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ABSTRACT 

The ability of object recognition system is to recognize a large 

number of objects constrained by a variety of factors such as the 

selection of a feature extraction method, quality of the images, and 

the classification models. This paper presents an approach to the 

recognition of complex shape objects using shape representation 

features. The shape representation features are the disk 

components which are calculated from morphological shape 

decomposition technique. The disk components of the shapes are 

generated using disk component generation Algorithm. These disk 

components are more primitive and easily matched with other disk 

components that are from another shape. These features are tested 

using the Quadratic classifier on different shapes. It is observed 

that the classifier gives good accuracy. 
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1. INTRODUCTION 

Object recognition and classification tasks arise in a very wide 

variety of practical situations, such as detecting faces from video 

images, finding tanks and helicopters from satellite images, 

identifying suspected terrorists from fingerprint images, and 

diagnosing medical conditions from X-rays [1–5]. In many cases, 

people (possibly highly trained experts) perform the 

recognition/classification tasks well, but there is either a shortage 

of such experts or the high cost in paying the experts. Given the 

amount of image data containing objects of interest that need to be 

classified and recognized, automatic computer based classification 

and recognition programs/systems are of immense social and 

economic value. A classification or recognition program must 

correctly map an input vector describing an instance (such as an 

object image) to one of a small set of class labels. Writing 

classification or recognition programs that have sufficient 

accuracy and reliability is usually very difficult and often 

infeasible: human programmers often cannot identify all the subtle 

conditions needed to distinguish between all instances of different 

classes. 

The mathematical morphology is a shape-based approach to image 

processing [6, 7]. Basic morphological operations can give 

interpretations using geometric structures in terms of shape, size, 

and distance. Therefore, mathematical morphology is specially 

suited for handling shape-related processing and operations. 

Mathematical morphology also has a well-developed 

mathematical structure, which facilitates the development and 

analysis of morphological image processing algorithms. A number 

of morphological shape representation schemes have been 

proposed [8–22]. Many of authors use the structural approach, i.e. 

a given shape is described in terms of its simpler shape 

components and the relationships among those components. 

The morphological skeleton transform (MST) is a leading 

morphological shape representation algorithm [8]. In the MST, a 

given shape is represented as a union of all maximal disks 

contained in the shape. In general, there is much overlapping 

among the maximal disks. The morphological shape 

decomposition (MSD) is another important morphological shape 

representation scheme [9], in which a given shape is represented 

as a union of certain disks contained in the shape. The overlapping 

among representative disks of different sizes is eliminated. 

Another morphological shape representation algorithm that can be 

viewed as a compromise between the MST and the MSD was 

proposed [17]. In this scheme, overlapping among representative 

disks of different sizes is allowed, but severe overlapping among 

such disks is avoided. This algorithm is overlapped morphological 

shape decomposition (OMSD). The advantages of these basic 

algorithms include the simple and well-defined mathematical 

characterizations and easy and efficient implementation.  For the 

MSD and OMSD, there is a simple scheme for grouping 

representative disks into shape components. Each component is a 

maximal set of representative disks of the same size with 

connecting centers. In general, a component may contain many 

overlapping representative disks. Sometimes, a large number of 

such disks are used to represent a simple shape component. At 

other times these disks form complicated structures. In [18], a 

generalized skeleton transform that derives generalized skeleton 

points for a given shape image was introduced. Each skeleton 

point represents a generalized maximal “disk,” which, in general, 

is an octagon. The main advantage of the generalized skeleton 
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transform is that it leads to an efficient shape decomposition 

scheme. In this scheme, a given shape is decomposed into a 

collection of modestly overlapping octagonal shape components. 

These octagonal components are more primitive than the 

components obtained from the MSD or OMSD. Each octagonal 

component is represented by a single center point and the 

overlapping level is reduced. The main problem with this 

decomposition scheme is that the generalized skeleton 

transformation needs to be applied multiple times. Another 

problem is that although it is easier to compare two octagons than 

to compare two shape components from the MSD or OMSD, it is 

still, not a trivial task to define a meaningful similarity measure 

for such octagonal components. Then an octagon-fitting algorithm 

(OFA) [23] was introduced which finds a special maximal octagon 

for each image point of a given shape. The OFA allows the 

development of two new shape decomposition algorithms. The 

first decomposition algorithm will use octagonal shape 

components. The general decomposition algorithm uses disk 

components. However, the OFA will only need to be applied once. 

In this paper, we present an object recognition algorithm that is 

based on the morphological shape decomposition algorithm. 

Recognition is carried out by using shape’s disk components. 

These disk components are matched basing on both geometrical 

and structural information extracted from the structural 

representations. The recognition is simple and easy with these 

shape disk components. The organization of the paper is as 

follows.  

Section 2 describes the overall methodology for classification and 

recognition. Section 3 shows experimental results and discussions, 

and the conclusions are given in Section 4. 

2. METHODOLOGY 

Our approach to object recognition consists of the training of 

cascade of classifiers that discriminates object features from the 

background. The feature is defined as a function of one or more 

measurements, each of which specifies some experimental 

property of an object. 

Several steps are used to identify the shape components for 

classification of objects.  The technique presented here is to 

decompose a binary shape into a union of simple binary shape 

components. The decomposition is unique and invariant to 

rotation, translation and scaling. The techniques used in the 

decomposition are based on mathematical morphology [6]. 

2.1 Generating Disk Components 

We assume that our objects are well characterized by their shape 

properties, and that the shape properties are represented by binary 

shape components extracted from the image. For this reason, we 

classify each query by identifying the disk components and 

various features using these disk components.  

For generating disk components, eight structuring elements B0, B1, 

B2, …, B7 are used as shown in figure 1. We use all the eight 

structuring elements in order for the final shape elements to be as 

symmetric as possible. The shape elements are represented by the 

center of the disk and by the size of the disk. The shape element 

generated by the basic structuring element for the different sizes is 

given in figure 2. The disk size 1 (S1) is generated by dilating the 

center pixel with B0, the disk of size 2 (S2) is generated by the disk 

of size 1 (S1) using the B1 structuring element, and the disk of size 

3 (S3) is generated by the disk of size 2 (S2) using the B2 

structuring element and so on. These disk components are shown 

in figure 2(a), 2(c), and 2(e) respectively.  

The sequence of basic structuring element is recorded in the 

expression for finding disk sizes. In general, a disk Si of size i is 

generated by  

𝑆𝑖 = 𝑆𝑖−1⨁𝐵 𝑖−1  𝑚𝑜𝑑  8 𝑤ℎ𝑒𝑟𝑒 𝑖 > 0 (1) 

 

Fig. 1: Eight two-point structuring elements. 

Fig. 2: Shape elements generated using two-point structuring 

elements: (a) B0; (b) 𝑩𝟎 ⊕ 𝑩𝟒; (c) 𝑩𝟎 ⊕ 𝑩𝟏; (d) 𝑩𝟎 ⊕ 𝑩𝟏 ⊕
𝑩𝟓; (e) 𝑩𝟎 ⊕ 𝑩𝟏 ⊕ 𝑩𝟐; (f) 𝑩𝟎 ⊕ 𝑩𝟏 ⊕ 𝑩𝟐 ⊕ 𝑩𝟒; 

 (g) 𝑩𝟎 ⊕ 𝑩𝟏 ⊕ 𝑩𝟐 ⊕ 𝑩𝟑. 

The complete process of generating disk components [25] is given 

in Algorithm 1. The first five largest disk components are shown 

in figure 3. 

 
Fig. 3: (a) is the original image; (b) to (f) are the first five 

largest disk components respectively. 

Algorithm 1 

Input: Binary Image. 

Output: Table D consists of disk components.  

1. ƒ(x, y) ← Preprocessed binary image. 

2. Generate disk components for ƒ(x, y) using Disk Generating 

Algorithm (DGA) [17]. 

3. The disk size Si, and disk center (xi, yi), and structuring 

element sequence is stored into a table T. 

4. ƒ′(x, y) ← 0. 

5. While T is not empty do 

6. Vector V ← Delete Maximum size disk from T. 

7. If this disk is not present in the image ƒ′(x, y) then append 

size and center of the disk component into Disk component 

into table D(Si, xi, yi). 

8. ƒ″(x, y) ← 0 and dilate ƒ″ to vector V using equation (1). 

9. ƒ′(x, y) ← ƒ′(x, y) U ƒ″(x, y). 

10. End while. 

 

2.2 Feature Extraction 

Disk components summarize the local shape in image 

neighborhoods in terms of the density of pixels in those 

 
      (a)         (b)          (c)          (d)         (e)           (f) 

0 0 0      0 0 0      0 1 0      0 0 0      0 0 0      0 0 1      0 0 0     1 0 0 
0 1 1      0 1 0      0 1 0      0 1 0      1 1 0      0 1 0      0 1 0     0 1 0 

0 0 0      1 0 0      0 0 0      0 0 1      0 0 0      0 0 0      0 1 0     0 0 0 
 

 (B0)       (B1)        (B2)       (B3)       (B4)        (B5)       (B6)      (B7) 
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neighborhoods. By computing features at a set of image 

neighborhoods surrounding a query disk, we summarize the 

overall shape properties of the image, which should be a 

discriminating recognition cue for our shape-based objects. The 

features identified using the disk is given in algorithm 2.  

Algorithm 2 

Input: Disk Components table D. 

Output: Feature vector X consists of 7 features.  

1. Nt is the total number of all disk components. i.e. Nt = 

number of rows of the table D. 

2. Sm is the maximum disk size among all disk components.  

𝑆𝑚  =  𝑀𝐴𝑋(𝐷(𝑆𝑖)) (2) 

3. L is the distance between the first two largest disk 

components. Let the first largest disk component Sm and the 

second largest disk component Sn. The centers of these two 

disk components are (xm, ym) and (xn, yn) respectively from 

table D, then the distance is 

𝐿 =  (𝑥𝑛 − 𝑥𝑚 )2 + (𝑦𝑛 − 𝑦𝑚 )2 (3) 

4. Nd is the total number of distinct disk components i.e. two 

disk components Si and Sj are distinct components if and only 

if i≠j.  

𝑁𝑑 = 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝐷(𝑆𝑖)  (4) 

5. Sa is the average size of the distinct disk components. It is the 

ratio between the sum of distinct disk sizes and the number of 

such disks. 

𝑆𝑎 =
 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 (𝐷(𝑆 𝑖))

𝑁𝑑
 (5) 

6. N0 is the total number of isolated pixels or zero size disk 

components (S0). 

𝑁0 = 𝑐𝑜𝑢𝑛𝑡(𝐷(𝑆0)) (6) 

7. Nr is the number of disk components needed to reconstruct 

the original shape image f. Note that all disk components are 

not required to reconstruct the original image. 

The seven disk component features are identified to recognize 

objects characterized by their shape properties. The objects are 

well characterized by their shape properties, and the shape 

properties are represented by disk components from the image. 

The classification performed is based on the values of disk 

features that summarize the local shape in image neighborhoods in 

its immediate vicinity. 

2.3 Classification 

Supervised classification algorithms aims at predicting the class 

label h ∈ {1, …, l} from among l predetermined classes that 

correspond to a query x0 composed of m characteristics, i.e., x0 = 

{x1,…, xm}0 ∈ Rm. To perform this task, a classification scheme c 

“ascertained” from the training set T = {(xi, ei) : i = 1,…, n} is 

required.  

The classifier is said to assign a feature vector x to class wi if 

gi(x)>gj(x) for all j≠i, where gi(x), i=1, 2, …, c is a discriminant 

function. Hence the classifier is viewed as a network or machine 

as shown in figure 4, which computes c discriminant functions and 

selects the category corresponding to the largest discriminant. 

For the minimum-error rate, 𝑔𝑖 𝑥 = 𝑃 𝑤𝑖 𝑥 , so that the 

maximum discriminant function corresponds to the maximum 

posterior probability which gives the following equation. 

𝑔𝑖 𝑥 = 𝑃 𝑤𝑖 𝑥 =
𝑝 𝑥 𝑤 𝑖 𝑃 𝑤 𝑖 

 𝑝 𝑥 𝑤𝑗  𝑃 𝑤 𝑖 
𝑐
𝑗=1

 (7) 

The decision rule is to divide the feature space into c decision 

regions, R1, R2, …, Rc. If gi(x)>gj(x) for all j≠i, then x is in Ri, and 

the decision rule calls for us to assign x to wi. The regions are 

separated by decision boundaries, and the surface in features space 

where ties occur among the largest discriminant function. In 

classification process the Quadratic Discriminent function [24] has 

been used. 

  

Fig. 4: General statistical pattern classifier includes d inputs 

and c discriminant functions gc(x). 

Quadratic Discriminant Function 

By adding additional terms involving the products of pairs of 

components of x for the above equation (8), we obtain the 

quadratic discriminant function 

 

𝑔 𝑥 = 𝑤0 +  𝑤𝑖𝑥𝑖
𝑑
𝑖=1 +   𝑤𝑖𝑗 𝑥𝑖𝑥𝑗

𝑑
𝑗=1

𝑑
𝑖=1  (8) 

 

3. RESULTS AND DISCUSSIONS 

The shape models dataset consists of 21 objects, 128 views per 

object. Experiments are performed on 50 samples of complicated 

views from 128 samples of four types of shapes as shown in figure 

5. Out of these 50 samples, 35 were randomly selected for 

defining the decision regions (training), and 15 samples were left 

for assessing the classification (testing).  

Table I: Confusion Matrix 
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The assessment of the classifier is carried out using confusion 

matrix as shown in Table I.  

Various classification parameters can be estimated using 

confusion matrix. In our experiments we have calculated True 

Positive Rate (TPR), Error Rate (ER), False Positive Rate (FPR), 

No-Model Error Rate (NoMER), and Efficiency for assessment of 

classification.  

Table II: Classification Parameters 

Classes FPR/Sp TPR/Sn Classfi-

cation 

ER 

Alien 100 100 100 0 

Dog 98 100 98 0 

Dolphin 100 98 100 0.5 

Eagle 100 100 100 0 

Totals 99.5 99.5 99.5 0.5 

It is observed that one sample of Dolphin class is misclassified as 

Dog class, which is shown in figure 6(a). The error rate is 

calculated and it is observed that the average error rate is reduced 

if the experiments are performed more number of times. This can 

clearly be seen in figure 6(b). The x-axis gives the frequency of 

experiments conducted and y-axis gives the average error rate. It is 

observed in the figure 6(b) that as the frequency of experiments 

increased the average error rate is decreased.  

The performance of the classification is given in Table II.  

4. CONCLUSION 

Our approach to objects recognition is based on the shape 

representation technique, which identify various features from the 

shape using the mathematical morphology. The features are 

extracted by tuning the object and background, present in training 

images. This helps in minimizing the time and space complexity 

in both the training and test phases. The classification is performed 

on the various shape images by using quadratic classifier. The 

result of classification is shown by means of confusion matrix and 

it is observed that overall classification rate of all the objects is 

above 99%.  

 

              
  Fig. 6(a): QDC Classfier         Fig. 6(b). Error Graph 

                           

 

 

 
Fig. 5: 15 samples out of 50 from each class 
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