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ABSTRACT 

Object oriented software metrics are computed and used in 

predicting software quality attributes of object oriented 

systems. Mapping software metrics to software quality 

attributes like fault prediction is a complex process and 

requires extensive computations. Many models have been 

proposed for fault prediction. Since accuracy is of prime 

importance in prediction models they are being constantly 

improved through various research studies. Artificial Neural 

network (ANN) has gained immense popularity due to its 

adaptability to the problem at hand by training with known 

data. Back propagation is a widely used ANN training 

technique. However the back propagation technique leads to 

slow convergence rate and an impending threat of getting 

caught in local minima. In this paper we explore the Particle 

Swarm Optimization (PSO) technique as an alternative to 

optimize the weights of ANN for fault prediction in object 

oriented systems. We evaluate the effect on prediction 

accuracy that PSO brings to ANN compared to other 

techniques like BP and Genetic Algorithm (GA). We also 

evaluate prediction accuracy improvements by optimizing the 

various parameters of PSO.   

General Terms 

Software Quality, Object Oriented Metrics and Particle 

Swarm Optimization. 

Keywords 

swarm intelligence, particle swarm optimization, object 

oriented metrics, artificial intelligence, software quality. 

1. INTRODUCTION 
Software quality is the most sought after aspect of an object 

oriented software system during and after its development. 

Software quality could be affected by a variety of factors and 

occurrence of faults negatively impacts quality. Early 

detection and removal of faults from the system is a major 

step towards good quality software. Bellini et al [1] compared 

the different models of fault prediction and concluded that 

software quality has become one of the most important 

requirements of a software system and that fault prediction 

could be the key in controlling the quality of software 

systems. Early prediction of the modules that could 

potentially have a large number of faults saves a lot of effort, 

time and cost and allows a focused approach for quality 

enhancement measures.  

A software quality model attempts to map an external quality 

attribute (in this case faults) of software to its internal 

attributes like size, inheritance, coupling, and cohesion. When 

the internal attributes are measured and assigned a value; they 

are referred as software metrics. Once the quality attributes 

(external) are predicted using the software metrics (internal), 

it becomes easy to control the quality of the product. During 

the development of a software product the internal attributes 

are measured and fed to the model. Based on the prediction 

made by the model for the quality indicator, necessary 

corrective and preventive actions can be taken. This ensures 

that quality is managed even during the design and 

development stage of a software product. Many software 

quality prediction models have been proposed in the literature 

[2] [3] [4] [5] [6] [7] [8] 

Prediction accuracy is an important criterion that 

differentiates software quality prediction models, the better 

the prediction accuracy the more useful its application. Hence 

strong emphasis is placed on improving the prediction 

accuracy of models. So research efforts are focused not only 

on proposing newer prediction models but also on improving 

the prediction accuracy of existing, already proposed models. 

Artificial neural network (ANN) is a non-linear mapping 

model, representing the functioning of a human brain. ANN is 

a powerful tool for modeling and have been successfully 

applied to many areas like bankruptcy prediction [9] [10] [11], 

handwriting recognition [12] [13], product inspection [14] 

[15], and in fault detection [16] [17]. ANN is also a widely 

accepted choice of fault prediction model [18] [19] [20] [21].  

ANN is adaptive as it can change its structure based on the 

information that flows through the network. This adaptability 

is achieved by training the ANN with known data set. In an 

ANN based prediction model, prediction accuracy can be 

improved by optimizing the parameters of the model. ANN 

parameters like number of input neurons, hidden layers, 

hidden neurons, activation function, weights, etc can be 

optimized. Since weights are the key to a well trained ANN, 

which can map the inputs to outputs accurately, optimizing 

weights of ANN has been considered in many research 

studies. 

ANN can be trained using many techniques. Back propagation 

(BP) algorithm is probably the most widely used ANN 

training technique in practical applications due to its inherent 

simplicity and ease of implementation. BP technique is based 

on gradient descent method. The concept is to have an error 

function and use hill climbing or descent to find the weights. 

This would optimize the task at hand. However studies have 
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confirmed that back propagation is prone to the following 

problems – it may get stuck at a local optimum [22] and it 

may take a very long time to converge [23]. This led 

researchers to attack the ANN training problem with other 

methods.  

Another technique for ANN weight optimization is by using 

Genetic algorithms (GA). GA introduced in 1970s by John 

Holland, are a family of evolutionary computation models 

inspired by the concepts of genetics and evolution. GA 

encodes the ANN weights as possible solutions for the 

problem in the chromosomes of simulated biological 

organisms. In each generation the organisms with best 

chromosomes are chosen for reproduction. The probability of 

crossover and mutation can be adjusted to determine the 

outcome of the final result. This continues for a predefined 

number of generations or until the problem is sufficiently 

optimized. GA has parallel search strategy and global 

optimization characteristics which helps the ANN to have a 

higher prediction accuracy and faster convergence compared 

to BP [24].  However the genetic operators like crossover and 

mutation are inherently complex and hence make the 

computational cost to increase exponentially [25]. The 

convergence speed of GA, though better than BP, is still slow 

and even stagnates as it approaches the optimum [26]. In this 

paper our focus would be on ANN weight optimization using 

Particle Swarm Optimization (PSO), PSO like GA, is an 

evolutionary computation technique developed by Russel 

Eberhart and Kennedy in 1995 [27] inspired by social 

behavior of a flock of birds or school of fish. In PSO, 

potential solutions like the weights of ANN are considered as 

particles moving in the problem space. Iteratively, the 

particles learn from each other and arrive at the optimal 

solution for a given problem. PSO algorithm is used in many 

applications involving prediction and forecasting like 

prediction of chaotic systems [28], electric load forecasting in 

[29], time series prediction [30] and stock market decision 

making in [31] [32]. PSO is known to have a strong ability in 

training ANN [33] [34] [35] for fault prediction. Unlike GA, 

PSO has no evolution operators such as crossover and 

mutation. Another advantage that PSO has over GA is that 

there is no special requirement of encoding and decoding 

operators for training the neural network. 

The aim of our research is to have ANN trained by PSO 

technique and observe the changes to prediction accuracy. We 

compare the prediction accuracy of ANN-PSO with the 

prediction accuracy of ANN models trained by BP and GA 

techniques. We also explore optimizing the various 

parameters of the PSO algorithm and how such optimization 

affects the ANN-PSO prediction accuracy. For these 

experiments we have considered data sets available online. In 

section 2 we describe the Artificial Neural Network (ANN) 

and its training mechanism. In Section 3 we introduce Particle 

Swarm Optimization (PSO) algorithm and the steps involved 

in it. We then introduce the ANN-PSO model where the 

optimization of weights of ANN is done by the PSO 

algorithm. Section 4 describes the experimental setups with 

ANN-BP, ANN-GA and ANN-PSO and the comparative 

results for them. Further experiments which consider the 

various PSO parameters and the resulting optimum 

parameters values are also shown in Section 4.  Section 5 

provides the conclusions and future course of actions derived 

from this study.  

2. FAULT PREDICTION USING ANN 

2.1 Artificial Neural Network 
Artificial Neural Network (ANN) is a simplified model of the 

human nervous system. It is composed of many artificial 

neurons that co-operate to perform the desired functionality. 

ANN is an approximation function mapping inputs to outputs. 

The ability to learn and adapt to the data set makes ANN 

applicable in a variety of fields. A single neuron in ANN, 

shown in Figure 1, takes its weighed inputs and produces a 

single output as given by formula (1). 

 
(1) 

 

 

 

 

 

 

  

  

 

 

Fig 1: Artificial Neuron 

The artificial neurons can be combined to form an artificial 

neural network. A typical artificial neural network has three 

layers – input, hidden and output. There are „n‟ input neurons 

to map the inputs and „m' hidden neurons in a single hidden 

layer. There could be more than one hidden layer as well. The 

output neurons depend on the number of output variables that 

we plan to map. Weights are used between input and hidden 

and hidden and output layers respectively.  

ANN exhibits some remarkable properties like adaptability, 

learning by examples and generalization which makes it an 

ideal candidate for pattern classification problems. Fault 

prediction is a subset of classification problem where the fault 

prone modules need to be identified and tagged. In the case of 

object oriented systems the lowest level of abstraction is a 

class. The prediction models like ANN identify classes that 

could be faulty and tag them. The development team can then 

work on the tagged classes and design them better.  

The first step in the creation of a good fault prediction model 

based on ANN, involves providing known information with 

which the model can be trained. In our case we need to have 

class level metrics data along with the fault details. The ANN 

model is trained using this information. Once trained the ANN 

model is ready to be used on fresh data set where only the 

metrics are known and fault has to be predicted. The ANN 

model is used to predict whether the classes in the fresh data 

set are likely to be faulty or not. A properly trained ANN 

would have a higher probability of prediction the faultiness of 

classes. The probability is captured by the prediction accuracy 

which is the percentage of correct classifications compared to 

the overall classification. Though the prediction accuracy of 

an ANN fault prediction model depends on various factors 

like dataset, domain etc, the selection of good ANN 

parameters is a major contributor. 
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2.2 ANN Parameter Optimization 
ANN is a complex model and its prediction accuracy can be 

improved by optimizing its parameters. The parameters that 

can be optimized in an ANN can be grouped under the 

following categories 

 Architecture 

o Number of input neurons 

o Number of hidden layers and hidden 

neurons 

o Number of output neurons 

 Training 

o Weights 

o Training algorithm 

o Training epochs 

 Transfer function 

 Data 

o Selection 

o Pre-processing 

o Quantity and quality 

The major challenge in constructing an ANN model is to find 

the right values for all these parameters. Among these 

parameters, weight optimization is considered an important 

criterion that affects the performance of an ANN. ANN has to 

be trained to get the optimal values for the weights. The 

method employed is to have known samples of data with both 

independent and dependent variables and alter the weights 

based on how well the ANN predicts the dependent variable 

(output) for given independent variables (inputs). The 

difference in the values between predicted and actual is the 

error. The aim is to minimize this error. This training can be 

done in a variety of ways like gradient descent, GA, PSO, 

Fuzzy Logic etc. 

The training of an ANN is independent of the ANN structure 

and hence can be decoupled and worked on separately. For 

example, the same ANN, could be trained using different 

algorithms like BP, GA, Fuzzy etc and we could then compare 

how each of the training algorithm fared in predicting the 

faults. This would help us to narrow down on the best training 

algorithm for ANN with the given data set.  

3. TRAINING ANN USING PSO 

3.1 PSO 
PSO employs social learning concept to problem solving. It 

was developed by James Kennedy and Russell Eberhart in 

1995. This is an evolutionary computation method based on 

the intelligence gained by a swarm through co-operation and 

sharing of information. Birds flocking together generally 

exchange valuable information on the location of the food. 

When a bird learns of a promising location, its experience 

grows about the surrounding. This is hugely enhanced when 

the birds share the information with one another, boosting the 

swarm‟s intelligence. This helps other birds to converge on 

the most promising food location. PSO is widely applied in 

many research areas and real world applications as a powerful 

optimization technique. Simulating the natural behavior, the 

PSO algorithm has a set of particles that fly around an n-

dimensional problem space in search of an optimal solution. 

To start with, the particles are distributed randomly in the 

solution space. Each particle P in the swarm S is represented 

as {X, V} where X = {x1, x2, x3… xn} represents the 

position of the particle and V = {v1, v2, v3… vn} represents 

the velocity of the particle. In every iteration, the particles 

learn from each other and update their knowledge regarding 

the whereabouts of a good solution. Each particle keeps track 

of its best solution with its corresponding position in pbest 

and the swarm‟s best position is tracked in gbest. Each 

particle will have the influence of its current direction shown 

in dotted arrows, the influence of its memory (particle‟s local 

best - pbest) shown as plain arrows and the influence of the 

swarm‟s intelligence (global best – gbest).  

The particles update their velocity and position based on the 

formula given in Equation (2). Here „i‟ represents the particle 

number, „d‟ represents the dimension, „V‟ is the velocity, „p‟ 

is the pbest, „g‟ represents gbest, „w‟ is the inertia weight, c1 

and c2 are the constants for controlling the influence of  pi and 

g respectively, „x‟ is the current position and „rp‟ and „rg‟ are 

random numbers between 0 and 1. 

 
(2) 

Pseudo code of PSO algorithm 

1. For each particle i = 1, ..., S do: 

a. Initialize the particle's position with a 

uniformly distributed random vector: xi with 

values between the lower and upper 

boundaries of the search-space. 

b. Initialize the particle's pbest to its initial 

position: pi ← xi 

c. If (Objf(pi) < Objf(g)) update the swarm's best 

known position: g ← pi 

d. Initialize the particle's velocity vi randomly 

between the min and max velocity 

2. Until a termination criterion is met (Total iterations 

reached or adequate objective function value is found), 

repeat: 

a. For each particle i = 1, ..., S do: 

i. For each dimension d = 1, ..., n do: 

1. Pick random numbers: rp, 

rg between 0 and 1 

2. Update the particle's 

velocity using equation (2) 

ii. Update the position: xi ← xi + vi 

iii. If (Objf(xi) < Objf(pi)) do: 

1. Update the particle's best 

known position: pi ← xi 

2. If (Objf(pi) < Objf(g))  

update the swarm's best 

known position: g ← pi 

3. Now g holds the best found solution. 

 

PSO is simple to implement with less number of parameters to 

adjust. PSO has been used successfully in function 

optimization, neural network training and many more fields 

requiring optimization 

3.2 ANN-PSO 
Adapting the PSO algorithm to train the ANN involves the 

following steps. Since the weights of the ANN need to be 

optimized they need to be tracked as the position of the 

particles in the PSO algorithm. The problem space contains 

the combinations of all possible weight values for the ANN. 

This search space is of n-dimensions where n is the total 
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number of weights that needs to be optimized. Each particle 

has a position vector and a velocity vector of n-dimensions.  

The PSO particles fly around this search space and come up 

with the optimal set of weights. While evaluating the fitness 

of a particle in PSO, the weights are assigned to the ANN and 

its prediction accuracy is found. This provides the fitness for 

the particle. If the fitness is the best so far for the particle it 

will be taken as its personal best and if it is the best so far for 

the swarm, it would be considered as global best. The global 

best position after a desired number of iterations yield the 

optimized weights for the ANN. The steps for a PSO 

optimized ANN is given below. 

Pseudo code of ANN-PSO algorithm 

Define the ANN architecture – number of input, hidden and 

output neurons. 

Identify the fitness function which returns the error as 

difference of actual and predicted output for the ANN 

Initiate a swarm of ‘x’ particles with random weights of ‘n’ 

dimension where n is the total number of weights that needs to 

be optimized for the ANN 

For each iteration do this to the x particles 

 Find the fitness of each particle as defined in Step 2 

 Update pbest if the fitness is better than pbest 

 Update gbest if the fitness is better than gbest 

 Update velocity and position  

Do the steps till the iterations are completed 

gbest has the best weights for the ANN which yields the 

highest prediction accuracy.  

 

4. EXPERIMENT AND ANALYSIS 
We conducted two kinds of experiments. The first experiment 

was to compare the prediction accuracy of ANN-PSO against 

other ANN optimization techniques like Back propagation 

(ANN-BP) and Genetic Algorithm (ANN-GA). The second 

experiment was to explore various values for the ANN-PSO 

parameters and see their effect in prediction accuracy. To 

conduct these experiments we used six projects from the 

Promise data set [37] including different versions of the 

projects resulting in a total of 7773 samples. Each data set 

sample consisted of twenty object oriented metric values and 

their corresponding bug data. Table 1 gives the snapshot of 

the metric values – minimum, maximum, mean and standard 

deviation. The list of metrics is described in Appendix A. 

 

Table 1. Snapshot of the Metric Values 

Metric Min Max Mean SD 

WMC 0.00 413.00 10.21 17.61 

DIT 0.00 8.00 2.12 1.47 

NOC 0.00 52.00 0.47 2.46 

CBO 0.00 448.00 10.68 17.53 

RFC 0.00 583.00 28.66 39.30 

LCOM 0.00 41713.00 117.16 1017.58 

CA 0.00 446.00 5.39 15.95 

CE 0.00 101.00 5.58 6.94 

NPM 0.00 231.00 7.51 12.29 

LCOM3 0.00 2.00 1.10 0.68 

LOC 0.00 23683.00 275.17 792.85 

DAM 0.00 1.00 0.55 0.47 

MOA 0.00 41.00 0.74 1.76 

MFA 0.00 1.00 0.39 0.42 

CAM 0.00 1.00 0.48 0.25 

IC 0.00 5.00 0.43 0.73 

CBM 0.00 25.00 0.93 2.32 

AMC 0.00 894.50 21.67 34.27 

MAX_CC 0.00 236.00 4.60 8.11 

AVG_CC 0.00 28.67 1.42 1.25 

 

4.1 Comparison of ANN Models 
Three different prediction models were constructed for this 

experiment, one each for ANN-BP, ANN-GA and ANN-PSO. 

In all the models 70% of the data was used for training and 

30% for validation. Each data set was submitted five times to 

the models and the average prediction accuracy was 

computed. This was done to avoid any bias resulting from a 

skewed single run. ANN-BP model was constructed in Matlab 

using the Neural Network Toolbox. For the ANN architecture 

we chose 20 input neurons, one hidden layer with 25 neurons 

and one output neuron. The input neuron number was chosen 

to match the number of metrics and the output was chosen to 

match the bug data results. The training was done for a 

hundred epochs using BP and gradient descent. The hidden 

neurons and epochs were based on the earlier experimental 

attempts by other researchers. This number was probed 

further in the second set of experiments that we had 

conducted. The ANN-GA prediction model was done using a 

tool taken from an open source code project [38] and 

modifying it as required. The tool was originally developed to 

help in a facial recognition model. The tool also had a 

requirement that the data set given as input needs to be split as 

buggy and bug-free samples, we wrote a simple script to 

partition the data set before submitting it to the ANN-GA tool. 

The GA parameters were adjusted as given in Table 2 based 

on recent research in GA. 

Table 2. Control Parameters for GA in ANN-GA 

Parameter Value 

Number of Population 20 

Number of Generation 200 

Crossover Probability 0.50 

Mutation Probability 0.001 

Selection function Roulette Wheel 

Fitness Prediction accuracy 
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The ANN-PSO algorithm was developed as a tool in Visual 

Studio by the authors to aid in this study. The tool takes in the 

metrics and bug information from a comma separated data file 

and computes the prediction accuracy. The tool randomizes 

the data before making the 70%-30% split for training and 

validation.  

Table 3 provides the control parameters used for running PSO 

in the ANN-PSO model. These parameters were taken from 

earlier PSO research experiments and have been optimized 

our second set of experiments. 

Table 3. Control Parameters for PSO in ANN-PSO 

Parameter Value 

Number of Particles 20 

Number of Iterations 100 

Inertia Weight 0.529 

Local Weight (c1) 1.4944 

Local Weight (c2) 1.4944 

Fitness Prediction accuracy 

 

Table 4 and Figure 2 provide the prediction accuracy values 

for the various experimental setups. We find that ANN-GA 

predicts compared to ANN-BP by an average of 4.11%. The 

prediction accuracy of ANN-PSO is better compared to the 

prediction accuracy of ANN-BP by 5.94% and marginally 

better compared to the prediction accuracy of ANN-GA by 

1.82%. Also for every dataset ANN-PSO predicts better than 

the corresponding ANN-GA and ANN-BP models. 

Table 4. Prediction accuracy of ANN models 

Project Classes ANN-BP ANN-GA ANN-PSO 

Camel 2786 79.48 82.33 84.79 

Ivy 593 86.82 91.68 92.23 

Jedit 1749 80.15 85.21 86.05 

Synapse 653 73.55 77.82 83.75 

Tomcat 858 82.23 88.98 89.53 

Xerces 893 85.10 85.99 86.61 

 

 

Fig 2: Comparison of ANN Training Algorithms 

4.2 PSO Parameter Optimization 
The second set of experiments that we carried out was to 

optimize the various parameters of ANN-PSO and identify 

values for those parameters which resulted in maximum 

prediction accuracy. The following parameters were 

considered for optimization 

 Number of Particles 

 Number of Iterations 

 Inertia weight 

 Weights for global and local bests 

 Number of hidden neurons 

4.2.1 Number of Particles 
The number of particles in ANN-PSO signifies the 

amount of area that could be covered in the problem space, in 

every iteration of the loop. We investigated the ANN-PSO 

with 5, 10, 20, 50, 75 and 100 particles. ANN-PSO was not 

able to perform well at 5 and 10 particles since the space 

covered in the problem is not sufficient. As the number of 

particles increased to 20 and 50, the prediction accuracy 

improved. However once the number reached 50, further 

increase did not result in improvement. In fact with 100 

particles we saw a fall in the prediction accuracy as there 

could have been an over fit of the data. Also the optimization 

time was getting longer as the number of particles was 

increased. This is because the optimization time is directly 

dependent on the solution space covered and with more 

particles we had to cover more of the space at the expense of 

time.  

Table 5 shows the performance of ANN-PSO with the 

different number of particles considered. Figure 3 shows the 

prediction accuracy mapped for the various numbers of 

particles. 

Table 5. Optimization of Particle number 

Particles Accuracy 

5 82.16 

10 85.35 

20 89.80 

50 90.44 

75 90.44 

100 73.44 

 

 

Fig 3: Number of particles affecting Accuracy 
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4.2.2 Number of Iterations 
ANN-PSO is investigated with 5, 25, 50, 100 and 200 

numbers of total iterations. Table 6 compares the effect that 

the various values had on prediction accuracy.  As the number 

of iterations increases more of the problem space gets covered 

and hence the accuracy improves. At 5 and 25 iterations the 

ANN-PSO is under trained and unable to approximate the 

underlying function of metrics to faults. After the iterations 

reached 50, the prediction accuracy did not improve any 

further, but the time taken for optimization kept on increasing 

with increase to the iterations. Figure 4 captures these 

findings. 

Table 6. Optimization of Iterations 

Iterations Accuracy 

5 78.34 

25 85.98 

50 90.44 

100 90.44 

200 90.44 

 

 

Fig 4: Number of iterations affecting Accuracy 

4.2.3 Different c1 and c2 values 
The constants c1 and c2 are the accelerations constants that 

pull the particle towards its global or personal best. The c1 

indicates the influence that the global best has on the particle 

and c2 indicates the level of influence that the personal best 

has on the particle. Reasonable results were obtained when the 

values of c1 and c2 were ranging between 1.2 and 1.7. With 

the value of 1.0 the acceleration was not enough to cover the 

problem space well and resulted in poorer prediction 

accuracy. There was again a mild drop in prediction accuracy 

when the acceleration constants reached 2.0. Table 7 gives the 

prediction values for the various values of c1 and c2. Figure 5 

provides the same information as a graph between prediction 

accuracy and c1/c2 values. 

 

 

 

 

 

 

Table 7. Optimization of c1 and c2 values 

c1/c2 Accuracy 

1.0 70.56 

1.2 88.53 

1.5 90.44 

1.7 90.44 

2.0 89.80 

 

 

Fig 5: c1/c2 values affecting Accuracy 

 

4.2.4 Number of hidden neurons 
The PSO-ANN was investigated with 20, 25, 30, 35 and 40 

hidden neurons in the hidden layer of the architecture. This is 

not a PSO parameter but a parameter of the ANN architecture 

in the ANN-PSO model. Table 6 presents the results of this 

study. At a low value of 20 hidden neurons, the network does 

not have sufficient flexibility to learn and adapt to the data. 

This results in low prediction accuracy. Similarly for hidden 

neurons greater than 30, the ANN taken a long time to get 

trained and may also be over fitting the data. So the optimum 

number of hidden neurons was found to be between 25 and 

30. The results are captured in Table 8 and Figure 6. 

Table 8. Optimization of hidden neurons 

Neurons Accuracy 

20 80.17 

25 90.44 

30 90.44 

35 89.80 

40 84.44 
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Fig 6: Number of hidden neurons affecting Accuracy 

4.2.5 Optimal Configuration for ANN-PSO 
The optimal configuration for ANN-PSO network was found 

to be as given in Table 9. 

Table 9. Optimum configuration values for ANN-PSO 

Parameter Value 

Number of Particles 25 

Number of Iteration 50 

Local Weight (c1) 1.4944 

Local Weight (c2) 1.4944 

Hidden Neurons 25 to 30 

 

5. CONCLUSIONS 
We explored the particle swarm optimized technique as a 

training algorithm for artificial neural network (ANN-PSO) to 

predict the fault proneness of object oriented systems. We 

found that compared to BP and GA, PSO was able to improve 

the fault prediction accuracy and speed up the convergence 

simultaneously. The experimental results conducted on six 

data sets from promise data repository revealed that PSO is a 

promising training algorithm for fault prediction in OO 

systems using OO metrics and its potential should be explored 

further in this area. 

We also experimented with different values for the ANN-PSO 

configuration parameters. We were able to conclude on the 

values for configuring the ANN-PSO model to give the best 

possible prediction accuracy. Future studies could include 

optimizing more than one parameter of ANN using 

simultaneous optimization techniques like co-operative PSO 

and multi objective PSO. Studies can also be done where 

empirical analysis is done on a wide variety of data set 

especially industrial projects. 
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    APPENDIX A 
Metric Description 

WMC Weighed methods per class 

DIT Depth of Inheritance Tree 

NOC Number of Children 

CBO Coupling Between Objects 

RFC Response For a Class 

LCOM Lack of Cohesion Metric 

CA Afferent Coupling 

CE Efferent Coupling 

NPM Number of Public Methods 

LCOM3 Lack of Cohesion Metric 3 

LOC Lines of Code 

DAM Data Access Metric 

MOA Measure of Aggression 

MFA Measure of Functional Abstraction 

CAM Cohesion Among Methods 

IC Inherent Coupling 

CBM Cohesion Between Methods 

AMC Average Method Complexity 

MAX_CC Cyclomatic Complexity (Maximum) 

AVG_CC Cyclomatic Complexity (Average) 
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