
International Journal of Computer Applications (0975 – 8887)

Volume 73– No.2, July 2013

21

Predicting Quantitative Functional Dependency Metric

based upon the Interface Complexity Metric in

Component based Software Systems: A New Approach

Sonu Mittal
Research Scholar

SGVU, Jaipur

India

 Pradeep Kumar Bhatia

Professor
GJUS&T, Hisar

India

ABSTRACT

One of the major issues in component based software systems

structuring and quality prediction is the interdependencies of

system components. This paper proposes a novel technique

for determining the strength of functional coupling in

component based software systems. Authors propose Strength

of Functional Dependency (SFD) metric, which is based upon

two new metrics Operational Coupling complexity Index

(OCI), and Instance Coupling complexity Index (ICI). It

allows us to quantify the functional dependencies, formed by

different kinds of operations and instances between these

components. Compared to other existing dependency metrics,

which are often based on number of operations or instance

variables between the components only, authors consider

operational complexity and instance variables complexity as a

measure to how strong this dependency is and therefore

promote a more systematic approach to the reasoning about

modularity in component based software systems.

This paper can be divided broadly into two parts. The first

part quantifies interface operations and instance variables. The

quantification is performed by considering the number of

input, output parameters and their types. Based upon these

factors of operations and instance variables, authors used

analytical hierarchy approach (AHP) to assign weights to

these factors and outcomes OCI, ICI and SFD. The second

part shows the experimentation and validation of the proposed

metrics. The advantages of the proposed method are discussed

as well through a case study in this paper.

Keywords

Component based software system, Metrics, Component

coupling, Functional Dependency, Operational complexity.

1. INTRODUCTION
The idea to construct software in the same way as hardware is

constructed i.e. by integrating reusable components is

becoming very popular in the last decades. As these

components are usually black boxes in nature, their internal

structure and coding is not provided with them. Efficient

system functioning is provided by components through

interacting, cooperating and coordinating with other

components, which results in the form of dependency among

components. The only means of their communication with the

other components is through their interfaces. In other words, a

component has required and provided interfaces. Two

components that interact to each other are called "coupled".

Further the coupling between the components happens when a

component provides an interface and other components use it.

That is it is directional and well known as dependency in the

Component based software system literature [1-3, 5-7, 10,

14]. In this paper, Functional dependency is considered to be

the main dependency affecting CBSSs. The functionality is

provided through operations and instance variables passing

between these components. Diagrammatically, it can be

depicted as shown in figure 1.

 Antecedent Dependent

Figure 1: A functional dependency relationship

Here, component C1 is providing some functionality f to the

component C2 via operations O1, O2 and a set of instance

variables denoted by i(v) . So component C2 is dependent

upon C1 and C1 is called antecedent to C2.

The coupling between components can be loose or tight, or

somewhere in between [14]. The tightness of a coupling is not

binary. It is not either "loose" or "tight". The degrees of

tightness are continuous, not discrete. Dependencies can also

characterize as "strong" or "weak". A tight coupling leads to

strong dependencies, and a loose coupling leads to weak

dependencies.

Higher dependency leads to a complex system, which results

in poor understanding and a higher maintenance cost [1].

Analysis of CBSS dependencies is an important part of

software research for understandability [18], testability [19],

maintainability [20] and reusability [21] of a component based

system. Thus, dependency metrics could have a real impact on

the quality of the system delivered to the user.

Many researchers [3, 4, 8, 9, 16, 17] focuses on measuring the

interaction complexity of integrated components. In the past,

only a few papers based on graph theory addressed the

evaluation of CBSS dependency [1-3, 5, 10, 14]. However,

there has been no focus on how strong this dependency is?

In this paper, Authors have tried to consider this issue based

upon the complexities of different operations and instance

variables as a measure of functional dependency hence

providing information for quantitative assessment of

modularity in the system design. For this Authors have

proposed SFD metric based upon two metrics Operational

Coupling complexity Index (OCI) and Instance Coupling

complexity Index (ICI).

This paper includes 9 major sections. In the next section,

authors discuss the aim of this work and the solution strategy.

Section 3 identifies the various factors and subfactors related

C1 C2
f {(O1, O2), i(v)}

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.2, July 2013

22

to functional dependency. Section 4 describes the Analytical

Hierarchy Process (AHP) through which the weights are

assigned to these factors and subfactors. Section 5 presents the

metrics system that supports the measurement by considering

individual factors separately. Section 6 provides the

experimentation and validation of proposed metrics. Section 7

shows the small case study to apply these metrics and

compare it with other related works. Section 8 is about the

analysis of result and finally, section 9 concludes with its

limitations and discusses further work.

2. AIM AND APPROACH
The ultimate goal of the proposed work is to provide an

effective means of quantifying functional dependency.

Authors consider coupling complexity index (coupling index

in short) as a measure of dependency among system

components interfaces, established by the different types and

numbers of operations and instance variables (See Figure 1).

Dependency shows the domain of subjective and qualitative

estimation, while coupling index shows the domain of

objective and quantitative measurement. It can be used for

measuring various attributes of quality models, like

reusability, testability, modifiability etc.

For measuring functional dependency strength, it is necessary

to quantify the constituents of functions i.e. Operations and

instance variables. For measuring the degree of coupling

through operations and instances Authors propose OCI and

ICI by normalizing it to 0-1. They are empirically validated

and applied through a small case study. The overall approach

can have following steps:-

1. Identify and classify the various factors and subfactors

for measuring operational coupling index and instance

variable index.

2. Assign weight to each factor and subfactors using

Analytical Hierarchy Process (AHP) approach.

3. Propose SFD, OCI and ICI metrics.

4. Experimentation and evaluation of the proposed metrics.

5. Applying and comparing through a small case study.

3. IDENTIFY AND CLASSIFY THE

FACTORS FOR MEASURING

OPERATIONAL COUPLING BETWEEN

TWO COMPONENTS.
To identify the various factors and subfactors first, we have to

understand the basic structure of Component based software

system. Based upon various literature reviews [22, 23, 24], It

can be depicted by figure 2.

Figure 2: The basic structure of CBSS

INOUTParameters

Providing Receiving

Operations

INParam

eters

OUTPara

meters

Parameters
Components CBSS Interface

Instance variables Type

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.2, July 2013

23

A CBSS can be made up of many components. Each

component consists of many Interfaces. The interface can be

categorized as providing interface or receiving interface.

Further each interface provides or receives functionality

through operations or methods and instance variables. As

components are black box in nature (especially COTS

components), the interface operations provides information

about only the number and type of Input and Output

parameters. Similarly the instance variables will have types.

Most of the researchers [1-7, 10, 17] considered only the

number of instance variables and the number of

operations/methods invoked in each interface as a measure of

direct dependency and complexity between/of the

components. One of the important point of consideration here,

Authors argue that not only the number of operations and

instance variable should be the sole measure of the strength of

functional dependency. The complexity of operations and

instance variables should be considered while assigning and

strengthening the functional dependency. Only a few

researchers [8, 9, 16] considered this level of complexity as a

measure for interface dependency between the components.

According to chiller et. al. [9], Interface coupling defined in

terms of the number of methods and instance variables

invoked by component from other components. Weighted

values were assigned to constituents of interface coupling

(methods and instance variables). Interface methods were

classified according to data type of arguments and return

values. Basic assumption in computing data type of instance

variables, arguments and return type (interface methods)

were: Primitive data types such as integer taken simple,

Structured data type such as string, array, list, and vector

taken medium, Complex data types includes class type, user

defined components, pointers, references and others .If

arguments were different for same interface method then

higher data type taken. Similarly they compute data type of

return types. Their result shows that complexity and

dependency increases with increase in number of invoked

methods and instance variables during an interface in a

component based system.

Similar approach of strengthening the various types of

operations/methods in an interface using the weighted

assignment technique was conducted by kaur et.al. [8], and

showed that the coupling increases with numbers and

complexity of input and output parameters. Although, these

methods considered operational/method level complexity by

considering the number and type of arguments and instance

variables in the interface as a major factor for calculating the

complexity of the interfaces, yet authors want to draw some

important points which may be useful while considering these

complexities as to quantify the functional dependency

between the components through these interfaces.

These researchers [8, 9] considered return value i.e. IN

parameters as a part of OUT parameter and not considered it

separately. Authors argue here that the IN parameter should

be given equal weightage to the total number of OUT

parameters because the methods with return values (IN

parameters) will have more coupling than the methods

without the return values but total number of

arguments/parameters is equal in both the operations. For

example a method with 2 simple and 3 complex OUT

parameters and without any IN parameter should not be

considered equal to the method with 2 simple and 2 complex

OUT parameters but with one complex return value.

Another point that should be considered that if an

interface/function is providing 2 methods/operations with

simple or no arguments then its complexity and hence

coupling index may be lower than an interface method which

is providing very complex functionality because the number

of parameters is not only the sole criteria in deciding the

complexity of the function. It is the combination of many

factors and sub factors. Accordingly, authors are classifying

interface operations into four categories. Each return value is

considered as IN Parameter and arguments passed as OUT

parameters.

1. Interface operations without IN Parameter and without

OUT Parameters

2. Interface operations with IN Parameter but without OUT

parameters

3. Interface operations without IN Parameter but with OUT

parameters

4. Interface operations with IN Parameter and with OUT

parameters

Further both IN and OUT parameters complexity can vary

according to data types of these parameters (TOP). So authors

categorized them into three types as simple, medium and

complex in the same way as in [9]. Primitive data types such

as integer, Boolean, double etc. will be considered as simple

(S), Structured data type such as string, array, list, and vector

will be considered as medium (M), and class type, user

defined components, pointers and references will be

considered as complex(C).

Authors will take another factor into consideration that the

overall weight for each data type will be taken different

according to number of these data types present in these

operations. Authors have assigned equal weightage to IN

parameters and OUT parameters i.e. 0.5 to each. As return

value either maybe or not. So IN parameters can have four sub

factors:- No return value (NR), Return Simple (RS), Return

Medium (RM), Return Complex (RC). OUT parameters

numbers (NOP) may further be divided into no out parameters

(NO), out parameters from 1 to 4 (1-4), out parameters from 5

to 8 (5-8), and out parameters greater than 8 (>8).

According to various combinations, the OUT parameters

subfactors considered are No OUT parameters (NO), 1-4

simple type parameters (1-4S), 1-4 medium type parameters

(1-4M), 1-4 complex type parameters (1-4C), 5-8 simple type

parameters (5-8S), 5-8 medium type parameters (5-8M), 5-8

complex type parameters (5-8C),>8 simple type parameters

(>8S), >8 medium type parameters (>8M), >8 complex type

parameters (>8C). In the similar way to OUT parameters

instance variables can have same factors.

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.2, July 2013

24

4. ASSIGN WEIGHT TO EACH

FACTOR AND SUBFACTORS USING

ANALYTICAL HIERARCHY PROCESS

(AHP) APPROACH.
Researchers in [8, 9] used weighted assignment technique to

assign weights to these factors. Here authors will use

Analytical Hierarchy Process (AHP) approach to assign

weights to these factors. AHP is a technique that supports

decision makers in structuring complex decisions, quantifying

intangible factors, and evaluating choices in multi-objective

decision situations. It is a comprehensive and rational

decision-making framework that provides a powerful

methodology for determining relative worth among a set of

elements [11].Weighted sum method is easy to use and

understand but weights to the attribute are assigned arbitrary

and it is difficult task when a number of criteria are high.

Another problem with weighted scoring method is that

common numerical scaling is required to obtain final score. In

AHP approach decision makers can compare each alternative

that improves decision making procedure by accommodating

the ambiguity in human decision making. AHP is especially

suitable for complex decisions that involve the comparison of

decision elements which are difficult to quantify. Its

application has been reported in numerous fields, such as

transportation planning, portfolio selection, corporate

planning and marketing [13]. It involves:

a) Development of relative importance among the factors and

sub factors using expert’s opinion or through exhaustive

paired comparison analysis,

b) Assigning a weightage for each of the factor and sub factor

using priority vector,

c) Performing similar analysis for the alternative solution

strategies for each of the attributes, and

d) Developing a single overall score for each of the alternate

solution strategies.

The total score for all alternates will be 1.

Various researchers [12, 15] have successfully applied this

method to assign weight to various factors in the field of

computer engineering.

The priority for each alternative is assigned as follows:-

IN parameters (IN) and OUT parameters (OUT) have been

assigned equal priority in deciding the coupling complexity

between the components, that is, IN=OUT

For IN parameters NR < RS < RM < RC.

For OUT parameters Number of out parameters (NOP) has

equal weightage to type of parameter (TOP), that is,

NOP=TOP

Further for NOP the priority assigned will be as follows:-

0 < 1-4 < 5-8 < (>8)

TOP priority is assigned as: - Simple (S) < Medium (M) <

Complex (C)

Similar method is adopted for instance variables.

Authors have used an open source tool Open Decision Maker

(ODM) v 1.0.1, to make sensitivity analysis between the

alternative factors and to calculate the overall weights using

AHP. The critical consistency ratio is under 0.1 in all the

cases. The results are shown in the Table 1 and Table 2

Table 1: Weighted values of IN parameters and OUT

parameters of operations

Factor

s Sub-Factors

Weight

Value Sum

Gran

d

Total

IN

No Return Value (NR) 0.02

0.5

1

Return

Simple (RS) 0.06

Medium

(RM) 0.13

Complex

(RC) 0.29

O
U

T

No OUT Parameter

(NO) 0.008

0.5

1-4

Simple (1-4

S) 0.012

Medium (1-4

M) 0.02

Complex (1-4

C) 0.04

5-8

Simple (5-8

S) 0.02

Medium (5-8

M) 0.04

Complex (5-8

C) 0.08

>8

Simple (>8 S) 0.04

Medium (>8

M) 0.08

Complex (>8

C) 0.16

As instance variables will always be present when an interface

provides some functionality to required interface, so it can’t

be zero. The weight value for instance variables is also

decided in similar way as OUT parameter weights decided

(See table 2).

Table 2: Weighted values of Instance variables

Factors

Weight

Value

Grand

Total

1-4

Simple (1-4 S) 0.02

1

Medium (1-4 M) 0.03

Complex (1-4 C) 0.08

5-8

Simple (5-8 S) 0.03

Medium (5-8 M) 0.08

Complex (5-8 C) 0.17

>8

Simple (>8 S) 0.08

Medium (>8 M) 0.17

Complex (>8 C) 0.34

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.2, July 2013

25

5. THE PROPOSED METRICS

5.1 The OCI metric
 Operational Coupling complexity Index (OCI) can be

calculated as follows:-

OCI = Weighted value of IN parameter factor + Sum of

weighted value of OUT parameter factors

Where IN Parameter value set can be IN= {0.02, 0.06, 0.13,

0.29} depending upon the above sub factors and OUT

Parameter value is the combination of the weights of all the

sub factors present in the operation according to type of

parameter (TOP) and number of parameters (NOP).

5.2 The ICI metric
Instance Variable Coupling complexity Index (ICI) can be

calculated as

ICI = Sum of weighted value of instance variable factors

5.3 The SFD metric
The strength/degree of functional dependency (SFD) can be

measured as follows:

 n

SFD = ∑ OCIi + ICI

 i=1

Where OCIi is the OCI value of ith operation and n is the total

number of operations in functional dependency.

6. EXPERIMENTATION AND

VALIDATION OF PROPOSED METRICS
As discussed in the third section, the various types of

operations can be present in a function. Each type of function

will posses’ different value for OCI, and hence will influence

the SFD. The various possible minimum and maximum value

cases for these different types of operations can be shown as

follows:-

CASE I Operations with No IN Parameter (NR) and No

OUT Parameters (NO)

OCI = 0.02 + 0.008 = 0.028

CASE II Operations with IN parameter but No OUT

Parameters

Subcase 2.1 (Minimum value) Return Simple (RS) value

but No OUT (NO) parameters

OCI = 0.06 + 0.008 = 0.068

Subcase 2.2 (Maximum Value) Return Complex (RC) value

but No OUT (NO) parameters

OCI = 0.29 + 0.008 = 0.298

CASE III Operations with No IN Parameter (NR) but

with OUT parameters
Subcase 3.1 (Minimum Value) No return Value (NR) and 1

simple (1-4 S) OUT parameter

OCI = 0.02 + 0.012 = 0.032

Subcase 3.2 (Maximum Value) No return (NR) value and

10 simple (>8S), 10 complex (>8C) and 10 medium (>8M)

type OUT Parameters

OCI = 0.02 + 0.04 + 0.08 + 0.16 = 0.30

CASE IV Operations with IN parameters and OUT

Parameters

Subcase 4.1 (Minimum Value) Return Simple (RS) value

and 1 simple (1-4 S) OUT parameter

OCI = 0.06 + 0.012 = 0.072

Subcase 4.2 (Maximum Value) Return Complex (RC) value

and 10 simple (>8S), 10 complex (>8C) and 10 medium

(>8M) type OUT Parameters

OCI = 0.29 + 0.04 + 0.08 + 0.16 = 0.57

Graphically, the result values can be shown by figures 3 and

4.

Figure 3: Minimum and maximum OCI values for all 4

types of operations

Figure 4: OCI value range for all the cases

Similarly, the ICI values for the minimum and maximum

cases can be depicted as follows.

CASE 5.1 (Minimum ICI value): 1 Simple type instance

variable.

ICI = 0.02

CASE 5.2 (Maximum ICI value): 10 Simple type, 10

medium type and 10 complex type instance variables.

ICI = 0.08 + 0.17 + 0.34 = 0.59

Graphically, It can be depicted by figure 5:-

0.028
0.068

0.032
0.072

0.028

0.298 0.3

0.57

0

0.1

0.2

0.3

0.4

0.5

0.6

CASE I CASE II CASE III CASE IV

Min

Max

0.028
0.068

0.032
0.072

0.028

0.298 0.3

0.57

0

0.1

0.2

0.3

0.4

0.5

0.6

CASE I CASE II CASE III CASE IV

Min

Max

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.2, July 2013

26

Figure 5: ICI value for all the possible cases

Thus the minimum value of OCI among all the cases will be

in case I, that is 0.028 and the maximum value among all the

cases will be in case IV, that is 0.57 (see figure 3 and 4). The

minimum value for ICI will be for 1-4 S i.e. 0.02 and

maximum value for ICI will be. 0.59 (See figure 5). Thus the

graph shows that the ICI and OCI is not the sole measure of

one factor. It is not a simple linear scale because it is the

combination of many factors and subfactors and hence the

SFD will also not increase only with the number of operations

but it will increase with the combination of all the above

factors and subfactors.

7. COMPARISON AND EVALUATION

OF METRICS
The strength/degree of functional dependency (SFD) can be

measured by using OCI and ICI as follows:

n

 SFD = ∑ OCIi + ICI

i=1

Authors can show the advantage of our method by

considering a case study

Figure 6: A small case study

As shown in the figure 6, Component C1 is providing

interfaces to Components C2 (via function f1) and C3 (via

function f2), Component C4 (via function f3) and component

C5 (via function f4).

The ICI and OCI values are calculated on assumed values

associated with operations and instances are described as

follows: (see Table 3 and Table 4).

Table 3: Assumed parameters values and calculated OCI

values

Operations
IN

Parameters

OUT

Parameters
OCI

O1 RM 5 M, 6 C

0.13 + 0.04

+ 0.08 =

0.25

O2 NR NO

0.02 +

0.008 =

0.028

O3 RS 6 S, 2M

0.06 + 0.02

+ 0.02 =

0.10

O4 RC 9S,9C

0.29 + 0.04

+ 0.16 =

0.49

O5 NR 6M,6C
0.02 + 0.04

+ 0.8 = 0.14

Table 4: Assumed parameter values and calculated ICI

values

Instance

variable

Instance variables

parameters
ICI

i(v)1 6 S 0.03

i(v)2 6 S 0.03

i(v)3 10 M 0.17

I(v)4 6S 0.03

Thus the SFD values for various functions between the two

components can be calculated and it can be compared with the

Interface coupling complexity (ICC) metric by chiller et. al.

[9] values (See table 5). The ICC value can be calculated as

ICC (External) = [w10 (Σ (m/v invoked (simple) +w11 Σ (m/v

invoked (medium) + w12 Σ (m/v invoked (complex)]) where

w10 to w12 are weight values of methods/operations and

instance variables invoked by a component in from other

components in a component based system i.e. external to

component. These weight values are assigned according to the

weighted assignment technique.

Table 5: Calculated SFD and ICC values

0

0.2

0.4

0.6

0.8

MIN MAX

ICI value

ICI value

Function ∑ OCI ICI SFD ICC

f1 0.25 0.03 0.28
(1* 0.14) + (6

* 0.02) = 0.26

f2
0.028 + 0.10 =

0.128
0.08 0.208

(2 * 0.10) +

(6 * 0.02) =

0.32

f3 0.49 0.17 0.66

(1* 0.14) +

(10 * 0.04) =

0.54

f4 0.14 0.03 0.17
(1* 0.14) + (6

* 0.02) = 0.26

C2

C1

C3

f2 {(O2, O3, i(v)2)}

f1 {(O1, i(v)1)}

C4

f3 {(O4, i(v)3)} C5 f4 {(O5, i(v)4)}

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.2, July 2013

27

8. RESULTS AND DISCUSSION
In the above section, authors have showed that how their

metrics can help in measuring the functional dependency

strength between the two components. Authors compared

SFD with the ICC metric and results shows (See table 5) that

the SFD values for f1 > f4 while ICC values for f1 = f4.

Secondly, SFD values for f2 < f1 while ICC values for f2 > f1.

These discrepancies in the result are due to IN parameter

factors and show how the proper weightage to IN parameters

can affect the overall coupling results, which lacked in the

previous works [8, 9]. It also proves our point that if a

function contains more number of simple operations then it

may have lesser value of SFD than the function with lesser

number of operations but complex in nature, because authors

considers that the complexity of operation not depends upon

only one factor but is a combination of factors and subfactors.

Higher value of SFD leads to lowers maintainability,

testability and reusability of the Component based software

systems. Thus the SFD metric can be proved very helpful in

measuring the various quality attributes of the CBSS.

9. LIMITATIONS, CONCLUSION AND

DIRECTIONS FOR FUTURE

RESEARCH
In this paper, Authors proposed a metric system for

quantifying the strength of functional dependency between the

components, which is based upon the number and type of

their functional constituents i.e. operations and instance

variables.

Although the proposed metric system provides a systematic

and strong AHP based approach to measure the strength of

functional dependency between the components and shows

how the complexities of operations can affect the functional

dependency, yet it considers only the direct dependency

between the components. Here authors are not considering the

issue of indirect dependency. Secondly, authors are

considering here that the same technique can be applied for

measuring the coupling strength between the internal and

external components and does not differentiate it as some

researchers does [9]. Authors have tried to evaluate their

metric system through a small case study but the empirical

validations can further improve in deciding and assigning

proper weightage to these metrics.

In the future research work, researchers can use these metrics

for indirect coupling measure as well as indicator for

predicting the various qualities attributes like maintainability,

testability and reusability of Component based software

systems. This paper represents only the beginning of the

research that should be undertaken to explore the AHP

approach for the quantification and using SFD metric for

measuring various quality attributes in CBSS area. So authors

invite researchers to comment on the new approach, they

proposed, whether captures the real essence in this area.

10. REFERENCES
[1] Sharma, A., Grover, P.S., Kumar, R., 2009. Dependency

Analysis for Component-Based Software Systems

Volume 34 Number 4. ACM Sigsoft.

[2] Li. B., 2003. Managing dependencies in component-

based systems based on matrix model. Proc. Proceedings

of Net. Object. Days, Citeseer, 2003, pp.22-25

[3] Gill N.S. and Balkishan, 2008. Dependency and

interaction oriented complexity metrics of component-

based systems. SIGSOFT Softw. Eng. Notes, vol.33, pp.

1-5., http://doi.acm.org/10.1145/1350802.1350810.

[4] N. Salman, 2006. Complexity Metrics AS Predictors of

Maintainability and Integrability of Software

components. Journal of Arts and Sciences.

[5] Lisa, C., Delugach, H. S., 2001. Dependency Analysis

Using Conceptual Graphs, In Proceedings of the 9th

International Conference on Conceptual Structures, ICCS

2001, pp: 117-130.

[6] Qu, B., Liu, Q., Lu, Y., 2010. A Framework for Dynamic

Analysis Dependency in Component-Based System..

[7] Vieira, M. and Richardson, D. 2002. Analyzing

Dependencies in Large Component-Based Systems.

Proceedings of the 17th IEEE International Conference

on Automated Software Engineering (ASE’02), 2002, pp

241 – 244.

[8] Kaur Ramanpreet, July 2010. Evaluation of Software

Complexity using Weighted Assignment Technique for

Component based System. M.Tech. Thesis.

[9] Chillar R. S., Ahlawat P. and Kumari U. 2012.

Measuring Complexity of Component Based System

Using Weighted Assignment Technique. Proc. 2nd

International Conference on Information Communication

and Management (ICICM 2012) IPCSIT vol. 55 (2012)

© (2012) IACSIT Press, Singapore. DOI:

10.7763/IPCSIT.2012.V55.4

[10] Majdi Abdellatiefab, Abu Bakar Md Sultana, Abdul

Azim Abd Ghania, Marzanah A.Jabara. 2011.

Component-based Software System Dependency Metrics

based on Component Information Flow Measurements.

ICSEA 2011 : The Sixth International Conference on

Software Engineering Advances, IARIA, 2011. ISBN:

978-1-61208-165-6

[11] Jayaswal, B. K., Patton, Peter C., Forman, Ernest H.,

2007. The Analytic Hierarchy Process (AHP) in

Software Development, Prentice Hall.

[12] DeJiu Chen, Martin Törngren, 2004. A Metrics System

for Quantifying Operational Coupling in Embedded

Computer Control Systems. EMSOFT’04, September

27–29, 2004, Pisa, Italy. Copyright 2004 ACM 1-58113-

860-1/04/0009

[13] Saaty TL., 1980. Multicriteria decision making: The

analytic hierarchy process. McGraw-Hill.

[14] Jyoti Rani , kirti seth, 2012. Dependency Analysis for

Component based Systems using Minimum Spanning

Tree International Conference on Advances in Computer

Applications (ICACA 2012) Proceedings published by

International Journal of Computer Applications® (IJCA).

[15] Sharma A, Grover R S, Sharma R. 2008. Estimation of

Quality for Software Components – an Empirical

Approach. SIGSOFT Software Engineering Notes,

November 2008 Volume 33 Number 6 DOI:

10.1145/1449603.1449613.

[16] Khimta S, Sandhu P and Brar A, 2008. A Complexity

measure for java bean based software components,

World Academy of Science, Engineering and

Technology, Volume 42.

[17] Kharb L, Singh R, 2008. Complexity metrics for

Component oriented Software Systems. ACM SIGSOFT

Software Engineering Notes, Vol 33, Issue 2, pp 1-3.

[18] Lucia A, Fasolino A.R. and Munro M, 1996.

Understanding function behaviors through program

slicing. wpc, 1996, pp. 9.

[19] Bates S and Horwitz S, 1993. Incremental program

testing using program dependence graphs. Proc.

Proceedings of the 20th ACM SIGPLANSIGACT

symposium on Principles of programming languages,

ACM, pp.384-396

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.2, July 2013

28

[20] Gallagher K.B. and Lyle J.R., 1991. Using program

slicing in software maintenance. IEEE Transactions on

Software Engineering,, vol.17, pp. 751-61.

[21] Gui G. and Scott P.D., 2009. Measuring Software

Component Reusability by Coupling and Cohesion

Metrics Journal of Computers, vol.4, pp. 797-805.

[22] Monge.R, Alves C., Vallecillo A., 2000. A graphical

representation of COTS based software architecture, In

proc. IDEAS, Citeseer, 2000.

[23] Szyperski C, 1998. Component Software. Beyond

Object-Oriented Programming. Addison-Wesley, 1998.

[24] http://www.umlcomponents.com last visited on

16/may/2013.

IJCATM : www.ijcaonline.org

