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ABSTRACT
In the continuing research towards characterizing 1-safe Petri nets
with n-places and generating all the 2n binary n-vectors as mark-
ing vectors exactly once, the problem of determine minimum Petri
nets; ‘minimum’ in the sense that the number of transitions is kept
minimum possible for the generation of all the 2n binary n-vectors
has been found. In this paper, the existence and uniqueness of a
minimum Petri net which generates all the 2n binary n-vectors
exactly once has been shown. For brevity, a 1-safe Petri net that
generate all the binary n-vectors as marking vectors is called a
Boolean Petri net and a 1-safe Petri net that generates all the bi-
nary n-vectors exactly once is called crisp Boolean Petri net.

Keywords:
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1. INTRODUCTION
Petri nets invented by C.A. Petri [1] are designed specifically to
model a variety of systems, especially concurrent and dynamic
systems, of which computer systems are a good representation.
Petri nets can capture the essence of decisions: conflict and par-
allelism. Petri nets are the graphical and mathematical model-
ing tool applicable to many systems such as modeling, analy-
sis, control, optimization, simulation and implementation of var-
ious engineering systems. Of all existing models, Petri nets and
their extensions are of undeniable fundamental interest because
they define easy graphical support for the representation and the
understanding of basic mechanism and behaviors. The develop-
ment of high-end computers has greatly enhanced the use of Petri
nets in diverse fields. However, there is a drawback inherent to
discrete event-system they suffer from state explosion problem
as what will happen when a system is highly populated, i.e., ini-
tial marking is large. This phenomenon leads to an exponential
growth of the cardinality of the set of markings which, in turn,
would blow up the ‘size’ (i.e., the number of arcs) of the sys-
tem. This makes us to study the safe systems deeply. Towards
this end, the authors proposed a 1-safe star Petri net Sn, with
|P | = n and |T | = n+1, having a central transition, that gener-
ates all the binary n-vectors, as its marking vectors [2]; they also

established the existence of 1-safe Petri nets that generate all the
binary n-vectors exactly once as marking vectors keeping the
depth of the reachability tree minimum [3]. After that a question
came into the mind of authors that, “Does there exist a Petri net
which generates all the binary n-vectors exactly once with min-
imum number of transitions?” and they successfully established
the existence of such a Petri net in this paper. The uniqueness of
this Petri net is also shown here.

2. PRELIMINARIES
For the sake of completeness, some of the necessary definitions
and concepts used in this paper are discussed here. For standard
terminology and notation on Petri nets theory and Graph theory,
the reader is referred to Peterson[4] and Harary[5], respectively.
Throughout this paper, the following definition given by Jensen
[6] is being used.

A Petri net is a 5-tuple N = (P, T, I−, I+, µ0), where

(1) P is a nonempty set of ‘places’,
(2) T is a nonempty set of ‘transitions’,
(3) P ∩ T = ∅,
(4) I−, I+ : P × T −→ N, where N is the set of nonnegative

integers, are called the negative and the positive ‘incidence
functions’ (or, ‘flow functions’) respectively,

(5) ∀ p ∈ P,∃t ∈ T : I−(p, t) 6= 0 or I+(p, t) 6= 0 and
∀ t ∈ T,∃p ∈ P : I−(p, t) 6= 0 or I+(p, t) 6= 0,

(6) µ0 : P → N is the initial marking.

In fact, I−(p, t) and I+(p, t) represent the number of arcs from
p to t and t to p respectively. I−, I+ and µ0 can be viewed as
matrices of size |P | × |T |, |P | × |T | and |P | × 1, respectively.

As in many standard books (e.g., see [7]), Petri net is a particular
kind of directed graph, together with an initial marking µ0.
The underlying graph of a Petri net is a directed, weighted,
bipartite graph consisting of two kinds of nodes, called places
and transitions, where arcs are either from a place to a transi-
tion or from a transition to a place. Hence, Petri nets have a
well known graphical representation in which transitions are
represented as boxes and places as circles with directed arcs
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interconnecting places and transitions to represent the flow
relation. The initial marking is represented by placing a token
in the circle representing a place pi as a black dot whenever
µ0(pi) = 1, 1 ≤ i ≤ n = |P |. In general, a marking µ is a
mapping µ : P −→ N. A marking µ can hence be represented
as a vector µ ∈ Nn, n = |P |, such that the ith component of µ
is the value µ(pi).

In a Petri net N a transition t ∈ T is said to be enabled at µ if
and only if I−(p, t) ≤ µ(p), ∀p ∈ P . An enabled transition may
or may not ‘fire’ (depending on whether the event actually takes
place or not). After firing at µ, the new marking µ′ is given by
the rule

µ′(p) = µ(p)− I−(p, t) + I+(p, t), forall p ∈ P.

and write µ t−→ µ′, whence µ′ is said to be directly reachable
from µ. Hence, it is clear, what is meant by a sequence like

µ0 t1−→ µ1 t2−→ µ2 t3−→ µ3 · · · tk−→ µk,

which simply represents the fact that the transitions

t1, t2, t3, . . . , tk

have been successively fired to transform the marking µ0 into the
marking µk. The whole of this sequence of transformations is
also written in short as µ0 σ−→ µk, where σ = t1, t2, t3, . . . , tk.

A marking µ is said to be reachable from µ0, if there exists a
sequence of transitions which can be successively fired to obtain
µ from µ0. The set of all markings of a Petri net N reachable
from a given marking µ is denoted by M(N,µ) and, together
with the arcs of the form µi

tr−→ µj , represents what in standard
terminology called the reachability graph R(N,µ) of the Petri
net N . If the reachability graph has no cycle then it is called
reachability tree.

A place in a Petri net is safe if the number of tokens in that place
never exceeds one. A Petri net is safe if all its places are safe.

The preset of a transition t is the set of all input places to t,
i.e., •t={p ∈ P : I−(p, t) > 0}. The postset of t is the set
of all output places from t, i.e., t•={p ∈ P : I+(p, t) > 0}.
Similarly, p′s preset and postset are •p={t ∈ T : I+(p, t) > 0}
and p•={t ∈ T : I−(p, t) > 0}, respectively.

A pair of a place p and a transition t is called a self-loop if p is
both an input and output place of t (see [8]).

Let N = (P, T, I−, I+, µ0) be a Petri net with |P | = n and
|T | = m, the incidence matrix I = [aij ] is an n × m matrix
of integers and its entries are given by aij = a+ij − a−ij where
a+ij=I

+(pi, tj) is the number of arcs from transition tj to its out-
put place pi and a−ij=I

−(pi, tj) is the number of arcs from place
pi to its output transition tj , i.e., in other words, I = I+ − I−.

3. MAIN RESULTS
In order to establish the main result of this paper, The following
definitions are needed.

DEFINITION 1. [9] Let N=(P, T, I−, I+, µ0) be a Petri net
and Z be a subnet of N . Then Z is called a strong chain cycle
(SCC) of N or N is said to have a strong chain cycle (SCC) Z,
if |•t|=2, |p•|=2 and |t•|=1 ∀ p, t ∈ Z. If an SCC Z contains
all the places of N then N is said to have a strong chain cycle
covering all the places (see Figure 1 for illustration). Note that
an SCC containing k places, where k ≤ n = |P | will always
have k self-loops.

t1     
1          p

          n
p

2

          
p

t      n      

t      2      

3          p t      3      

Fig. 1. Strong chain cycle

DEFINITION 2. Let Nn,m be a Petri net with n places and
m transitions, having the following properties (i) n ≤ m, (ii)
the ith transition ti is contained in exactly n − i self-loops,
i = 1, 2, · · · , n and (iii) the sub-Petri net N ∗n,n induced by
the places p1, p2, · · · , pn and transitions t1, t2, · · · , tn forming
identity matrix In in the incidence matrix I = I+−I−=I[i, j] =
1, if i = j and 0 otherwise, for 1 ≤ i ≤ n and i ≤ j ≤ n, of
Nn,m does not contain

as a sub-Petri net.

If the Petri netNn,m is 1-safe then the structure shown in Figure
2 will not exist because on firing of tj , j = 1, 2, · · · ,m Petri net
will not remain safe.

t1     
1          p

          4
p

2

          
p

t      m      

t      2      

3          p t      3      

t      4      

Fig. 2. A non-safe Petri net

LEMMA 3. If a 1-safe Petri net N = (P, T, I−, I+, µ0),
|P | = |T | = n having In as its incidence matrix, containing
an SCC between two places and two transitions with µ0(p) = 1,
∀p ∈ P , then N is not a Boolean Petri net.
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PROOF. Suppose N = (P, T, I−, I+, µ0) has an SCC be-
tween any two places pi, pj and two transitions ti, tj . This means
that (pi, tj) is a single arc in N if i = j and symmetric arc in N
if i 6= j. Since µ0(p) = 1, ∀p ∈ P , all the transitions are enabled
and fire. After firing of the transitions ti and tj in the first stage,
we will get the ‘0’ at the ith and jth places respectively. After
firing, these transitions become dead because |•ti| = |•tj | = 2
as ti and tj lie on SCC. Therefore in the next stage of firing, we
cannot get the marking vector whose ith as well as jth compo-
nents are zero simultaneously. Therefore, N does not generate
all 2n binary n-vectors as its marking vectors and hence is not
Boolean.

LEMMA 4. [9] If a 1-safe Petri net N = (P, T, I−, I+, µ0),
|P | = n, is Boolean then |P | ≤ |T |.

LEMMA 5. [10] A disconnected Petri net having n compo-
nents of K2

∼=
⊙
−→ � is Boolean.

In the following theorem, which is the main result of this paper,
we give the construction of a minimum crisp Boolean Petri net.
By a minimum crisp Boolean Petri net we mean a Petri net which
is Boolean and generates all the marking vectors exactly once
using the minimum number of transitions.

THEOREM 6. A 1-safe Petri net Nn,n := N ∗n,n with
µ0(p) = 1, ∀p ∈ P , is a minimum crisp Boolean Petri net.

PROOF. The theorem is proved by the Principle of Mathemat-
ical Induction (PMI) on |P | = n. Let n=1. Then N ∗1,1 is a Petri
net with one place p1 and one transition t1. This means N ∗1,1 has
no self-loop as shown in Figure 3. Further, since µ0(p1) = 1, it
is easy to verify that the reachability treeR(N ∗1,1, µ

0) ofN ∗1,1 as
shown in Figure 4 contains all the binary 1-vectors, namely (1),
(0) exactly once and after firing of the transition t1, it becomes
dead.

1          p
t1 

Fig. 3. N∗1,1

(1)  

(0) 
 

t1 

Fig. 4. R(N∗1,1, µ
0)

Next, let n = 2. ThenN ∗2,2 is a Petri net with two places namely,
p1, p2 and two transitions namely, t1, t2. The structure of N ∗2,2
is shown in Figure 5. Since µ0(p) = 1, ∀p ∈ P , both the tran-
sitions t1, t2 are enabled and fire. After firing of t1 and t2 in the
first stage, we get marking vectors (0, 1) and (1, 0) respectively.
In the second stage of firing, at the marking vector (0, 1), only
transition t2 is enabled and gives the marking vector (0, 0) after
firing and at this marking vector all the transitions become dead.
On the other hand, at the marking vector (1, 0), no transition is
enabled. Hence. it is clear that the reachability tree R(N ∗2,2, µ

0)

of N ∗2,2 as shown in Figure 6 contains all the 4 = 22, binary

t2          

t1 1 1 1 11 1 11          p

2          p

 

Fig. 5. N∗2,2

(1,1)  

(0,1) 

 

t1 

(1,0) 

(0,0) 

t2 

t2 

Fig. 6. R(N∗2,2, µ
0)

2-vectors (a1, a2), a1, a2∈ {0, 1} exactly once having the mini-
mum number of transitions.
We can construct N ∗2,2 from N ∗1,1 and R(N ∗2,2, µ

0) from
R(N ∗1,1, µ

0) procedurally as follows:

Construction of N ∗2,2 from N ∗1,1

Step 1: Take one copy of N ∗1,1 and one copy of K2
∼=

⊙
−→2,

letting the place and transition in K2 as p2 and t2 respectively.
Step 2: Draw the self-loop from the place p2 ofK2 to the transi-
tion t1 inN ∗1,1. In this way, we obtain the resulting structureN ]

2,2

having two places p1, p2 and two transitions t1, t2, in which tran-
sition t1 is contained in only one self-loop and t2 is not contained
in any self-loop as shown in Figure 7.

t2          

t1      1          p

2          p

Fig. 7. N]
2,2=:N∗2,2

Construction of R(N ∗2,2, µ0) from R(N ∗1,1, µ
0)

Step 1: Take two copies of R(N ∗1,1, µ
0). In the first copy,

augment ‘0’ at the first position of each vector of R(N ∗1,1, µ
0)

and denote the resulting labeled tree as R0(N
∗
1,1, µ

0) as shown
in Figure 8. Similarly, in the second copy, augment ‘1’ at the
first position of each vector of R(N ∗1,1, µ

0) and denote the
resulting labeled tree as R1(N

∗
1,1, µ

0) as shown in Figure 9.

Step 2: Join the root node (1, 1) of R1(N
∗
1,1, µ

0) to the root
node (0, 1) of R0(N

∗
1,1, µ

0) by an arc from (1, 1) to (0, 1) and
label it as t1 (see Figure 10).
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(0,1)  

(0,0) 
 

t1  

Fig. 8. R0(N
∗
1,1, µ

0)

(1,1)  

(1,0) 
 

t1  

Fig. 9. R1(N
∗
1,1, µ

0)

(1,1)  

(0,1) 

 

t1 

(1,0) 

(0,0) 

t2 

t2 

Fig. 10. R∗(N∗2,2, µ
0)

Step 3: Label the arcs of R1(N
∗
1,1, µ

0) and R0(N
∗
1,1, µ

0) as
t2 in R∗(N ∗2,2, µ

0). Thus, we get the resulting labeled tree
R∗(N ∗2,2, µ

0) as shown in Figure 10.

It is easy to see that all the vectors in R∗(N ∗2,2, µ
0) are distinct

since these are obtained by fusing the nodes of R1(N
∗
1,1, µ

0)

andR0(N
∗
1,1, µ

0) and are 4 = 22 in number. It is clear that these
are the marking vectors of N ∗2,2. Thus, the resulting labeled tree
R∗(N ∗2,2, µ

0) obtained is indeed the reachability tree of N ∗2,2
because R∗(N ∗2,2, µ

0) has the same number of distinct nodes
together with the same number of arcs having the same labelings
(see Figure 10). By the construction of N ]

2,2 from N ∗1,1 as given
in Step 2, N ]

2,2 =:N ∗2,2 implies the uniqueness of its reachability
tree. Hence, R∗(N ∗2,2, µ

0) =: R(N ∗2,2, µ
0).

Next, let n = 3. Then N ∗3,3 is a Petri net with three places
namely, p1, p2 and p3 and three transitions namely, t1, t2 and t3.
The structure of N ∗3,3 is shown in Figure 11. Since µ0(p) = 1,
∀p ∈ P , all the transitions t1, t2 and t3 are enabled and fire. Af-
ter firing of t1, t2 and t3 in the first stage, we get marking vec-
tors (0, 1, 1) ,(1, 0, 1) and (1, 1, 0) respectively. In the second
stage of firing, at the marking vector (0, 1, 1), only transition t2
and t3 are enabled and fire giving the marking vector (0, 0, 1)
and (0, 1, 0) respectively. On the other hand, at the marking vec-
tor (1, 0, 1), only transition t3 is enabled and after firing gives
the marking vector (1, 0, 0). Similarly, at the marking vector
(1, 1, 0) all the transitions become dead. In the third stage of
firing, only at the marking vector (0, 0, 1), the transition t3 is

enabled and fires giving the marking vector (0, 0, 0). Hence. it
is clear that the reachability tree R(N ∗3,3, µ

0) of N ∗3,3 (see Fig-
ure 12) contains all the 8 = 23, binary 3-vectors (a1, a2, a3),
a1, a2, a3 ∈ {0, 1} exactly once with the minimum number of
transitions.

t1     
1          p

2

          
p t      2      

3          p t      3      

Fig. 11. N∗3,3

(1,1,1) 

(0,1,1) (1,0,1) (1,1,0) 

(0,0,1) 
(0,1,0) 

(0,0,0) 

t1 t2  t3  

t2 t3 

t3 

( )1,0,0  

t3 

Fig. 12. R(N∗3,3, µ
0)

We can construct N ∗3,3 from N ∗2,2 and R(N ∗3,3, µ
0) from

R(N ∗2,2, µ
0) procedurally as follows:

Construction of N ∗3,3 from N ∗2,2

Step 1: Take one copy of N ∗2,2 and one copy of K2
∼=

⊙
−→2,

letting the place and transition in K2 as p3 and t3 respectively.
Step 2: Draw the self-loop from the place p3 of K2 to each ti,
i = 1, 2. In this way, we obtain the resulting structure N ]

3,3 hav-
ing three places p1, p2, p3 and three transitions t1, t2, t3 in which
transition ti is contained in (n − i) self-loops, ∀i = 1, 2, 3, as
shown in Figure 13. Thus, N ]

3,3=:N ∗3,3.

Construction of R(N ∗3,3, µ0) from R(N ∗2,2, µ
0)

Step 1: Take two copies of R(N ∗2,2, µ
0). In the first copy, aug-

ment ‘0’ at the first position of each vector of R(N ∗2,2, µ
0) and

denote the resulting labeled tree as R0(N
∗
2,2, µ

0) as shown in
Figure 14. Similarly, in the second copy, augment ‘1’ at the first
position of each vector of R(N ∗2,2, µ

0) and denote the resulting
labeled tree as R1(N

∗
2,2, µ

0) as shown in Figure 15.

Step 2: Join the root node (1, 1, 1) of R1(N
∗
2,2, µ

0) to the
root node (0, 1, 1) of R0(N

∗
2,2, µ

0) by an arc from (1, 1, 1) to
(0, 1, 1) and label it as t1 (see Figure 16).
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1          p

2

          
p t      2      

3          p t      3      

Fig. 13. N]
3,3=:N∗3,3

 

 

t1 t2 

t2 
(0,0,1) (0,1,0)

(0,0,0)

(0,1,1)

Fig. 14. R0(N
∗
2,2, µ

0)

 

 

t1 t2 

t2 
(1,0,1) (1,1,0)

(1,0,0)

(1,1,1)

Fig. 15. R1(N
∗
2,2, µ

0)

Step 3: Increase by one the suffixes of labeled arcs of
R1(N

∗
2,2, µ

0) and R0(N
∗
2,2, µ

0) except the labeled arc t1 as in
Step 2. Thus, we get the resulting labeled tree R∗(N ∗3,3, µ

0) (see
Figure 16).

In fact, all the vectors in R∗(N ∗3,3, µ
0) are distinct since

these are obtained by fusing of the nodes of R1(N
∗
2,2, µ

0)

and R0(N
∗
2,2, µ

0) and they are 22 + 22 = 23 in number.
Also, labeling of arcs in the resulting tree R∗(N ∗3,3, µ

0) is the
same as R(N ∗3,3, µ

0). Thus, the resulting tree R∗(N ∗3,3, µ
0)

obtained is indeed the reachability tree of N ∗3,3 because
R∗(N ∗3,3, µ

0) has the same number of distinct nodes together
with the same number of arcs having the same labelings. By
the construction as given in Step 2 of N ]

3,3 from N ∗3,3, N ]
3,3

=: N ∗3,3 implies the uniqueness of its reachability tree. Hence,
R∗(N ∗3,3, µ

0)=:R(N ∗3,3, µ
0).

Now, assume that the result is true for n = k places. That means,
we have a crisp Boolean Petri net N ∗k,k with k places namely,
p1, p2,· · · , pk and k transitions namely, t1, t2· · · , tk, where the
transition ti is contained in (k − i) self-loops, ∀ i = 1, 2, · · · , k
(see Figure 17).

(1,1,1) 

(0,1,1) (1,0,1) (1,1,0) 

(0,0,1) 
(0,1,0) 

(0,0,0) 

t1 t2  t3  

t2 t3 

t3 

( )1,0,0  

t3 

Fig. 16. R∗(N∗3,3, µ
0)=:R(N∗3,3, µ

0)

t1      
1          p

2

          
p t      2      

3

          
p t      3      

k

          
p t      k      

Fig. 17. N∗k,k

Now, show that the result is true for n = k+1. For this purpose,
construct N ∗k+1,k+1 from N ∗k,k and R(N ∗k+1,k+1, µ

0) from
R(N ∗k,k, µ

0) procedurally as follows:

Construction of N ∗k+1,k+1 from N ∗k,k

Step I: Take one copy of N ∗k,k and one copy of K2
∼=

⊙
−→2,

letting the place and transition of K2 denoted as pk+1 and tk+1

respectively.
Step II: Draw a self-loop between pk+1 to each ti, i =

1, 2, · · · , k. So, we obtain the resulting structure N ]
k+1,k+1 for

k + 1 places namely, p1, p2, · · · , pk+1 and k + 1 transitions
namely, t1, t2,· · · , tk+1 in which the transition ti is contained
in (k + 1) − i self-loops, ∀i = 1, 2, · · · , (k + 1), as shown in
Figure 18. Thus, N ]

k+1,k+1=:N ∗k+1,k+1.

Construction of R(N ∗k+1,k+1, µ
0) from R(N ∗k,k, µ

0)

Step I: Take two copies of R(N ∗k,k, µ
0). In the first copy, aug-

ment ‘0’ at the first position of each vector of R(N ∗k,k, µ
0)

and denote the resulting labeled tree as R0(N
∗
k,k, µ

0). Sim-
ilarly, in the second copy, augment ‘1’ at the first position
of each vector of R(N ∗k,k, µ

0) and denote the resulting la-
beled tree as R1(N

∗
k,k, µ

0). Hence, all the augmented vectors
in R0(N

∗
k,k, µ

0) and R1(N
∗
k,k, µ

0) are distinct.

Step II: Join the root node (1, 1, 1, · · · , 1) of R1(N
∗
k,k, µ

0) to
the root node (0, 1, 1, · · · , 1) of R0(N

∗
k,k, µ

0) by an arc from
(1, 1, · · · , 1) to (0, 1, · · · , 1) and label it as t1.
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t1      
1          p

k+1          p

2

          
p

t      k+1      

t      2      

3

          
p t      3      

k

          
p t      k      

Fig. 18. N]
k+1,k+1=:N∗k+1,k+1

Step III: Increase by one the suffixes of labeled arcs of
R1(N

∗
k,k, µ

0) and R0(N
∗
k,k, µ

0) except the labeled arc t1
as in Step II. Thus, we get the resulting labeled tree
R∗(N ∗k+1,k+1, µ

0).

In fact, all the vectors in R∗(N ∗k+1,k+1, µ
0) are distinct since

these are obtained by fusing the nodes of R1(N
∗
k,k, µ

0) and
R0(N

∗
k,k, µ

0) and they are 2k + 2k = 2k+1 in number.
Also, labeling of arcs in the resulting tree R∗(N ∗k+1,k+1, µ

0)

is the same as in R(N ∗k+1,k+1, µ
0). Thus, the resulting

tree R∗(N ∗k+1,k+1, µ
0) obtained is indeed the reachability

tree of N ∗k+1,k+1 because R∗(N ∗k+1,k+1, µ
0) has the same

number of distinct nodes together with the same number
of arcs having the same labelings. By the construction as
given in Step II of N ]

k+1,k+1 from N ∗k+1,k+1, N ]
k+1,k+1 =:

N ∗k+1,k+1 implies the uniqueness of its reachability tree. Hence,
R∗(N ∗k+1,k+1, µ

0)=:R(N ∗k+1,k+1, µ
0).

Hence, the result follows by PMI.

The 1-safe Petri net Nn,m where n 6= m with µ0(p) = 1, ∀ p ∈
P also generates all the binary n-vectors. In this case repetitions
may occur. That is Nn,m is a Boolean Petri net but not neces-
sarily crisp. In any 1-safe Petri net N = (P, T, I−, I+, µ0),
|P | = |T | = n, with µ0(p) = 1, ∀p ∈ P , at any stage in the
dynamics of N when binary n-vectors at Hamming distance k
from µ0 are being generated all the binary n-vectors of Ham-
ming distance less than k have already been generated.
Now, the uniqueness of 1-safe Petri net Nn,n =: N ∗n,n which is
crisp Boolean will be proved in the next theorem.

THEOREM 7. The 1-safe Petri net Nn,n := N ∗n,n is the
unique minimum crisp Boolean Petri net.

PROOF. The existence of the crisp Boolean Petri net N ∗n,n
has been already proved in Theorem 1. Here, the uniqueness of
N ∗n,n will be established. Since N ∗n,n has n places and n transi-
tions, by Lemma 2, N ∗n,n is minimum. Let N be any minimum
crisp Boolean Petri net. We claim, N ∼= N ∗n,n. Since N is crisp,
|P | = n and minimality ofN implies that |T | = n. Furthermore,
µ0(p) = 1, ∀p ∈ P . For generating all the nC1 binary n-vectors
as marking vectors of Hamming distance 1 from µ0, we must
have a spanning subgraph N ′ of N consisting of n copies of
K2
∼=
⊙
−→�, this leads to a contradiction about crisp Boolean

Petri net (by Lemma 3). Suppose in N , there is an arc from ti
to pj and not from pj to ti, for i 6= j. Then at the first stage
of firing at µ0, the safeness of N is violated. Therefore, there is
no arc in N from ti to pj , for i 6= j. Hence, whenever there is
an arc from ti to pj , for i 6= j, there exists an arc from pj to
ti so that they form a self-loop. Next, suppose in N , there is an
arc from pj to ti and not from ti to pj , for i 6= j. Then in the
first stage of firing of ti we will get at least one marking vector
of Hamming distance 2 from µ0 whose ith and jth components
are zero and would not get the marking vector of Hamming dis-
tance 1 whose ith component is zero and jth component is 1
or vice-versa. |T | = n implies that in the next stage of firing,
the marking vector of Hamming distance 1 from µ0 cannot get
generated. By Remark 3 it implies that when k = 2, we get
the contradiction to our assumption that N is crisp. Therefore,
whenever, there is an arc from pj to ti, i 6= j, there exists an arc
from ti to pj also; in other words, pi and tj form a self-loop, for
i 6= j. These arguments imply either pi and tj are not adjacent
or they form a self-loop, for i 6= j. If for all i 6= j; pi and tj are
not adjacent then N = n

⊙
−→ � which is not crisp Boolean

(see Lemma 3). Therefore, there do exist self-loops (pi, tj) for
some i 6= j. If n = 1, N ∼= N ∗1,1 and we are through. Hence,
suppose n ≥ 2. Since there is at least one self-loop in N , N
has less connected components than those in N ′. The following
cases are under consideration, namely:

Case 1: N ′ contains C1
∼=
pi⊙
−→

ti
� as a component. Since n ≥

2 there exists a component C2 of N ′. Now two subcases arise.

Subcase 1: C2
∼=
pr⊙
−→

tr
� i.e., C2 has only one component of

N ′. If there is no self-loop inN connectingC1 andC2 inN ′ then
a marking vector of Hamming distance 2 from µ0 is repeated, a
contradiction to our assumption. Therefore, there must be a self-
loop connecting C1 and C2 in N . Without loss of generality, let
C1 = (pi, ti), C2 = (pr, tr) and self-loop (pi, tr) or (pr, ti). If
both self-loop (pi, tr) and (pr, ti) exist then by Lemma 1, N is
not crisp Boolean. Therefore, only one of these self-loops exists.
Without loss of generality, assume that (pr, ti) is a self-loop that
connects C1 and C2. Thus for n = 2, N ∼= N ∗2,2.
Subcase 2: C2 has at least two components of N ′. Let these

components of N ′ be
pr⊙
−→

tr
� and

ps⊙
−→

ts
�. Since C2 is

connected, there are at least |C2|
2
− 1 self-loops in C2. If

|C2| = 4 then in C2 there are at least 4
2
− 1 = 1 self-

loop. Now, without loss of generality, suppose (ps, tr) is a
self-loop. After firing in N , we get all the binary vectors of
Hamming distance 1 from µ0 without repetitions. We get the
binary vectors (a1, a2, · · · , ai, · · · , ar, ar+1 · · · , as, · · · , an)
where ai = 0, aj = 1, ∀j 6= i, i < r < s and
(a1, a2, · · · , ai, · · · , ar, ar+1, · · · , as,
· · · , an) where ar = 0, ak = 1, ∀k 6= r. Now, consider the
marking vector (a1, a2, · · · , ai−1, 0, ai+1· · · , ar, as, · · · , an),
where aj = 1, ∀ j 6= i. At this marking, tr is enabled and
fires, whence we get (a1, a2, · · · , ai−1, 0, ai+1, · · · , ar−1
, 0, ar+1, · · · , an), where aj = 1, ∀j 6= i, r. Similarly, at the
marking vector (a1, a2, · · · , ai, · · · , ar−1, 0, ar+1, · · · , an),
where ar = 0, aj = 1, ∀j 6= r, the transition ti is enabled
and after firing gives the marking vector (a1, a2, · · · , ai−1,
0, ai+1 · · · , ar−1, 0, ar+1, · · · , an), where aj = 1, ∀j 6= i, r
which is obtained again, a contradiction to our initial assump-
tion about N . The same arguments hold when |C2| > 4, i.e., C2

has more than 2 components of N ′.
Case 2: The above arguments imply that every component ofN
has at least two components of N ′. But, then the argument given
in Subcase 2 above leads us to the same contradiction.
It follows thatN is connected. Therefore,N should have at least
|N |
2
− 1 self-loops. Since |P | = |T | = n, N cannot contain a

strong chain cycle (SCC) by virtue of Lemma 1. We claim, there
exists a transition in N which is joined by self-loops to all but
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one place. Suppose there exists no transition joined by self-loops
to all but one of the places inN . This implies, there is a transition
say t1 not joined by self-loops to at least two places, namely to
p1 and one other place say p2. Since, N generates all the binary
n−vectors as marking vectors, in particular a = (0, 1, 1, · · · , 1)
and b = (1, 0, 1, · · · , 1) are generated by N in the first stage of
firing. Now, the vector a at which t2 is enabled and fires giving
rise to vector a′ = (0, 0, 1, · · · , 1), is also obtained by firing t1
at b, a contradiction to our assumption about N that N is crisp.
Thus t1 is joined to all the places pi by self-loops except p1.
Next, suppose there exists tj , j 6= 1, joined by self-loops, to all
but one of the places, in particular tj will be joined to p1 by a
self-loop. Then, there is an SCC formed by the places p1 and pj
and transitions t1 and tj respectively. This contradicts Lemma
1. Now, we claim there exists a transition joined by self-loops to
all but two of the places. Suppose this is not true, i.e., there ex-
ists a transition which is not joined by self-loops to at least three
places. Without loss of generality, suppose t2 is such a transition.
Since t2 is not joined by self-loops to p1, p2 and p3, let pj be a
place j 6= 1, 2, 3 to which t2 is joined by a self-loop. Since, N
generates all the binary n-vectors as marking vectors, in particu-
lar c = (1, 1, 0, 1, · · · , 1) and b = (1, 0, 1, · · · , 1) are generated
by N in the first stage of firing. Now, the vector c at which t2 is
enabled and fires giving rise to vector c′ = (1, 0, 0, 1, · · · , 1) (as
t2 is not joined by self-loop to p2) is also obtained by firing t3 at
b, a contradiction to our assumption about N that it generates all
the binary n-vectors exactly once, establishing the contradiction
to our assumption that N is crisp Boolean. Thus t2 is joined by
self-loops to all but two of the places. These two places are p1
and p2 because (pi, ti) is not a self-loop, ∀ i and if (p1, t2) is
a self-loop then SCC will be found which contradicts Lemma 1.
Next suppose tj , j 6= 1, 2, is joined by self-loop to all but two of
the places then in the structure of Petri net SCC will be formed
which contradicts the Lemma 1. Continuing these arguments, in
general that for each j, 1 ≤ j ≤ n, tj is joined by self-loops to
exactly n− j places.

Thus N ∼= N ∗n,n is the unique minimum crisp Boolean Petri
net.

4. CONCLUSIONS AND SCOPE
The existence and uniqueness of minimum crisp Boolean Petri
nets. A computationally good characterization of such Petri nets
in general is highly desirable since the instances where we need
such Petri nets for applications are imaginably (as well as ar-
guably) large in number as pointed out in [2]. This has been a
hotly pursued research problem. The general problem of charac-
terizing such a 1-safe Petri net N is still open.
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