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Abstract

In path factorization, H.Wang [1] gives the necessary and
sufficient conditions for the existence of P,-factorization of a
complete bipartite graph for k, an even integer. Further,
Beiling Du [2] extended the work of H.Wang, and studied the
P, -factorization of complete bipartite multigraph. For odd
value of k the work on factorization was done by a number of
researchers. P;-factorization of complete bipartite graph was
studied by K.Ushio [3]. Ps-factorization of complete bipartite
graph was studied by J.Wang [4]. In the present paper, we

study Ps-factorization of complete bipartite symmetric
digraphs and show that the necessary and sufficient conditions

for the existence of Fs’-factorization of complete bipartite
symmetric digraphs are:

(1)3m = 2n,
(2) 3n = 2m,
(3)m +n = 0(mod 5) and
(4)5mn/2(m + n) is an integer.
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1.INTRODUCTION

A P,-factorization of K, ,, is sum of arc-disjoint Ps-factors,
where Ky, , be the complete bipartite symmetric digraph with
two partite sets having m andn vertices. A spanning sub
graph F of K n is called a path factor if each component of
Fisa path of order at least two. In particular, a spanning sub
graph F of K, iscalleda Pg—factor if each component
of F is isomorphic to FS' . If K, is expressed as an arc
disjoint sum of P —factors, then this sum is called
P, —factorization of K, .

Here, we take path of order 5. A PT-, is the directed path on 5
vertices. A ﬁ;—factorization of Kpn, gives rise to a Ps -

. . P o
factorization of 2K m, n i.e. 2K m,nhasa ° - factorization if
and only if ;
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(1)3m = 2n,
(2)3n = 2m,
(3)Ym +n = 0(mod 5) and
(4)5mn/2(m + n) is an integer.
2. Mathematical Analysis:

The necessary and sufficient conditions for the existence of
PT; —factorization of complete bipartite symmetric digraph are
given below in theorem 1.

Theorem 1: Let m, n be the positive integers then Ky, , has a
P —factorization iff:

(1)3m = 2n,

(2)3n = 2m,

(3)m +n = 0(mod 5) and
(4)5mn/2(m + n) is an integer.
Proof of necessity

Proof: Let r be the number of Efactor in the factorization,

and t be the number of copies of P? in a factor, which can be
computed by using

_ 5mn L
T_Z(m+n) (D)
and
t_m+n 2
=— . (2)

respectively.

Obviously, rand t will be integers. Thus conditions 3 and 4
in theorem 1 are necessary. Let @ and b be the number of

copies of 1_55 with its end points in Y and X, respectively in a
particular Ps —factor. Then by simple arithmetic we can
obtain,

3a+2b=m
and
2a+3b =n.

From this, we can compute a and b, which are as follows:
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a= BTHS;Z”) -~ (3)

b= (371—5—2m) ()

Since, by definition a and b are positive integers, therefore
equations (1) and (2) imply,
3m—2n
—_— =
5
and
3n—2m >0
z > 0.
This implies 3m = 2n and 3n = 2m, therefore conditions 1
and 2 in theorem 1 are necessary.

This proves the necessity of theorem 1.

Proof of sufficiency:

Further, we need the following number theoretic result
(lemma 1) to prove the sufficiency of theorem 1.The proof of

following lemma 1 can be found in any good text related to
elementary number theory.

X1 Xy X3
O
\
a a O
Y1 Y2 Y3 Ya

Y1 X1 Y2 X2 Y3, YaX3 Y5 Xa Ye5 Y1 X1 Y2 X2 Y3, YaX3 Y5 Xq Y.
fig ().

Xy
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Lemma 1: Let g, p and g be any positive integers. If gcd (p,
q) =1, then

ged (p.g, p+9.0) = ged (p, 9).
The following lemma will also be used in the proof.

emma 2: If K, has P_S)—factorization then Kipsn  has
PT; —factorization for every positive integer s.

Proof: Let K, ¢ is 1-factorable [6], and {H;, H,, ... Hs} be a 1-
factorization of it. For each i with {1 < i < s}, replace every
edge of H; with a K, , to get a spanning sub graph G; of
Kimsn sSuch that the G;s{1 <i<s} are pair wise edge
disjoint and there sum is Kns. Since Kp, IS
P. —factorable, therefore G; is also Ps —factorable, and
hence, [ is also TJ; -factorable.

Now to prove the sufficiency of theorem 1, there are three
cases to consider

*

Case | (3m = 2n): In this case [1* | has a [1,-factorization.
For instance (1} 4 has 15 —factorization as follows (fig. 1 to
fig. 3)
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Y1 Y2 Y3 ) Ya CLIS Y6 O O

Y3 X1 Ya X2 Y5 Yo X3 Y1 Xa Y25 Y5 X2 Ya X1 Y3, Y2 Xq Y1 X3 Ye-

Y1 Y2 Y3 Ya Ys Ye

Y5 X1 Y6 X2 Y1, Y2 X3 Y3 Xa Ya; Y1 X2 Y6 X1 Y5, Ya Xa Y3 X3Y2.

Fig(3).
Case 11 3n = 2m. Obviously "% - has TJ; —factorization. Case Il (300 >20and 30> 20); Let (1=2 ;2 0=
e P 0 =-—"__ Where [],[], ]
5 5 2(0+1)

and O will beintegersand 0 < 0 < [, 0 < J < [I.
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As mentioned previously

O=30+20
and
0=200+430.
Hence

]=3(D+])+ﬁ.

Since [ is a positive integer, therefore,
10

2040
must be a positive integer.
Let
0=_59
20+ 0)
here,

= The number of copies of T, in any factor,
[J = The number of [1;-factor in the factorization,

[J = The number of copies of 1, with its endpoints in Y in a
particulari]s- factor (type M),

[ = The number of copies of TJ5 with its endpoints in X in a
particularil ;- factor (type W),

[ = The total number of copies of T; in the
whole factorization.

Let ged(207,30) = [ and therefore 201 = (1] and 301 =
0 for some [J, .

Here ged((1, [1) = 1. Consequently

5. boo
T 2004 20)

These equalities imply the following equalities:

2304 20
- oo
. 20+ 0D)@0+20)0
oo ’
o VO +40)@0+20)0
300 ’
o (O+mE0+4m0
0od ’
o 030+ 20)0
0o
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and

_ 20304 20)0
- 300

Now we establish the following lemma:

Lemma 3:
Case (1):

If ged(),4)=1 and gcd(),9) =1, the
then there exists a positive integer [] such that

O =6(04 0)@E0+ 2000,
0=0+40)@0+20)0,
0= 3(0 4 )90 + 401,
0 =300 420) and
0 =200+ 20)0.

Case (2):
If gcd([1,4) = 7 and gcd([1,9) = 3, let [1 = 301,.
Then there exists a positive integer [J such that
0 =6(04+30)(04 200,
0 =3C0+40)(0+ 200,
0 =3(04+30,)@0 +400)0,
[ =300(0 + 201;)0 and
0 =60,(0420,)0.

Case (3):

If ged([1,4) = 7 and gcd([1,9) = 9, let [1 = 9(1,. Then there
exists a positive integer [ such that

0 =200+ 90,)(0 + 601,00,
0 =301+ 400 + 601,)00,
0 =180+ 90,0 + 601,)0,
0= 0(0 + 60,)C and
0 = 60,(0 + 60,)0.

Case (4):

If ged([1,4) = 2 and gecd([1,9) = 1, let [1 = 2[1,. Then
there exists a positive integer [ such that

0 =600, + G0, + )0,
0=2090,+20)@0, + 1,
0 =300, + MO0, + 200,
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= 6J1(3U1 + U)U and
0=2030;+0)0.

Case (5):

If ged([1,4) =2 and ged([1,9) = 3, let [1 =201, [ = 301,.
Then there exists a positive integer [J such that

O=620;+30)(0,+ 00,
O=60;+20)(0; + 000,
0=1800,+30,)30,+20)0,
[ =60,(00; + ;)0 and

= 600,(0; +20,)0.

Case (6):
If ged((1,4) = 2and gcd([1,9) = 9, letl) = 201, [1 = 901,.
Then there exists a positive integer [] such that
0=20Q0;+90,)(0; + 30,0,
0 =6(0;+20,)(0; +30,)0,
0=3020;+90,)(0; +20,)0,
0= 200,(0; 4+ 30,)0 000
0 =60,(0; 4+ 30,)0.

Case (7):

If ged(11,4) = 4 and gcd([1,9) = 1, let [ = 4[1,. Then there
exists a positive integer [ such that

T =340+ )60, + )1,

0 =2(90,4 (60,4 )0,
D= 12040, 4 )90, + )0,
0= 60,(601,+ )0 000

O =060, + )0,

Case (8):

If ged((1,4) =4 and ged([1,9) = 3, let [1 =401, [1 = 301,.
Then there exists a positive integer [J such that

=340, 4 30)Q0, + 00,
0 =600+ 1)@, + 00,
0 =340, 430 )G, + 00,
0 =60,20,+ 0,)0 000
0 =30,Q20,+0)0.

Case (9):
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If ged(1,4) =4 and ged((1,9) =9, let [ =401, [ = 901,.
Then there exists a positive integer [J such that

0=, + 900,20, + 30,0,
O =6(0,+ 0,020, + 30,0,
0 =340,4+ 90,0, + 0,0,
0= 200,20, + 30,0 000
0= 30,20, + 301,)0.

Proof of lemma 3:

For proving lemma 3, here we are giving the
proof of case (1) only, proofs of other cases are similar.

Let ged(p, q) =1, gcd (p, 4) =1 and gcd (q, 9) =1,
then
ged (9p +4q, 3) =1 =gcd(3p + 2q, 3)
and if
gcd(9p, 4) =ged(3p, 2) =1
then ged (9p +4q9,2)=1.
Hence,

gcd (9p +4q, p.q) = gcd (3p +2q, p.q) =1 (lemma 1).
Since,

o o +40)@0+ 20
a 300

is an integer, we observe that 3—(cal| it [7) will be an integer.

Hence

0=004+40)30+ 2010,

Similarly all values of [, ], [(Jand [ are positive integers in
case (1) of lemma 3. The proofs of other equalities in lemma 3
are similar to case (1) of lemma 3.

This is proof of lemma 3.

Now in lemma 4 we will establish the value of T and 7 for
TJ; —factorization.

We observe that cases (1) and (9), (2) and (8), (3) and (7), (4)
and (6) in lemma 3 are symmetrical, Therefore we give the
direct construction of only one case (at [/ = 7)and for
remaining it will be obvious.

Lemma 4:

For any positive integer [1 and [1 let [ =6(0+ )30 +
2(1) and

0= (90 + 4030 + 200).
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Then (1, has T —factorization.

Proof:-

Leta=3p(3p+2q)and b=2q (3p +2g). Hencet=a + b =
2(3p +20)7,

and O =0;0, Where [J;,=3(0+Mand [,=
9o +40)

Let X and Y be two partite sets of [1* . such that,
X ={xj; 1<i<r;, 1 <j<mg},
and
Y ={yj; | <i<rp 1<j <ng},

where
mo = m/ry = 2(3p + 2q) and
no = n/r, = (3p+2q).

In TI; —factor, there are

a=3p(3p +2q)

type M, 05 —factor and

b =2q(3p +2q)

type W, TJ; —factor ,

where type M denote the TI5; —factor with its end point in Y
and type W with its end point in X.

Now for each 1<i <3p,

let 1<j < (3p + 2q), 0<v, u<l.

0= {Xis1, j+ (30 + 20) u, Y3(-1) + u+ v +1, j + (i-1) + uks

Now for each 1<i<q,
let 1<j<(3p +2q), ISu <2, 0sv,w<l,
Eap+i = {Xap+a(ia) + ur v, j+ (3p + 20) wo

y9p+4(i-1)+2w+u,j+3p+2(i-1)+u+v+w-1}

N
Let, F :Ul§i§3p+q On.

N
Obviously F contains

IJCA™ : www.ijcaonline.org
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t=a+hb=23p+2q)° = 2(3p + 2q) n, vertex disjoint and

edge disjoint 05 —component and span K*m’n then the
-

digraph F isa 75 —factor of (17 | .

Define a bijection ¢ from XUYonto XUY,
o XUY —> XUY

onto

such that G(Xi' j) = Xiw, j and G(yi’ j) = VYirj where i € (1,2.. .rl)
and je(1,2...rp).

Construct [,.0, 0, —factor

N

F., {1t 1snsn}

such that
-
Fg,q ={cx)o"(y): XxEX,YyEY, xyeF}.
It is shown that the digraph,
-

F., {1stsn. 1<n<n},

are line disjoint TJ; —factor of 0f,~ and its union is also
I:*

5
Thus {{ nyn; 1<&<r;, 1<n<r,} is a [1; —factorization of

0%,0. This proves the lemma 4.

Proof of Theorem 1:

By applying lemma 2 with lemma 3 to 4, it can be seen that
when the parameters m and n satisfy conditions (1) — (4) in
theorem 1, the graph 0% has a T; —factorization. This
completes the proof of Theorem 1.

3. CONCLUSION:

Here in this paper, we have obtained the necessary and
sufficient conditions for path factorization of complete
bipartite symmetric digraph with 5 number of vertices having
symmetric disjoint edges.
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