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ABSTRACT  

In this paper we consider spline function of general degree m 

which has the same area as the function does in each partition of 

the sub-intervals. The existence and uniqueness in general of 

spline functions also been studied and obtained the result. 

: In this paper we consider spline function of general degree, 

i.e.,of degree m, m=2,3,.... We first give definitions and 

notations. We take 0 =x
0
<x

1
<...<x

n−1
<x

n
=1 a subdivision of 

the interval [0,1]. The periodic spline function of degree m was 

defined by Ahlberg, Nilson and Walsh [1] in the following 

way: 

DEFINITION 1 : 
 A function φ is said to be periodic spline function of degree m 

if it satisfies the following conditions: 
( a ) In each sub-interval [x

i−1
,x

i
] , i = 1,2,...,n , the function φ 

coincides with a polynomial of degree at most m i.e., φ(x)∈π
m

; 

( b ) its derivatives upto m-1 order are continuous, i.e., 

φ∈C
(m−1)

[0,1];  

( c ) φ holds the boundary conditions; φ
(j)

(0)=φ
(j)

(1) , j = 

0,1,...,m-1. 

      H. ter. Morsche [10] had defined the periodic spline 

function of degree m which is as follows: 

 

 

DEFINITION 2  
By S( m,n ) we denote the set of spline functions ϕ, defined on  

[0,∞) , that have the following properties : 
( a ) The restrictions of ϕ to an arbitrary sub-interval  [x

i−1
,x

i
] 

,  i = 1,2,...,  x
i
=ih,   belongs to π

m
; 

( b ) ϕ∈C
m−1

[0,∞).  

 

 

 

 

 

 

 

 

The set of periodic spline functions of degree m 

corresponding to the uniform sub-division of the interval [0,1] 

into n sub-intervals will be denoted by S
0
(m,n).  

DEFINITION 3: 
 Truncated Power Function : The truncated power function is  

x
m

+
. It is defined by 

x
m

+
=  

[Sorry. Ignored \begin{cases} ... \end{cases}] 

where m is a positive real number. 

 

1. INTRODUCTION  

Ahlberg, Nilson and Walsh [1] had obtained the result for 

arbitrary periodic function f with period l . This states that there 

exists a unique periodic spline function of odd degree that 
interpolates f at the nodes x

i
. Further added that it may not hold 

in general for even degree. Even degree case was considered by 

Subbotin [11]. He established that the result holds good if the 

nodes are equally spaced with arbitrary periodic function f, if 

the interpolation points are taken to be the mid-points of the 
sub-intervals [x

i−1
,x

i
].      Meir and Sharma [8,9] considered 

the above study for cubic case with a view to have more 

flexibility in the interpolating points for the class of function 

C
2

[0,1].  Specifically, if the interpolation points are denoted 

by y
1

,y
2,...,

y
n

 and if y
i
=x

i
−λh   with 0≤λ≤ 

1

3
  or 

2

3
≤λ≤1,  then they established the existence and 

uniqueness of a periodic cubic spline function interpolating 

arbitrary element of C
2

[0,1]  at the points y
i
. About there 

convergence they proved the following theorem [9] : 



International Journal of Computer Applications (0975 – 8887)  

Volume 73– No.20, July 2013 

2 

THEOREM A: Let f(x)∈C
2
[0,1]  be 1-periodic, and let 

φ(x)∈ C
2

[0,1]  be the 1-periodic cubic spline with joints 

x
i
=i/n  , satisfying            φ ( ) 

i+λ−1

n
=f ( ) 

i+λ−1

n
,    

i=1,2,...,n,where 0≤λ≤ 
1

3
 or 

2

3
≤λ≤1.  Then             

max
x
|φ

''
(x)−f

''
(x)|≤15ω

2
 ( ) 

1

n
, where ω

2
  is the second 

modulus of continuity of  f
''
.      Instead of considering point 

interpolation, Dikshit [5] studied certain area-matching of the 

spline function and the function in each sub-interval of the 

partition. Essentially he obtained the following [1978 ]  

THEOREM B:  

Let f∈C
2
[0,1]  be a 1-periodic locally integrable function 

with respect to a  non-negative measure dμ satisfying            

μ(x+h)−μ(x)=K (constant).Suppose further that either            



0

h

 α(x)dμ>0   or  

0

h

  α(h−x)dμ>0 ,where 

α(x)=3x
3
−6hx

2
+h

3
.  Then there exists a unique s(x)∈S(3,Δ) 

satisfying the following conditions:            



x
i−1

x
i

 {f(x)−s(x)}dμ=0,     i=1,2,...,n,and            

s
(r)

(0)=s
(r)

(1),       r=0,1,2.      It was also shown that 

the result of Meir and Sharma [8,9] follows from the above 

theorem as particular case. Since this result does not cover the 

interpolation at the mid-points of the mesh so a separate result 

was proved by Dikshit ([5], Th.2, per Remark 2 ) which allows 

to consider only mid-points of a mesh as interpolatory 

condition. For every odd n, above result continues to hold if we 

assume the conditions            

0

h

 (−4x
3
+6h

2
x−h

3
)dμ=0   

and  

0

h

 dμ>0 in place of             

0

h

 α(x)dμ>0   or  



0

h

 α(h−x)dμ>0  ,where α(x)=3x
3
−6hx

2
+h

3
.       A similar 

result for area-matching was studied by Kumar and Govil [7]. 

They obtained the following 
 

:THEOREM C  

Let f ∈ L[0,1]. Then there exists a unique spline s(x)∈S(3,Δ) 

which bounds the same area as the function does, precisely,            



x
i−1

x
i

 f(x)dx=  

x
i−1

x
i

 s(x)dx,  i = 1,2,...,n,if s
''
(0)=s

''
(1)=0  

and  h(s
''
(1−h)−s

''
(h)=24S

'
(0).       The study of 

area-matching spline function was further investigated by Das ( 

Thesis 2004[6], Th.3.1( a ), ( b )) and obtained the following 

result : 

 

THEOREM D : 

( a ) Let  f∈G
p
 ( by f∈G

p
 it is meant that f is integrable with 

respect to measure dg and also it is periodic with period-1) , 

then there exists a unique 1-periodic spline function s∈S(3,Δ)  

such that, for  0≤α≤1,    



x
i−1

x
i

 s(x)dg+α 

x
i

x
i+1

 s(x)dg= 

x
i−1

x
i

 f(x)dg+α 

x
i

x
i+1

 f(x)dg,    i 

= 1,2,...,n,if            

0

h

 μ(x)dg= 

0

h

 μ(h−x)dg=δ
a

>0,

where μ(x)=3x
3
−6hx

2
+h

3
,  and n is odd when α=1. For α=1 

the results fails to exist if n is even.( b ) Let β, 0≤β≤4  be zero 

of            

0

h

 σ(β,x)dg=0,  

 

where 

σ(β,x)=

−β
3

(h−x)
3
+β

2
(3x

3
−6hx

2
+4h

3
)−β(−3x

3
+3hx

2
+3h

2
x+h

3
)+x

3
.

The above theorem is true, in case β≠1, if            



0

h

 {−β
2

(h−x)
3
+β(4x

3
−9hx

2
+3h

2
x+3h

3
)−x

3
}dg=δ

b
>0, and, 

in case if  β=1, iff n is odd.      The results of Meir and 

Sharma [9] have been generalized by H.ter Morsche [10] for 

interpolating periodic splines for general degree. This result is 

contained in the following theorems : 

THEOREM E : 

 Let f be a periodic function with period l. If the linear system 

 
r=0

m
 (m!)

−1
M

i−1+r
 
j=0

r
 (−1)

j
m+2j(r−j+λ)

m
=h

1−m
Δ

m−1
f(x

i
),  

i=1,2,...,n, in the unknowns M
0

,M
1

,...,M
n−1

,  where 

M
n+k

=M
k

 for all k, has a unique solution 

M=(M
0

,M
1
,...,M

n−1
),  then there exists one and only one 

function ϕ∈S
0
(m,n)  with ϕ(x

i
)=f(x

i
) (i=1,2,...,n). 

 

THEOREM F  
: Let there be given a uniform subdivision 
0=x

0
<x

1
<...<x

n−1
<x

n
=1 of the interval [0,1] together with a 

periodic function f with period l. Furthermore, let the 
interpolation points x

i
 be defined as, x

i
=y

i
−λh,  0<λ<1. 

Then there exists a uniquely determined periodic spline 

function ϕ∈S
0
(m,n)  with the interpolation properties 

 
  ϕ(x

i
)=f(x

i
),       i=1,2,...,n, 

in each of the following cases: 

(i ) n is odd. 

(ii ) m is odd and λ≠ 
1

2
. 

(iii ) m is even and λ≠0 and λ≠1. 
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     The proof of the results obtained in Morsche[10] make use 

of the following interesting results: 

THEOREM G : 

 Let,  

P
m

(z,λ)= 
r=0

m
 a

r
z
r
.  

(a ) For all z and λ one has 

            P
m

(z,λ)−zP
m

(z,λ+1)=(m!)
−1

(1−z)
m+1

λ
m

.  

(b ) For all λ and z≠0 one has 

            P
m

(z,λ)=z
m

P
m

(z
−1

,1−λ).  

(c) 


r=0

n−1
 a

r
=1. 

a
r
= 

 

 

 

[Sorry. Ignored \begin{cases} ... \end{cases}] 

( d ) For k = 0,1,...,n-1 one has a
k
≥0.( e ) With respect to 

λ,P
m

(−1,λ)  is a polynomial of degree m and there holds            

P
m

(−1,λ)=(m!)
−1

2
m

E
m

(λ), where E
m

 is the so called 

Euler polynomial of degree m .( f ) For all λ one has            
d

dλ
P

m
(−1,λ)=2P

m−1
(−1,λ). ( g ) For 0<λ<1 the 

polynomial P
m

(z,λ)  has m negative and distinct zeros. For 

λ=0 the polynomial P
m

(z,λ)  has m-1 negative and distinct 

zeros, while in addition z=0 is a zero.( h ) For even m the only 
zeros of P

m
(−1,λ)  on [0,1] are λ=0 and λ=1.  For odd m 

the only zero of P
m

(−1,λ)  on [0,1] is λ= 
1

2
.      The main 

object of this paper is to consider spline of general degree i.e., 

of degree m which has the same area as the function does in 

each partition of the sub-intervals. We prove the 

following:THEOREM : Let there be given a uniform 
subdivision 0=x

0
<x

1
<...<x

n−1
<x

n
=1  of the interval [0,1] 

together with a periodic function f with period l. Then there 

exists uniquely determined periodic spline function 

ϕ∈S
0
(m,n)  for odd values of n satisfying             



x
i−1

x
i

 ϕ(x)dx= 

x
i−1

x
i

 f(x)dx,       i=1,2,...,n. We need the 

following lemma, for proof of the theorem:LEMMA 1 : Let 

there be given an infinite sequence of real numbers M
0

,M
1

,... . 

A function ϕ∈S(m,n) has the properties:      ϕ
(m−1)

(x
i
)=M

i
  

( i = 0,1,2,....) if and only if ϕ can be written in the form             

 ϕ(x)=p(x)+(m!)
−1

 
k=0

∞
 M

k
Δ

2
(x−x

k+1
)
m

+
, 

where p(x)∈π
m−2

 is an arbitrary polynomial. 

The above lemma is contained in (cf [10], p.199). 

LEMMA 2 : We have 

 
j=0

m+2
 (−1)

m+2−j
m+2je

(j−1)t
 ( ) 

d

dt

m+1

 








 
e
(m+3−j)t

1+e
t

=0 

The lemma follows from (cf.[10],pg. 205) on taking  m=m+1. 

      The coefficient matrix of the equation (3.8) is 

A= 









 

a
0

a
1

. ..a
n−1

a
n−1

a
0

a
1

..a
n−2

. . . .. .

. . . .. .

. . . .. .

a
1

a
2

. .. a
0

. 

      The solutions of the equations are unique if A is not 

singular. 

      Let  Q  be the circulant matrix, precisely 

Q=C(0,1,...,0). We can write 

(3.9)A=a
0
Q

0
 +a

1
Q

1
+...+a

n−1
Q

n−1
. 

In order to obtain eigen values of the matrix of A we consider 
the polynomial  R

m
(s). We have Morsche ( [10] , cf. p.204 ) , 

R
m

(s)(m+1)!= 
j=0

m+2
  

j=0

r
 (−1)

m−j
m+2j(j−r−1)

m+1
s
r
. 

On changing the order of summation, we obtain 

(3.10)R
m

(s)(m+1)!= 
j=0

m+2
 (−1)

m−j
m+2j 

r=j

m+2
 (j−r−1)

m+1
.s

r
, 

We substitute 

r−j=l  and  s=−e
t
. 

The above equation becomes 

  R
m

(s)(m+1)!=− 
j=0

m+2
 (−1)

m−j
m+2j 

l=0

m+2−j
 (l+1)

m+1
.(−e

t
)
l+j

 

=− 
j=0

m+2
 (−1)

j
m+2j 

l=0

m+2−j
 (l+1)

m+1
.(−e

t
)
l+j

 

  =− 
j=0

m+2
 (−1)

j
(m+2j(−1)

j
e
(j−1)t

 
l=0

m+2−j
 (l+1)

m+1
(−1)

l
e
(l+1)t

 

 =− 
j=0

m+2
 m+2je

(j−1)t
 

l=0

m+2−j
 (−1)

l
(l+1)

m+1
e
(l+1)t

 

 =− 
j=0

m+2
 m+2je

(j−1)t
 ( ) 

d

dt

m+1

 
l=0

m+2−j
 (−1)

l
e
(l+1)t
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Error! 

=− 
j=0

m+2
 m+2je

(j−1)t
 ( ) 

d

dt

m+1

 








 
e
t

1+e
t

, 

by Lemma 2 . 

Therefore 

R
m

(s)= 
(1+e

t
)
m+2

(m+1)!
e
−t

 ( ) 
d

dt

m+1

 








 
e
t

1+e
t

. 

      Now we see zeros of  R
m

(s) . It is direct to see that 

the zeros of  R
m

(s)  are zeros of 

e
−t

 ( ) 
d

dt

m+1

 








 
e
t

1+e
t

=K
m+1

(t),  

say. We have 

K
1

(t)= 
1

(1+e
t
)
2
 

and it has no zero. Further, 

K
2

(t)=− 
−1+e

t

(1+e
t
)
3

, 

 

and this is zero only for  t=0  i.e., s=−1. Next 

K
3

(t)=− 
−1+4e

t
−e

2t

(1+e
t
)
4

, 

it has got only two real zeros, namely, e
t
= 2+ 3 ,  2− 3  

i.e., s=−(2+ 3),−(  2− 3). 
      Now we show by induction that  K

m+1
(t)  has got  

m  real  zeros. We have 

K
l+2

(t)=K
'

l+1
(t)= 

d

dt
K

l+1
(t). 

Suppose, K
l+1

(t) has got  l  zeros. By Rolle’s theorem 

between any two real zeros there exists one real zero. Hence, 
derivative of K

l+2
(t)  has got  l−1 real zeros between the 

zeros of  K
l+1

(t). 

Further , K
l+1

(t)   becomes zero for  t→±∞.  Hence 

K
l+2

(t)  has got one zero left to the zero of  K
l+1

(t) and one 

zero between the right zero of  K
l+1

(t)  and  0. Thus K
l+2

(t)  

has got  l+1  negative zeros. 

Hence  K
m+1

(t) has got  m real zeros. 

Now we proceed to locate eigen values of A. It is known 

that the  n  eigen values of  Q  are the roots of unity i.e., 

ω
k
=e

 
2πik

n , k = 0,1,...,n-1. From  above equation it follows 

that the eigen values of  A  correspond to  R(s)  for  s=ω
k
 , 

k = 0,1,...,n-1. One of the root  ω
k
  becomes real i.e., only for 

even n. Thus  A  has possibly an eigen value zero for even  

n. For odd  n there is no eigen value zero. Hence, A  is 

invertible for odd  n. This proves the theorem. 
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