
International Journal of Computer Applications (0975 – 8887)

Volume 73– No.18, July 2013

6

UI Programming in Scrum

Lakshmi Sridhar Movva
Certified Scrum Master and

Industry Consultant in Information
Technology.

Satya Prasad Ravi, PhD
Associate Professor,

Dept.of Computer Science & Engg.,
Acharya Nagarjuna University,
Guntur, Andhra Pradesh, India

B.Reddaiah

Assistant Professor, Dept of
computer Applications, Yogi
Vemana University, Kadapa,

Andhra Pradesh, India

ABSTRACT
Agile development methods are key to the future of flexible

software systems. Scrum is one of the vanguards of the new

way to manage software development when business

conditions are changing. However; the tricky part in agile

software development is that there is no manual which tells

you exactly how to do it. Scrum teams have to experiment and

continuously adapt the process until it suits the specific

situation and to overcome the challenges. The aim of this

research paper is to address the quality challenges and issues

in Scrum implementation and proposing solutions to

overcome or minimize the issues. The common issues in

Scrum implementation are Scope Creep, Requirement

changes which is inherent, the biggest challenge of inadequate

time to prepare test plans, minimal requirements

documentation to prepare the test cases, highly compressed

test execution cycles, minimal time for regression. In addition
[10] communication and building trust is another issue if the

team is working in a distributed environment. These factors

may result in having an adverse impact on the quality of the

product delivered. To overcome this to an extent the concept

of the “principle of factor sparsity” or [13] pareto principle can

be applied which states that, for many events, roughly 80% of

the effects come from 20% of the causes. This was originally

described by Vilfredo Pareto and later formalized by Joseph

Juran.The principle is just a rule of thumb, but an important

one. Whether the percentages are really 80/20 or 70/30 or

90/10, the reality is that most things are caused by a few

underlying factors. The same applies for Scrum and 80% of

the quality issues would a raise from the tasks that are

performed related to 20% of the stories .So; [12]concentration

on the vital few stories or tasks to arrest the critical issues and

having a technique to double check the code quality delivered

by agile scrum teams would provide better results. UI

programming is one such new technique proposed. For an

increase in quality and decrease in the defects generation; the

call for a UI programming can be taken by the product owner

while creation of product backlog or can be taken by the team

along with product owner during the sprint planning meeting

when actually the tasks are defined. The tasks that are

candidates for UI programming would base on the story/tasks

criticality, complexity, likeliness of being source for defects

bugs, the need for high quality. At times the story and all its

tasks defined can be candidates for UI programming or

specific tasks within the story can be candidates for UI

programming. In nutshell, the UI programming can be used in

any projects which are implementing scrum and are having

considerable quality issues in the implementations.

Keywords

Agile methodologies, Scrum, Quality, Defects, UI

programming, You and I programming, UI pair, Pair

programming, UI pair pace,UI task,UI switching,UI shuffling,

Distributed environment

1. INTRODUCTION

Software organizations constantly need to react to market

dynamics, new customer requirements and technological

innovations (Beck 2000; Lycett et al. 2003) [7]. The degree of

market dynamics and needs has increased over the past

decades creating a number of fast moving software

organizations (Börjesson and Mathiassen 2004). To cater to

these dynamics agile methods have gained popularity in the

recent years.The continuous experiments and surveys on agile

methods promise faster development thus improving the

quality of the working software delivered by the agile teams

and increase of satisfaction within the teams, customers and

business units . [6}Many organizations regard agile methods as

a way of addressing key problems in software development;

namely, the software takes too long to develop, costs too

much and have quality issues upon delivery (Holström et al.

2006). [10]If the Team can’t produce Quality Code, then it’s

going to have a tough time being effective. And by Quality

Code, it means code that is extensible, modifiable,

maintainable, and can be quickly integrated and verified with

extensive unit, functional, and performance regression tests.

This paper gives us an additional feature UI programming

which would be helpful to enforce the quality of the software

delivered by the agile scrum teams. With an understanding of

how pair programming in XP is used, the UIprogramming

technique is developed and scrum teams can use this

technique with ease.However,neither every team member in

the scrum team, nor all the stories/sprint tasks would require

a UI programming to be done all the time. This should be

judiciously exercised as the task defined as a UI task would

require nearly double the effort to perform than normal. The

UI programming and further details are depicted as in the

sections that follows.

2. UI PROGRAMMING

 ‘You’ and ‘I’ programming, in short UI programming is an

agile software development technique of having two

professionals working together on a task on a single

workstation. One of them would be looking on, offering

suggestions, validate the correctness of the task as it is done,

while the other actually executes the task.

2.1 UI Programming Roles

There are two UI roles that are played in UI programming

2.2 UI Handler

 Programmer who is actually executing the task/story .UI

Handler can focus all of his or her attention on the tactical

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.18, July 2013

7

aspects of completing the current task, using the observer as a

safety net and guide.

2.3 UI Observer

 is the one who reviews the task being done. The UI observer

considers the strategic direction of the work, coming up with

ideas for improvements and likely future problems to address.

The UI Observer would be looking over shoulder when the UI

Handler does the task

2.4 UI Pairing

 The pairing up of UI Observer and UI Handler is UI Pairing

and the task they do is UI Programming. Of the two in the pair

one should be more experienced than the other such that there

is always a scope for sharing of knowledge to the less

experienced in pair. If the UI Observer is a senior member of

the two, he has a scope to offer suggestions and best practices

enabling the junior to with additional knowledge and if UI

observer is a junior member he can watch the senior

performing the task and learn from it. However the two roles

played by team members carry equal signicificance despite

one being more experienced.

2.5 UI Task

Not all the tasks in the product backlog can be candidates for

UI programming. Any task which is critical, very complex

should have quality adherence at any cost and which needs to

be with zero defects or bugs even if the effort put on the task

is high, can be treated as a candidate for UI task.

During defining the product backlog the product owner can

define any task as an UI task or during the Sprint planning

meeting the sprint team can discuss and define the tasks which

need to be classified as an UI task.

Also, tasks like production code deployment which requires

huge checklist of activities to be done can be candidates for

UI tasks. For e.g. the deployment activities in data

warehousing projects would demand high concentration and

accuracy as the code deployment is done into production and

are always candidates for inducing bugs, defects if the

deployment is not done properly. So its better that such tasks

is classified as UI tasks.

2.6 UI Walk

Once the UI task is done from the list of UI task or after

considerable time spent to work on UI task, the UI pair should

walk away from the workstation to a common location where

they can have some very informal talk on the things done so

far. The location can be a coffee area, a seating area or a lobby

where the UI pair can have a chat for very short duration. This

would help in the pair grooming if the pair is formed newly

and enable the pair to discuss and think better on the progress

so far. The ideas that pop up during that short break can be

discussed and implemented once back at the workstation.

2.7 UI Switching

After considerable amount of time spent as a UI Handler or

UI Observer, the UI pair should switch their roles.

2.8 UI Shuffling:

The UI pairing should be dismantled frequently and new set

of UI pairs should be formed to ensure that the knowledge is

shared across the team and also ensures that the same

enthusiasm to pair up with a new member is prevailing across

the team during the sprint

2.9 UI Programming in Distributed

Environment

Provided with additional software tools and hardware, the UI

Programming might suit to an extent for the distributed scrum

teams as well if proper infrastructure and communication is

established.

[10]A web conference with screen sharing and webcam

facilities can be used to mimic the UI programming even in

distributed environment effectively. The screen can be shared

between users and the normal flow of UI programming, UI

Pairing, UI Role playing,UI switching,UI shuffling etc can be

performed with little or no hindrance.

2.10 UI Requirements

UI programming requires very large Monitors to respect

personal space of the professionals and to effectively work. A

couple of such UI desk arrangements can be made available

for the team such that they can work in pairs whenever

required

3. UI PROGRAMMING TERMS:

3.1 Terms Explained.

3.1.1 Story Type

UI:’You and I’ programming enabled Sprint

N: Normal sprint

3.1.2 Complexity:

Complexity of the story

H –High

M-Medium,

L-Low

3.1.3 Effort allotted:

Planned effort estimate for the user story

3.1.4 Effort consumed:

Actual Effort consumed for execution of user story

3.1.5 No of Bugs Produced:

No of bugs, defects produced. Can be code issues, user

interface issues, data quality issues etc

3.1.6 Effort to fix Bugs:

Effort consumed to fix the bugs/defects.

3.1.7 Effort (including bug fixing):

Total effort to complete the programming for user story

including bug fixing.

3.1.8 Tot:

Total

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.18, July 2013

8

3.1.9 Total spent for a sprint of effort estimate

100:

Actual effort spent (including bug fixing) for a sprint with

planned effort estimate of 100 units. This is used to compare

the sprints as having a sprint planning with exactly same

effort estimates is not possible.

3.1.10 Effort saved:

Effort saved by using UI programming

3.1.11 Pace of UI pair:

The pace of pair is the pace at which the professional in UI

pair executes 1 unit of work. In normal scenario the pace

would be 1 for 1 unit of work.However; adopting the UI

programming would bring down the pace to lower than 1 as

two people would be working on the same computer and on

the same task. Here Pace of pair 0.72 means each one in pair

is accomplishing 72% of the task only

3.1.12 Defects Dropped by %:

Defects dropped by the usage of UI programming in specific

stories/tasks

3.1.13 Base lining Pace of UI pair:

The pace of pair can be base lined upon observations on the

UI programming executions in atleast two sprints.

4. ADOPTION

This technique can be used with other techniques described in

the topic ‘Distributed Agile Development: Practices for

building trust in team through Effective communication’. To

understand and analyze the impact of the UI programming a

scrum team is selected and two pairs of identical sprints in

terms of effort, technical complexity, functional complexity

are chosen .It was ensured that the changes in the

environmental factors such team expertise, working

environment, team structure, technologies etc are kept to

minimal such that it doesn’t have any adverse impact of the

accuracy of the UI programming being adopted. The total four

sprints in scope are chosen in the following way.

At the start of a new Sprint –Mercury (Normal Sprint)-The

complexity, type of stories, tasks were noted. The Planned,

execution effort, Defects raised are noted leaving a scope for

getting in the details for the effort to fix those defects.

The next sprint-Venus(with UI programming) is planned

which is similar to first one and with almost identical stories

in terms of effort,complexity.This has the stories identified for

the UI programming by the product owner considering

various factors. The details as in sprint Mercury are noted for

the sprint Venus also. Similarly Sprint Earth is a normal sprint

planned and the Sprint Mars is planned as sprint with some UI

stories.Sprints Mercury and Venus would form a pair and

sprints Earth, Mars which are identical in nature are a pair to

get an insight of normal vs. UI working.

Table -1 and Table-2 below gives the insight of the UI

working

Table1 –Sprint pair -1

Table1 –Sprint pair -2

S
to

ry
 T

y
p

e

S
p

ri
n

t
N

a
m

e

C
o

m
p

le
x

it
y

E
ff

o
rt

 A
ll

o
tt

ed

E
ff

o
rt

 C
o

n
su

m
ed

N
o

o

f
b

u
g

s/
D

ef
ec

t

p
ro

d
u

ce
d

E
ff

o
rt

 t
o

 f
ix

T
o

ta
l

E
ff

o
rt

(i
n

cl
u

d
in

g

B
u

g
 f

ix
in

g
)

 S
to

ry
 T

y
p

e

S
p

ri
n

t
N

a
m

e

C
o

m
p

le
x

it
y

E
ff

o
rt

 A
ll

o
te

d

E
ff

o
rt

 C
o

n
su

m
ed

N
o

o

f
b

u
g

s/
D

ef
ec

t

p
ro

d
u

ce
d

E
ff

o
rt

 t
o

 f
ix

T
o

ta
l

E
ff

o
rt

(i
n

cl
u

d
in

g

B
u

g
 f

ix
in

g
)

N Mercury H 7 6 2 4 10 N Earth H 17 18 4 9 27

N Mercury H 23 22 5 11 33 N Earth H 26 22 5 15 37

N Mercury H 20 18 3 16 34 N Earth L 22 24 1 6 30

N Mercury L 8 9 0 0 9 N Earth L 18 16 3 4 20

N Mercury L 7 7 1 2 9 N Earth L 6 8 2 4 12

N Mercury L 8 10 4 2 12 N Earth L 11 16 4 4 20

N Mercury M 10 10 1 3 13 N Earth M 12 14 2 6 20

N Mercury M 8 6 1 3 9 N Earth M 17 17 2 5 22

N Mercury M 9 10 3 2 12 N Earth M 19 16 4 6 22

Tot 100 98 20 43 141 Tot 148 151 27 59 210

UI Venus H 20 31 1 2 33 UI Mars H 15 23 1 2 25

UI Venus H 14 20 1 2 22 UI Mars H 29 44 1 3 47

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.18, July 2013

9

UI Venus H 16 22 2 2 24 N Mars L 6 6 1 2 8

N Venus L 12 12 1 3 15 N Mars L 19 22 1 2 24

N Venus L 8 8 2 4 12 N Mars L 11 11 1 2 13

N Venus L 12 12 0 0 12 N Mars L 19 19 2 4 23

N Venus L 6 6 0 0 6 N Mars L 12 12 1 3 15

N Venus L 7 7 1 1 8 N Mars L 6 6 1 1 7

N Venus M 12 12 1 1 13 N Mars M 6 6 2 2 8

N Venus M 12 12 0 0 12 N Mars M 6 6 1 1 7

Tot 119 142 9 15 157 Tot 129 155 12 22 177

Total spent for a sprint of effort estimate

100

Total spent for a sprint of effort

estimate 100

Normal 144 Normal 139

UI 132 UI 137

Effort saved 12 Effort saved 2

Pace of UI pair 1.46 Pace of UI pair 1.52

Defects Dropped by % 55 Defects Dropped by % 56

Normal Sprint(N)
UI Sprint(UI)

43

59

15

22
0

10

20

30

40

50

60

Normal Sprint(N) UI Sprint(UI)

Graph 1: UI sprint vs. Normal Sprint

4.1 UI Programming Benefits

The UI programming would help doing built in, automatic, on

the fly QA peer review and testing at a time. Below are the

benefits observed during the implementation of this new

feature.

1)It produces a better thought out code and a better control of

the task performed

2)The Errors are caught earlier with the UI programming

3)The UI programming enables better knowledge sharing

across the scrum team.

Figure 2 shows the knowledge accessibility for each one in

the UI pair i.e UI observer can learn the coding skills,

knowledge out of experience etc from UI Handler and vise

versa. The scope for knowledge gain would be vast as the

pairs get switched over time.

4)The UI programming enables the Code transferability i.e

Two developers understanding the code

5)The fixing of the failing test cases would be done well in

advance i.e Defects produced are very less. Fig 1 shows the

defects produced by UI pair reduces drastically when

compared to the defects produced by programmers

individually

6)Having two heads are better than one and would help

catching the mistakes early

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.18, July 2013

10

7)UI programming helps to give more quality code, test ready

code as an output

Figure-1 : Defects in UIprogramming

Fig2:UI Sprint-Knowledge sharing

5. CONCLUSION:

The study of the current paper starts with findings on the

issues which are common in agile methodologies especially

scrum implementation. Within this paper the quality of the

product delivered by the scrum teams is the main area of

problem identified for research and analysis, and a new

technique called ‘You and I programming ‘ or ‘UI

programming’ in short has been proposed to minimize the

producing of defects by the teams. The UI programming

technique is implemented on two sprints and results are

compared against the normal sprints of same genere. The

results shows that the UI programming implemented in the

scrum improvises the quality of the code delivered to a greater

extent, though there is not much significant gain of the effort

spent as compared to the normal sprint. The results shows

that the defects dropped by almost 55%(Graph 1) .However;

there is a steep increase in the factors like combined

ownership of the code, learning and sharing of knowledge

,quality at first go with fewer defects,decrease in the effort of

communication and co-ordination related to bug fixing and

increased customer satisfaction through the implementation of

the proposed UI programming techniques in scrum team.The

UI programming can be used by the scrum teams which

focuses on better quality of the product produced along with

the above factors.

6. REFERENCES

[1] A practical Guide to Distributed Scrum: Elizabeth

Woodward,Steffan Surdek and Matthew Ganis.

[2] Coaching Agile Teams-Lyssa Adkins

[3] Agile Product Management with Scrum –Roman Pichler.

[4] Experience Report: Distributed agile: project

management in a global environment Seiyoung Lee &

Hwan-Seung Yong

[5] Agile Alliance, Principles behind the Agile Manifesto,

“http://agilemanifesto.org/principles.html.”

[6] High smith J, Cockburn A. Agile software development:

The business of innovation

[7] Lycett M, Macredie RD, Patel C, Paul RJ. Migrating

agile methods to standardized development practice

[8] A paper by Dr. Satya Prasad Ravi, B. Reddaiah, Lakshmi

Sridhar Movva-named “Distributed Agile Development:

Practices for building trust in team through Effective

communication “

[9] Dr. Satya Prasad Ravi, B. Reddaiah, Lakshmi Sridhar

Movva “ Framework to mitigate dynamic and static risks

with respect to agile” ESTIJ, Vol.2, No.1, 2012: PP.63-

68,2012.

[10] Dr. Satya Prasad Ravi, B. Reddaiah, Lakshmi Sridhar

Movva, Rajasekhar Kilaparthi “A Critical review and

empirical study on success of risk management activity

with respect to scrum” ESTIJ, Vol.2, No.3, June 2012:

PP.467-473, 2012.

[11] Software Engineering-A practioners guide –Roger S

Pressman

AUTHOR’S PROFILE

Lakshmi Sridhar Movva is a Research Scholar in Acharya

Nagarjuna University doing his Ph.d in Agile Methodologies

under the esteemed guidance of Dr R.Satya Prasad..He has

rich experience in IT industry and working as an Industry

consultant. He is a certified Scrum Master and has been

practicing Scrum in the projects he executed. He has

completed M.Sc in computer Science from Acharya

Nagarjuna University and M.Tech in Information Technology

from Punjabi University.

Dr. R. Satya Prasad received Ph.D. degree in Computer

Science in the faculty of Engineering in 2007 from Acharya

Nagarjuna University, Andhra Pradesh. He received gold

medal from Acharya Nagarjuna University for his out

standing performance in Masters Degree. He is currently

working as Associate Professor and H.O.D, in the Department

of Computer Science & Engineering, Acharya Nagarjuna

University. His current research is focused on Software

Engineering. He has published several papers in National &

International Journals

B. Reddaiah is a Research Scholar in Acharya Nagarjuna

University doing his Ph.d under the esteemed guidance of Dr

R.Satya Prasad .He is working as an Assistant Professor,

Department of computer Applications, Yogi Vemana

University, KADAPA, Andhra Pradesh. He has completed

MCA from Sri Venkatesawra and ME from Satyabhama

University.

IJCATM : www.ijcaonline.org

http://agilemanifesto.org/principles.html

