. 35–42.

[24] [P]E. B. Barlett and R. E. Uhrig, “Nuclear power plant

status diagnostics using artificial neural networks,” Nucl.

Technol., vol. 97, pp. 272–281, 1992.

[25] [Q]J. C. Hoskins, K. M. Kaliyur, and D. M. Himmelblau,

“Incipient fault detection and diagnosis using artificial

neural networks,” in Proc. Int. Joint Conf. Neural

Networks, 1990, pp. 81–86.

[26] [R]K.S. Narendra and K. Parthasarathy, “Identification

and Control of Dynamical Systems Using Neural

Networks”, IEEE Transactions on Neural Networks, Vol.

1, No. 1, March 1990, pp 4-27.

[27] [S]S.V. Kartalopoulos, Understanding Neural Networks

and Fuzzy Logic, IEEE Press, 1996, ISBN 0-7803-1128-

0.

[28] [T]X. Hu, Y. Shi and R. Eberhart, “Recent Advances in

Particle Swarm”, Proceedings of the Congress on

Evolutionary Computation, Portland, OR, USA, June 19-

23, 2004, Vol. 1, pp 90-97.

[29] [U]Reynolds P.D., Duren R.W., Trumbo M.L. and Marks

R.J., “FPGA Implementation of particle swarm

optimization for inversion of large neural networks,”

Proc. IEEE Swarm Intelligence Symposium, SIS, pages

389-392, 2005.

[30] [V]Sun W., Zhang Y., and Li F., The neural network

model based on pso for short-term load forecasting,

International conference on Machine Learning and

Cybernetics, pp 3069-3072, 2006.

[31] [W]Cai, X., Zhang, N., Venayagamoorthy, G., K.,

Wunsch, D., C., Time series prediction with recurrent

neural networks using a hybrid pso-ea algorithm,

Proceedings of IEEE International Joint Conference in

Neural Networks, pp 1647-1652, 2004.

[32] [X]Hatem Abdul-kader and Mustafa Abdul Salam

“Evaluation of Differential Evolution and Particle Swarm

Optimization Algorithms at Training of Neural Network

for Stock Prediction" International Arab Journal of e-

Technology, Vol.2, No.3, January 2012 145-150

[33] [Y]Nenortaite J. and Simutis R., "Application of Particle

Swarm Optimization Algorithm to Stocks" Trading

System," 2004

[34] [Z]Ebru Ardil., Parvinder S. Sandhu., “A soft computing

approach for modeling of severity of faults in software

systems,” International Journal of Physical Sciences

Vol.5(2), pp.074-085, Feb 2010

[35] [AA]Kanu Sharma., Navpreet Kaur.,Sunil Khullar and

Harish Kundra., “ Defect prediction based on

quantitative and qualitative factors using PSO optimized

neural network,” International Journal of Computer

Science and Communication. Vol.3, No.1, Jan-June

2012, pp. 33-35

[36] [BB]Kewen, Li., Jisong, Kou, Lina, Gong., “Predicting

Software Quality by Optimized BP Network Based on

PSO,” Journal of Computers, Vol. 6, No. 1, Jan 2011

[37] [CC]Promise dataset for object oriented systems –

metrics and bug data, http://www.promisedata.org

[38] Code Project, Genetic Algorithms in Artificial Neural

Network Classification Problems,

http://www.codeproject.com/Articles/21231/Genetic-

Algorithms-in-Artificial-Neural-Network-Cld

 APPENDIX A
Metric Description

WMC Weighed methods per class

DIT Depth of Inheritance Tree

NOC Number of Children

CBO Coupling Between Objects

RFC Response For a Class

LCOM Lack of Cohesion Metric

CA Afferent Coupling

CE Efferent Coupling

NPM Number of Public Methods

LCOM3 Lack of Cohesion Metric 3

LOC Lines of Code

DAM Data Access Metric

MOA Measure of Aggression

MFA Measure of Functional Abstraction

CAM Cohesion Among Methods

IC Inherent Coupling

CBM Cohesion Between Methods

AMC Average Method Complexity

MAX_CC Cyclomatic Complexity (Maximum)

AVG_CC Cyclomatic Complexity (Average)

IJCATM : www.ijcaonline.org

