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Abstract 

In path factorization, H.Wang [1] gives the necessary and 

sufficient conditions for the existence of   -factorization of a 

complete bipartite graph for    an even integer. Further, 

Beiling Du [2] extended the work of H.Wang, and studied the 

   -factorization of complete bipartite multigraph. For odd 

value of k the work on factorization was done by a number of 

researchers.   -factorization of complete bipartite graph was 

studied by K.Ushio [3].   -factorization of complete bipartite 

graph was studied by J.Wang [4]. In the present paper, we 

study   
     -factorization of complete bipartite symmetric 

digraphs and show that the necessary and sufficient conditions 

for the existence of   
     -factorization of complete bipartite 

symmetric digraphs are: 

          

           

                   and 

                 is an integer. 
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 1.INTRODUCTION 

A   
     -factorization of     

  is sum of arc-disjoint   
     -factors, 

where     
   be the complete bipartite symmetric digraph with 

two partite sets having   and   vertices. A spanning sub 

graph     of     
  is called a path factor if each component of   

    is a path of order at least two. In particular, a spanning sub 

graph      of      
     is called a    

      factor if each component 

of       is isomorphic to    
      . If     

  is expressed as an arc 

disjoint sum of   
      factors, then this sum is called 

  
      factorization of      

   .  

Here, we take path of order 5. A    
      is the directed path on 5 

vertices. A   
      factorization of     

   gives rise to a    - 

factorization of 2K m, n  i.e. 2K m, n has a 5P
- factorization if 

and only if ; 

          

           

                   and 

                 is an integer. 

2. Mathematical Analysis: 

The necessary and sufficient conditions for the existence of 

  
      factorization of complete bipartite symmetric digraph are 

given below in theorem 1. 

Theorem 1: Let     be the positive integers then     
  has a 

  
      factorization iff: 

          

           

                and 

              is an integer. 

Proof of necessity 

Proof: Let   be the number of   
      factor in the factorization, 

and   be the number of copies of    
      in a factor, which can be 

computed by using 

  
   

      
                                                 

 and 

                                        

  
   

 
                                                 

respectively. 

 

Obviously,    and   will be integers. Thus conditions 3 and 4 

in theorem 1 are necessary. Let   and    be the number of 

copies of       with its end points in   and    respectively in a 

particular      factor. Then by simple arithmetic we can 

obtain, 

         

 and 

            

 From this, we can compute   and  , which are as follows: 
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Since, by definition   and   are positive integers, therefore 

equations (1) and (2) imply, 

     

 
   

 and 

     

 
    

This implies       and        therefore conditions 1 

and 2 in theorem 1 are necessary.  

This proves the necessity of theorem 1. 

Proof of sufficiency: 

Further, we need the following number theoretic result 

(lemma 1) to prove the sufficiency of theorem 1.The proof of  

following lemma 1  can be found in any good text related to 

elementary number theory. 

Lemma 1: Let g, p and q be any positive integers. If gcd (p, 

q) = 1, then  

gcd (p.q, p+g.q) = gcd (p, g). 

The following lemma will also be used in the proof. 

emma 2: If     
 

 
has   

      factorization then       
    has 

  
      factorization for every positive    integer s. 

Proof: Let      is 1-factorable [6], and {H1, H2, … Hs} be a 1-

factorization of it. For each i with        , replace every 

edge of Hi with a     
  to get a spanning sub graph Gi of 

      
   such that the   

          are pair wise edge 

disjoint and there sum is       
 . Since     

  is  

  
      factorable, therefore Gi is also    

      factorable, and 

hence,       
   is also    

       -factorable. 

Now to prove the sufficiency of theorem 1, there are three 

cases to consider 

Case I (3m = 2n): In this case     
   has a   

      -factorization. 

For instance     
  has   

       factorization as follows (fig. 1 to 

fig. 3) 

 

                      x1                    x2                            x3                             x4          

 

 

 

 

 

 

 

 

 

 

 

              y1                                      y2                         y3                  y4                 y5                     y6 

y1 x1 y2 x2 y3, y4 x3 y5 x4 y6 ; y1 x1 y2 x2 y3, y4 x3 y5 x4 y6:   

 fig (1). 
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 x1                                                       x2                                               x3                              x4 

  

 

 

 

 

 

 

 

 

 

 

 

y1                      y2                        y3                           y4                           y5                           y6 

                                 y3 x1 y4 x2 y5, y6 x3 y1 x4 y2 ;  y5 x2 y4 x1 y3, y2 x4 y1 x3 y6: 

 

                                                                     Fig ( 2 ) 

x1                                 x2                                          x3                                        x4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y1                          y2                            y3                      y4                           y5                    y6 

 

 

                             y5 x1 y6 x2 y1, y2 x3 y3 x4 y4 ;  y1 x2 y6 x1 y5 , y4 x4 y3 x3y2. 

                                    

                                                   Fig(3). 

 

Case II 3n = 2m. Obviously     
  has   

       factorization. 

 

Case III (      and      ): Let    
     

 
    

     

 
    

   

 
  and                 

   

      
  Where       

and   will be integers and              
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As mentioned previously 

 

                            

and         

                            

           Hence 

                                       
  

      
  

            Since    is a positive integer, therefore, 

  

      
 

  must be a positive integer. 

 Let  

  
  

      
 

here, 

 = The number of copies of   
       in any factor, 

  = The number of   
      -factor in the factorization, 

  = The number of copies of   
       with its endpoints in Y in a 

particular  
      - factor (type M), 

  = The number of copies of   
       with its endpoints in X in a 

particular  
      - factor (type W), 

  = The total number of copies of   
       in the  

       whole factorization. 

 Let              and therefore       and    
   for some      

Here             Consequently  

 

  
   

        
 

 

                                             

         These equalities imply the following equalities: 

 

 

  
         

  
  

  
              

  
  

  
               

   
  

  
             

  
  

  
         

  
 

   

and 

  
          

   
  

 

 

Now we establish the following lemma:  

 

 

Lemma 3: 

                        Case (1): 

                        If            and gcd       , the             

then there exists a positive integer   such that 

                  

                   

                  

                                      

              

                       

  Case (2): 

If            and gcd       , let        

 Then there exists a positive integer   such that 

                    

                                                    

                                                     

                                                 

                          

 

Case (3): 

If            and gcd       , let        Then there 

exists a positive integer   such that 

                    

                                                   

                                                    

                                               

                         

 

     Case (4): 

         If            and gcd       , let        Then 

there exists a positive integer   such that 
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Case (5): 

If            and gcd       , let              
Then there exists a positive integer   such that 

                      

                                                    

                                                     

                                             

                    

 

Case (6): 

If            and gcd       , let     ,         

Then there exists a positive integer   such that 

                       

                                                         

                                                       

                                                   

                              

 

       

 

 Case (7): 

If            and gcd       , let        Then there 

exists a positive integer   such that 

                    

                                                    

                                                    

                                                 

                 

 

Case (8): 

If            and gcd       , let              
Then there exists a positive integer   such that 

                           

                                                     

                                                      

                                                  

                           

 

Case (9): 

If            and gcd       , let              
Then there exists a positive integer   such that 

                           

                                                    

                                                     

                                                    

                                 

 

 

Proof of lemma 3: 

                           For proving lemma 3, here we are giving the 

proof of case (1) only, proofs of other cases are similar. 

Let gcd(p, q) =1, gcd (p, 4) =1 and gcd (q, 9) =1,  

 then  

        gcd (9p + 4q, 3) = 1 = gcd(3p + 2q, 3)  

and if 

        gcd( 9p, 4) = gcd( 3p, 2) =1 

 then  gcd (9p + 4q, 2) = 1 . 

   Hence, 

    gcd (9p + 4q, p.q) = gcd (3p + 2q,  p.q) =1 (lemma 1). 

 

Since, 

                                      

  
               

   
 

                                                

 is an integer, we observe that 
 

   
(call it  ) will be an integer. 

Hence 

                                                  

                   

 

Similarly all values of       and   are positive integers in 

case (1) of lemma 3. The proofs of other equalities in lemma 3 

are similar to case (1) of lemma 3.  

This is proof of lemma 3.  

Now in lemma 4 we will establish the value of   and   for 

  
       factorization. 

We observe that cases (1) and (9), (2) and (8), (3) and (7), (4) 

and (6) in lemma 3 are symmetrical, Therefore we give the 

direct construction of only one case (at      and for 

remaining it will be obvious. 

 

Lemma  4: 

For any positive integer   and   let                 
          and  
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Then     
   has   

       factorization. 

 

Proof:- 

Let a = 3p (3p + 2q) and b = 2q (3p + 2q). Hence t = a + b = 

2(3p + 2q) 2, 

 

and        . Where          and    
        

 

       Let X and Y be two partite sets of       
  such that, 

 

               X = {xij; 1≤ i ≤ r1, 1 ≤ j ≤ m0}, 

 

 and  

  

             Y = {yij; 1 ≤ i ≤ r2, 1≤ j ≤ 0}, 

  

where  

               m0 = m/r1 = 2(3p + 2q) and  

                n0 = n/r2 = (3p+2q). 

In   
       factor, there are 

 a = 3p(3p + 2q) 

 type M,   
       factor  and 

 b = 2q(3p + 2q)  

type W, 
 
  
       factor , 

where type M denote the   
       factor with its end point in Y 

and type W with its                                        end point in X. 

 

     Now for e  h 1≤ i ≤3p,  

     let 1≤ j ≤ (3p + 2q), 0≤v, u≤1. 

  

  = {xi+1, j+ (3p + 2q) u, y3(i-1) + u + v +1, j + (i-1) + u}, 

 

Now for each   1≤ i ≤q,  

let 1≤ j ≤ (3p + 2q), 1≤ u ≤2, 0≤v,w≤1 , 

E3p+i = {x3p+3(i-1) + u+ v, j + (3p + 2q) w,  

    y9p + 4(i -1) + 2w + u , j + 3p + 2(i - 1) + u + v + w - 1} 

      Let, F


=U1≤ i ≤ 3p+q   .  

      Obviously F


 contains 

t = a + b = 2(3p + 2q)2  =  2(3p + 2q) n0 vertex disjoint and 

edge disjoint    
       component and span  

*

,m nK    then the 

digraph F


 is a   
       factor of     

 . 

Defi e   bije tio  σ from XUYo to XUY, 

                σ: X U Y 
onto

 X U Y  

such that σ(xi, j) = xi+1, j     σ(yi, j) = yi+1,j     where i (1,2…r1) 

and  j(1,2…r2). 

Construct           
       factor  

,F 



 { 1≤ξ≤r1 , 1≤ η ≤r2 }  

    such that 

  ,F 



= {σ ξ(x) σ η(y): xX, yY, xyF}. 

It is shown that the digraph,  

,F 



 { 1≤ξ≤r1 , 1≤ η ≤r2 }, 

are line disjoint
 
   
       factor of     

   and its union is also 

    
    

Thus {{ ,F 



; 1≤ξ≤r1, 1≤η≤r2} is a   
       factorization of 

    
    This proves the lemma 4. 

Proof of Theorem 1:  

By applying lemma 2 with lemma 3 to 4, it can be seen that 

when the parameters m and n satisfy conditions (1) – (4) in 

theorem 1, the graph     
  has a   

       factorization. This 

completes the proof of Theorem 1. 

3. CONCLUSION:  

Here in this paper, we have obtained the necessary and 

sufficient conditions for path factorization of complete 

bipartite symmetric digraph with 5 number of vertices having 

symmetric disjoint edges.   
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