
International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

34

Optimal Policy of Data Dissemination in CDNs

Gadiraju Mahesh,
Department of C.S.E.,

S. R. K. R. Engineering College,
Bhimavaram, India

Vatsavayi Valli Kumari,
Department of CS&SE.,

Andhra University College of Engineering,
Visakhpatnam, India

ABSTRACT
A dynamic data dissemination network is a content delivery

network (CDN) implemented with a hierarchical network of

data aggregators (repositories) for disseminating dynamic data

like stock quotes, number of votes polled for a political party

in an election in different regions and environmental

parameters. Continuous aggregate query is a query with

aggregation operations and is repeatedly requested by the

user. Executing continuous aggregate queries in dynamic data

dissemination networks/ CDNs is the essence of our work.

There are two major tasks of data dissemination networks.

First one is effectively providing data to clients from sources

through the network of data aggregators by assigning optimal

data aggregators to clients. The second one is propagating the

updates of dynamic data to clients. There are different

algorithms like enhanced greedy algorithm with withdrawals

and primal dual parallel algorithm for accomplishing the first

task. The second task can be performed using policies like

push, pull, push-or-pull, and push-and-pull. The existing

algorithms for dissemination of data and policies for

distributing the updates of data are explored in this paper.

Then a policy for consistently propagating the updates of

dynamic data and an algorithm for optimally assigning data

aggregators to clients for disseminating data in CDNs are

extracted.

General Terms

Content distribution networks or content delivery networks

(CDNs), set cover problem, vertex cover problem, continuous

aggregate queries, greedy algorithm.

Keywords
Dynamic data dissemination networks, primal-dual parallel

algorithm for continuous aggregate query dissemination

(PDPA), enhanced greedy algorithm with withdrawals

(EGAWW), dynamic data dissemination graph, data

aggregator (DA), data incoherency bound.

1. INTRODUCTION
Web sites in the internet provide content according to needs of

the users and previously most of the clients used to request

static content. But, nowadays users demand not only static

content but most of the time they are demanding dynamic

content like videos with live streaming, live stock quotes, and

live election results. In applications like live election results,

clients issue queries like total number of votes polled and

maximum number of votes polled to a party. These queries

are issued again and again repeatedly and contain aggregation

operators like sum and maximum. Such queries are known as

continuous aggregate queries. As these queries are repetitive

in nature and generally include dynamic data, caching is best

technique for disposing the data from sources to clients.

By using the caches, server overload of executing the query

again and again can be avoided. The result of the query can be

cached when the query is requested for the first time and the

cached result can be used for subsequent requests. Not only

result of the query but also most frequently used data is

cached for further use. When the values of data change then

the copies of query results and data are updated.

As discussed in [1], there are two techniques of caching

namely backend caching and proxy-based caching. In backend

caching caches are maintained at the servers. In proxy-based

caching, replicated servers called proxies are maintained

nearer to the clients. Backend caching technique has the

advantage that cached data is consistent with original copy of

data as the caches are maintained at the server itself. Proxy

based caching has the advantage of high availability of data

and reduces the load on the servers. It also reduces frequency

of communication between clients and servers. The main

problem with proxy caching is that it is difficult to maintain

agreement of copies of data at proxies with that at source of

the data.

Content distribution network is an overlay network of proxy

servers for disseminating the data to the clients with high

fidelity and throughput. Content distribution networks use

caches at the edge nodes of the networks which are closer to

the clients than the data sources. Content distributed networks

(CDNs) were initially designed to handle static content.

Nowadays CDNs are used to serve dynamic content. Content

delivery service providers (CDSP) maintain CDNs for

effectively providing data to their clients. If the CDSP is

commercial, the clients have to pay for the services requested.

There are many CDNs available in the market both

commercial and free. Free CDNs include Corel content

distribution network and Incapsula. Commercial CDNs

include Akamai technologies, Limelight, CloudFlare and

EdgeCast networks.

Akamai Technologies maintain the caches at the edge of the

network nearer to the clients. The clients use the edge caches

for getting most frequently used data instead of getting the

data from data sources. Here the main advantage is that it

reduces the user access time to data. According to [2] the

standard DNS resolution process includes the steps shown in

Fig. 1. In steps 1 and 2 the server‟s name is resolved. In step

3, HTTP request to the edge server is made by the client. If

the requested data is cached at the edge server, it returns data

to the client and stores the request completion status. If

needed, in the step 4, edge server retrieves the data from

Akamai server or content provider's server

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

35

Fig. 1: DNS resolution process in CDNs

An architecture for content distribution networks, called

dynamic data dissemination network, is proposed in [3, 4].

Dynamic data dissemination network is a content distribution

network implemented with a hierarchy of proxy servers called

data aggregators. In dynamic data dissemination networks the

main aim is dissemination of dynamic data to users satisfying

the coherence requirements of the users. As the number of

users increase the sources may not support all the users and if

the same data is requested by clients several times, the clients

have to obtain the data again and again from the server. So,

repositories generally called data aggregators (DAs) which

duplicate the data are used for disseminating the data in these

networks. DAs may cache many data items and the same data

item can be severed to clients from different DAs.

The data aggregators nearer to users serve the data to users

much efficiently within no time. By maintaining such

repositories which duplicate the data create new problems like

maintaining consistency of the duplicated data items on

different data aggregators. For an ideal condition the values of

a data item at all the data aggregators and at the data source

should be equal. But practically it is impossible to satisfy such

an ideal condition and all the clients who need the data item

may not require such an ideal condition. Most of the users

require data items at some specified maximum limit of

tolerance value called data incoherency bound. Here the main

issue is how to disseminate data to clients satisfying the

coherency requirements of the data requested by them.

2. EXECUTION OF CONTINUOUS

AGGREGATE QUERIES
As the name indicates continuous aggregate queries are the

queries requested by the clients repeatedly with continually

changing data items that use aggregate operations like sum,

average, minimum and maximum on the data items. The

examples of continuous aggregate queries include queries

related to atmospheric parameters like query for obtaining

average temperature in a region. Another example is the query

obtaining total number of votes polled for a party in all the

regions. The general form of the query for obtaining total

number of votes polled is as follows.

Select sum (votes) from election where party = „My party‟;

Here votes is a column name in the election table and it stores

number of votes in different regions for different parties.

Execution of continuous queries is discussed in [3, 5].The

execution of a query requires the retrieval of data items from

data aggregators. There exist many data aggregators that

disseminate the same data item i.e., there are many DAs that

can disseminate data items required by the client query. A

single DA can disseminate several data items. A client query

can be executed effectively by a single DA. But it may not be

always possible to have a DA that holds all the data items of

the query. Another option of obtaining each data item of the

query from different DAs is not efficient. So, for

accomplishing the task of query execution, the client queries

can be divided into sub-queries and optimal DAs can be

selected for executing the sub-queries. The problem of

dividing the queries into sub-queries and optimal selection of

DAs for executing these sub-queries is minimum weighted set

cover problem. The different algorithms that can be applied to

set cover problem are given in [6].

2.1. Greedy Algorithm
In the minimum weighted set cover problem, a set of elements

V, a collection T of sub-sets of elements belonging to set V

such that the sub-sets cover all elements of the set V and costs

C of sub-sets are given. The problem is to find optimal sub-

sets R of elements which cover all the elements of V and total

cost of sub-sets is minimal. The problem of optimally dividing

query into sub-queries and selecting the sub-queries from

optimal DAs can be compared to set cover problem. Here

V={v1,v2,v3,...} is set of all data items in the client issued

query, T={q1, q2, q3, …} is all options of sub-queries that can

be executed by different DAs and C={c(q1),c(q2),c(q3), ..} is

costs of sub-queries. Greedy algorithm is used in [3] for

solving this problem and is given below.

In the following algorithm, D is sum-difference, B is

incoherency bound of the query and n(q) is the number of data

items involved in q. The calculation of D is given in [3]. In

this algorithm the set of optimal sub-queries R is first

initialized to NULL and after execution of the algorithm, R

contains all the optimal sub-queries. The average cost p(q) of

different optional sub-queries in T are calculated. The sub-

query which has the least value of p(q) is selected as optimal

sub-query in each iteration of the algorithm. The sub-query is

added to the result R and it is removed from T. Then all the

data items contained in the selected sub-query are removed

from other sub-queries. Finally the sub-queries which become

empty after this step are also removed from T. This is

continued until all the data items are covered or indirectly

there is no sub-query in T.

2.1.1. Greedy algorithm for continuous

aggregate query execution

1. R:=NULL

2. Repeat steps 2.1 to 2.5 until T=NULL

2.1. for each q in T

2.1.1. calculate c(q):=D/B2

2.1.2. compute cost per data item p(q):=c(q)/n(q)

2.2. select qm in T with p(qm)=min(p(q))

2.3. R:=R union qm

2.4. T:=T minus qm

2.5. for each v in qm

2.5.1. for each q in T

2.5.1.1. q :=q minus {v}

2.5.1.2. if q=NULL then T:=T minus q

3. return R

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

36

.

Fig. 2: Data dissemination graph (union of data dissemination trees)

3. CONSISTENCY OF DATA IN DATA

DISSEMINATION NETWORKS
In dynamic data dissemination networks the main issue is to

construct a network of data aggregators and to provide the

data items to users satisfying the coherence requirements. For

maintaining the coherence of copies of dynamic data at

different data aggregators, the updates to the data items at

source are propagated to data aggregators only if the

incoherency of data item at a DA exceeds the incoherency

bound. These updates are propagated from source of the data

item to the DAs through a network of data aggregators. A

hierarchical network of data aggregators is used in [3]. A

dynamic data dissemination tree is constructed for each data

item with the DAs containing the data item as nodes and

source as root node of the tree. The whole network of data

aggregators disseminating different data items is the union of

dissemination trees for all the data items which is a dynamic

data dissemination graph as shown in Fig. 2.

The different policy for the propagation of data updates to

data aggregators are discussed and compared in [7, 8]. They

are listed below.

i) Push: Pushing the data from top to bottom of the

dynamic data dissemination tree from source to

DAs and higher level DAs to lower level DAs.

ii) Pull: DAs pull the updates from source or higher

level DA in the data dissemination tree.

iii) Push or pull: Push connection for some clients and

pull connection for some clients according to

requirements.

iv) Push and pull: Default pull connection but may be

switched to push in the event of frequent updates.

v) Leases: Clients lease the sources for a span of time.

The first policy is discussed in section 4 and the other policies

are discussed in this section. As mentioned earlier the

hierarchical network of DAs is used as a scheme of data

dissemination and each DA serves data items at some

guaranteed coherence. For preserving consistency of specified

incoherency bound, a DA gets data updates from the data

source or some higher level DA only when data incoherency

is greater than or equal to data incoherency bound based on

different policies as discussed in [7].

3.1. Pull Policy of Data Refreshing
In this policy of dissemination of data updates, every data

aggregator/node pulls the data whenever there is a need of

updating its copy of data. A parameter called time to refresh

(TTR) is maintained by the node. The TTR determines the

time at which node should query for update of data item at

source. If the TTR value is low the data updates are

disseminated more frequently ensuring data coherence. If the

value is high then some of the updates at the server may be

missed by the node but reduces number of polls of clients to

sources for data updates. So, deciding the optimal value of

TTR is main issue in pull based dissemination of data. An

adaptive TTR is used in [7, 9] and the formula for estimating

the TTR is as given below.

Adaptive TTR = maximum(tm, minimum (th, (a*ts+(1-a)*td)))

Where td is time to refresh estimate based on learning which is

computed using the following formula.

td= p*te +(1-p)* tl

tm is lower limit of TTR

th is upper limit of TTR

a is adjustment factor for adjusting the fidelity required.

 ts is smallest TTR value used upto the present estimate of

TTR

te is TTR estimate based on recent change in data and is given

by the formula,

te= tl * b/(dl-du)

tl is latest change in the value of TTR

b is incoherency bound

S1

DA1

DA122

DA121

DA133

DA132

DA131

DA141

S2

DA2

DA221

DA122

DA251

DA133

DA132
33

DA241

S1

DA1

DA122

DA121

DA133

DA132

DA131

DA141

DA251

S2

DA2

DA221

DA241

∪ =

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

37

dl is latest value of the data item

du is penultimate value of data item

p is the relative weight given to recent and old changes whose

value is such that .5< =p<1.

The pull based technique of propagating the updates is

preferred to push based dissemination when high resilience to

failures is required. But it has less fidelity than the push

technique.

3.2. Push-or-Pull Policy
As described in [7], the concept of this approach is that the

server decides whether a DA is served with push connection

or pull connection depending on the requirements of the DA.

By default push connection is granted if it has enough

resources. When server does not have enough connections but

client fidelity requirements are high, push connection is

granted to the new node by dropping some of the already

granted push connections to DAs with low fidelity

requirements or with high temporal coherence requirement

and for which data served is small in quantity. The push-or-

pull approach also facilitates to detect failures at the servers.

So that push connection may be converted to pull connections

during failures. For this purpose a TTR (time to refresh)

parameter is maintained at DAs. TTR is an estimate of time

intervals at which server pushes the data updates. In ordinary

operation, the server pushes the data changes. If a client does

not receive an update even after time elapsed from previous

push is greater than TTR limit, the node recognizes that a

server failure is there. Then the client can request the server

for its present state or can start pulling the data. The

performance of push-or-pull depends on whether connection

granted is push or pull [7].

3.3. Push-and-Pull Policy
As discussed in [7], the disadvantage of pull approach of data

refresh is that it mainly depends on the estimation of time to

refresh (TTR) parameter. The generally used method of TTR

estimate is adaptive TTR and its disadvantage is that it is a

slow learning algorithm and in the event of faster changes to

data at the server this estimate may not give correct value and

some of the updates to data at the server may not be

propagated to nodes. To avoid these disadvantages push-and-

pull technique can be used. In this technique pull or push is

used depending on the rate at which data is changing.

As in the pull policy the data is pulled from the clients at

regular time interval called time to refresh. But whenever

there is a case of a client not pulling the data update required

by the user, the server pushes such changes. To know such

cases of clients missing the updates, the server also has to run

the adaptive push algorithm and has to know when the node

will pull the data. If a data change which violates the

coherence requirements occurs before the next expected pull

according to adaptive TTR estimate then the server knows

that this update is missed by the node and pushes the data.

3.4. Lease Based Policy
The CDNs can use different policies for disseminating data

updates like pull, push, push-or-pull and push-and-pull.

Scalability is the main problem in all the above approaches.

The cooperative leases approach proposed in [8] overcomes

this problem. This approach is based on leases for distributed

file cache consistency proposed in [10].

The meaning of leases in CDNs is that there is an agreement

or lease of a proxy with the server for the server to notify the

proxy all the updates to a data item during an agreed period of

time. After the lease time the proxy could renew the lease for

further updates. The lease record contains the following

attributes

i) The object for which lease is requested(d)

ii) The proxy which takes the lease(N)

iii) The time period for which lease is agreed (t)

The ordinary leases policy of update propagation in CDN

have disadvantage that all updates are to be notified to all the

nodes which take the lease. But all the updates disseminated

may not be of interest to many repositories and another

disadvantage is scalability of leasing many repositories. To

avoid these problems, cooperative leases approach of

disseminating the updates is proposed in [8].

The two notions in this approach are as follows

i) Cooperative consistency

ii) Delta consistency

The objective of cooperative consistency is, for maintaining

consistency, DAs cooperate with each other using cooperative

leases technique. The cooperative consistency maintenance is

different from cooperative caching. In cooperative

consistency, maintaining the cooperation between different

nodes is limited to consistency maintenance and the separate

overlay networks can be used for data dissemination and for

consistency maintenance. This policy uses application level

multicast for disseminating data updates reducing overheads

on the servers. The delta consistency ensures that the data at

proxies is refreshed for every delta time units within lease

period ensuring copy of data at the client is never inconsistent

by more than delta time from its server version of the data.

Here delta is notification rate. In this technique, instead of

taking lease for all the updates in a period of time, lease is

taken only for notifying the updates at a given frequency

within the lease period. Here frequency of notifications is the

inverse of notification rate.

In cooperative leases approach, instead of granting lease to

each and every repository, groups of nodes are formed and

lease is given to a single node of a group on behalf of the

group and call the designated node as the leader of the group.

The server interacts only with the leaders of the groups and

transfers the updates only to leaders. It is the responsibility of

the leader to propagate the notification to other nodes in the

group. So, the leader shares the over head of transferring the

notifications reducing the over head of the server. The

cooperative leases tuple (d, g, N, t, r) contains the following

attributes.

i) d- Data item of interest

ii) g- Group which requests the lease

iii) N- Group leader node

iv) t- Lease time period

v) r- Notification rate

4. OPTIMAL POLICY FOR

PROPAGATION OF UPDATES
Already different policies for propagating data updates were

discussed in section 3. An optimal policy which has a higher

degree of fidelity than the other policies is discussed here.

Higher degree of fidelity means disseminating the data with

coherence requirements at a higher degree of accuracy.

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

38

4.1. Push Based Data Dissemination
In this policy, data updates at source are pushed to DAs

whenever source recognizes data incoherence at the DAs. As

discussed in [11], the hierarchical dynamic data dissemination

network is maintained such that the higher level aggregators

have a lower incoherency bound than the lower level

aggregators in the hierarchical network. This is due to the fact

that the updated copies of data are pushed from the data

source to higher level data aggregators and consequently to

the lower level data aggregators. Let us discuss how updates

to a data item d which is disseminated by a source S are

forwarded to a data aggregator Q through a higher level data

aggregator P .

Let dt
s , dt+1

s, dt+2
s,... be the values of a data item at Source S

at consecutive time instances, du
p , du+1

p, du+2
p, be the

consecutive values of data item at the data aggregator P and

dv
q, dv+1

q, dv+2
q, be the consecutive values of data items at

the data aggregator Q. Let du
p corresponds to update dt

s and

Let du+1
p corresponds to update dt+k

s where k>=1.Then for all

m, 1≤m ≤k-1, for maintaining coherency at P the following

condition must be satisfied.

 | dt+m
s - dt

s |< bp

If this condition is satisfied, the present value of data item at

source is not propagated to proxy P. Else the update must be

propagated to P. At each P, if | du
p - dv

q | >= bq , the update

received by P from source is forwarded to its child proxy Q.

Here bp and bq are the incoherency bounds at P and Q .

Table1. Propagation of updates

 b
p
= 3 b

q
= 5

Source D A D A

S P Q

No. of

votes

at

source

 No. of

votes

cached

at P

 No. of

votes

cached

at Q

1 → 1 → 1

2 1 1

3 1 1

4 → 4 1

5 4 1

6 4 1

7 → 7 → 7

8 7 7

9 7 7

10 → 10 7

But in some situations shown in the table, these conditions are

not sufficient. The table shows propagation of number of

votes polled to a candidate in an election. In the table all the

updates of number of votes polled to the candidate are

correctly propagated. But the number of votes polled “6” is

not propagated to Q. To avoid missing such updates the

following additional condition is used. If the following

condition is satisfied then also the update received to P

should be propagated to Q.

| du
p - dv

q | >= bp - bq

The above discussed approach includes node based

computations. In centralized approach the source should know

and store list of all incoherency bounds of all data items at

different repositories. Whenever there is a new update of data

item at the source, the source checks incoherency bounds (b)

of the data item and last update for that data item. The source

checks all the b values violated by the update and such

updates are transmitted to the corresponding repositories

through the dissemination tree. This update and the maximum

b value that is violated by the update are stored at the source

and this record can be used for propagating future updates.

The disadvantage of this approach is source has the overheads

of maintenance of c values which results in computational and

space overheads. So, node based push approach is better than

centralized approach. The push based policy has high fidelity

than other policies. Hence, in this paper, push based policy is

selected as optimal policy for propagating the updates.

Another important issue in dynamic data dissemination

networks is construction of data dissemination graph. The

insertion of a new node in data dissemination graph is

discussed in the following sub-section.

4.2. Construction of Dynamic Data

Dissemination Graph
Dynamic data dissemination graph is the union of dynamic

data dissemination trees of all data items of interest. For

inserting a new node in data dissemination graph, there are

two techniques proposed in [11]. The first technique is level at

a time algorithm and another one is data at a time algorithm.

4.2.1. Level at a time algorithm
In data dissemination graph, the sources of data are at level

zero and all immediate child nodes of sources are at level one

and child nodes of level one nodes are at level two and so on.

According to [11], for inserting a data aggregator or node or

repository, the level at a time algorithm checks at each level

from level zero for the suitability of the node to be dependent

of any parent node. For facilitating this decision, at each level

there is a load controller node. The load controller decides

whether a node Q can become parent of R. A node Q can

become potential parent of R for a data item d, if both R and

Q are interested in d, the incoherency bound for the data item

at the node Q is less than or equal to that at the node R and

preference factor is within some percentage of smallest

preference factor at that level.

The preference factor of a repository is calculated using the

following formula.

Pf = cd*nd/sqr

Where

Pf is preference factor

cd is communication delay factor

nd is number of dependents of Q

sqr is number of data items Q can serve to R

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

39

A repository is considered as a candidate only if the number

of dependents currently served is less than the degree of

cooperation. Degree of cooperation is calculated as given

below.

Degree of cooperation = min(1/c*dc/dt, pc)

Where dc is average communication delay and dt is average

computational delay

pc is offered degree of cooperation

c is average number of dependents of the node which are

interested in an update.

4.2.2. Data at a time algorithm
In this algorithm the main principle of inserting a new node in

the data dissemination graph is that a node which requires

more precise data is placed nearer to the source than the node

which requires less precise data. For each data item a dynamic

dissemination tree is constructed and the nodes in different

tress cooperate with each other. In this algorithm it is assumed

that a node requesting n number of data items has n number of

resources. The following conditions are used for deciding the

position of a new node R requiring a data item X.[11]

i) If the source of the data item has no child or if it has

enough resources then the source itself is made the

parent of R.

Else a suitable sub-tree starting at child of the

source is selected for inserting R, so that the level of

R is the least and the communication delays

between R and Q the parent of R is less. These

requirements are recursively applied to select proper

sub-tree of sub-trees until a node Q is found.

ii) If Q has data with less incoherence bound than

incoherence bound for the data item at R and Q has

enough resources to serve R, the Q is selected as

parent of R.

Else if Q has data with more incoherence bound

than incoherence bound for the data item at R, then

parent of Q is made the parent of R and R is made

the parent of Q.

5. OPTIMAL ALGORITHM FOR

EXECUTION OF QUERIES
The algorithms other than greedy algorithm that can be used

for optimally dividing the query into sub-queries and

assigning them to proper DAs are EGAWW proposed in [12]

and primal-dual parallel algorithm for continuous aggregate

query dissemination proposed in [13]. The two algorithms are

discussed in this section and the second one is selected for

optimal query execution as it is faster than the greedy

algorithms. As mentioned in section 2, the sub-sets in set

cover are equivalent to sub-queries and elements in the set

cover are equivalent to data items in the query.

5.1. Enhanced Greedy Algorithm with

Withdrawals
Greedy algorithm with withdrawals for set cover problem is

proposed in [14]. An enhanced greedy algorithm with

withdrawals for continuous aggregate query execution is

proposed in [12]. Enhanced greedy algorithm has the main

steps of greedy algorithm with an extended set of steps. In

each iteration of the greedy algorithm the sub-sets with

minimum average cost are selected. This step is continued in

enhanced greedy algorithm with withdrawals. But there are

two extra steps which gives the EGAWW algorithm an

improved performance from greedy algorithm. First one is

adding all the possible sub-sets or sub-queries {q1
1, q2

1, q3
1,..}

of given collection of sub-sets T{q1, q2, q3, .. } to the

collection. This step does not change the cover. The cost of

each sub-set qi
1 is minimum of all qi costs for which qi

1 is

sub-set. Another step is withdrawal step. In the withdrawal

step some of the already selected sub-sets are withdrawn from

the solution. In this step some of non optimal sets are

withdrawn improving the approximation ratio of the

algorithm. In the algorithm V {v1, v2, v3,..} is set of all data

items and c is cost of a sub-query. It is calculated by c=D/B2.

Here D is sum difference and B is incoherency bound of the

sub-query.

Approximation ratio of greedy algorithm is Hk and

approximation ratio of enhanced greedy algorithm with

withdrawals is Hk–(k-1) /(8*k9). The approximation ratio of

enhanced greedy algorithm is better than that of greedy

algorithm but takes more time than greedy algorithm. So, a

better algorithm namely primal-dual parallel algorithm for

continuous aggregate query dissemination (PDPA) is selected

as optimal algorithm and discussed in the next section.

5.1.1. EGAWW Algorithm
1. Initialize the solution collection of sub-sets or sub-

queries (R) to NULL and the set of uncovered data items

(U) to V and let α=1-1/k3

2. For every sub-set q∈ T and every q1 ⊆q, add q1 to T with

cost of q as cost of q1 .If q1 ⊆q1, q2 and q1 , q2∈T, then

minimum cost of q1 and q2 is the cost of q1. Let T: = {q1,

q2,.., qn} be the resulting extended collection and cost of

every qj is denoted by cj

3. While U≠NULL repeat steps 3.1 to 3.5

3.1. For every j, let wj := |qj ∩ U|. If wj ≠0 , rj:= cj / wj

3.2. For every qj∈ R and every sub collection D ⊆T of at

most k subsets such that qj ⊆∪q∈ D (q), Let w (D):=
| ∪q∈D (q) ∩ U | be the still uncovered elements

that belong to the subsets in D. If w(D)≠0, let

r(qj,D) := (∑i:qi ∈ D (pi -pj))/w(D)

3.3. Let j* be an index such that rj* is minimized, and let

j~, D~ be such that r(q j~, D~) is minimized.

3.4. Greedy step: If rj* ≤ r(q j~, D~)/ α then add qj* to the

solution and define the price of the newly covered

items as rj*. i.e., do the following steps

3.4.1. For every v∈ qj*∩U

3.4.1.1. price(v):= rj*

3.4.2. U := U\ qj*

3.4.3. R := R∪ {qj*}

3.5. Withdrawal step: If r(q j~, D~) < α rj* then replace

qj~ by the subsets in D~ and define the price of the

newly covered items as r(q j~, D~). i.e., do the

following steps

3.5.1. For every v∈∪q∈ D~(q) ∩U

3.5.1.1. price(v):=r (q j~, D~)

3.5.2. U := U\ ∪q ∈ D~(q)

3.5.3. R := (R\ {qj*}) ∪D~

4. Return R

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

40

5.2. Primal -Dual Parallel Algorithm for

Continuous Aggregate Query Execution
Since the application under consideration is a distributed

application, a parallel algorithm named primal-dual parallel

algorithm for continuous aggregate query dissemination

proposed in [13] is selected as optimal algorithm and is

discussed below. The main principle of framing this algorithm

is as follows.

The primal-dual technique can be used to solve minimum

weighted set cover problem. The dual for set cover problem is

packing problem. It is a well known fact that minimization or

maximization of a linear function with inequality conditions is

a linear programming and the optimized function is objective

function. Primal linear programming deals with minimization

of objective function and dual LP deals with maximization of

objective function. A primal-dual parallel approximation

technique applied to weighted set and vertex cover is

proposed in [15].

The set cover problem and vertex cover problem in hyper

graph are equivalent. The dual of vertex cover problem is

edge packing. As given in [15], an edge packing is said to be

e-maximal packing if the approximate slackness condition is

satisfied. The condition is given below. In this algorithm the

cost of the edges are increased until approximate slackness

condition is satisfied.

∑v∈Va(q) δv ≥ c(q) – e*c(q)

i.e., e*c(q) ≥ c(q) – ∑v∈Va(q) δv

i.e., e*c(q) ≥ ca(q)

Where c(q) is cost of the sub-query or sub-sets (q) and ca(q)

is residual cost of q.

The primal-dual parallel algorithm for continuous aggregate

query dissemination is given below. In the algorithm V(q) is

the set of data items in q and Va(q) is the set of uncovered data

items in q, δv is cost of the edge(data item v) in the

corresponding dual edge packing. The algorithm is

implemented by pdpa (Primal-dual parallel algorithm for

continuous aggregate query dissemination) function. In the

algorithm T is set of different combinations of sub- queries , e

is a small quantity such that the result is at most r/(1-e) times

optimal value of result, na(q) is number of uncovered data

items in q and r is maximum number of duplicates of data in

different sets. D and b are sum-difference and incoherency

bound of the sub-queries. In each round of the algorithm the

cost of the edges or data item is increased until the packing is

e-maximal. The vertices or sub-queries satisfying the

approximate slackness condition are selected as optimal sub-

queries. Then the data items of the selected sub-queries are

deleted from the other sub-queries and na(q) is updated. This

process is continued until all the data items are covered. At the

end the optimal sub-queries are returned.

The time complexity of primal-dual algorithm is O(r log2(m)

log(1/e)) and the result is at most r/(1-e) the minimum value.

For the problem of optimal execution of continuous aggregate

queries prima-dual parallel algorithm is best suited as the

algorithm obtains the results in least time and the application

is dynamic and users need immediate results. So primal-dual

parallel algorithm for query execution along with the push

technique of data updates is selected in this paper as the

optimal policy for data dissemination in CDNs. The section 6

compares primal-dual parallel algorithm with greedy

algorithm.

5.2.1. PDPA Function
pdpa(V, T, c, e)

1. for q∈T par-do

1.1. c(q)=D/b2

1.2. ca(q)=c(q)

1.3. Va(q)=V(q)

1.4. na(q)= |V(q)|

2. While there is an uncovered v do

2.1. for each uncovered v par-do

2.1.1. δv = minq∈v (ca(q) / na(q))

2.2. for each unselected q par-do

2.2.1. ca(q) =ca(q) – ∑v∈Va(q) δv

2.2.2. if ca(q) ≤ e * c(q) then

2.2.2.1. mark q as selected

2.2.2.2. mark related v as covered

2.2.2.3. update Va(q) and na(q)

3. return the selected sub-queries

6. RESULT ANALYSIS
To compare the primal-dual parallel algorithm with greedy

algorithm, a data dissemination network with different

number of data aggregators ranging from 5 DAs to 40 DAs

with random data items is taken. The greedy algorithm and

primal-dual algorithm are implemented using c code. Data

with random costs is given as input to the programs and got

the number of iterations of the two algorithms as output. The

graph is plotted by taking number of nodes on the x-axis and

number of iterations of the algorithms on the y-axis. The two

algorithms are compared for 2,3 and4 number of duplicates of

the data items on different data aggregators/proxy servers.

Fig. 3: The graph showing comparison between Greedy

and Primal-dual parallel algorithm

PDPA algorithm for 2,3&4

duplicates of data on DAs

Greedy algorithm for 2,3&4

duplicates of data on DAs

No. of DAs

N
u

m
b

er
 o

f
it

er
at

io
n

s

International Journal of Computer Applications (0975 – 8887)

Volume 73– No.17, July 2013

41

The performance of greedy algorithm is satisfactory for small

number of data aggregators. As the size of the network

increases, the number of iterations of the greedy algorithm

increases proportionately showing poor performance. But for

more repetitions of the data items on DAs, the performance of

the greedy algorithm is improved. Enhanced greedy algorithm

with withdrawals has better approximation ratio than greedy

algorithm but takes more time than greedy algorithm. So,

greedy algorithm and primal-dual algorithm are compared

here. The primal-dual parallel algorithm for continuous

aggregate query execution outperforms greedy algorithms for

all the cases of number of nodes and number of duplicates of

the data items on different nodes. The graph in the Fig.3

confirms the fact that primal-dual algorithm is better than

greedy algorithm for optimally disseminating continuous

queries in data dissemination networks. Another fact is that

for the primal-dual algorithm the graph is horizontal after 20

nodes. That means it is giving consistent results even when

the number of nodes increase.

7. CONCLUSION
Optimal dissemination of data in CDNs is the main issue of

this paper. In this paper an optimal policy for disseminating

the data is obtained. That is an optimal algorithm namely

primal-dual parallel algorithm for continuous aggregate query

dissemination in combination with push policy of propagating

the updates of data from sources to DAs is selected as optimal

policy of data dissemination in CDNs. The advantages of our

policy is that push approach provides data to clients with high

fidelity and the primal-dual parallel algorithm facilitates

optimal assignment of continuous queries to DAs with better

time complexity than the other algorithms and the result

analysis confirms the fact. This policy is well suited for the

applications where clients need data fidelity and faster

execution of continuous aggregate queries like Election

results. The construction of dynamic data dissemination graph

is also discussed in this paper. Other policies like pull and

push-and-pull can be used if resilience to failures is important

than fidelity.

8. ACKNOWLEDGEMENTS

We convey our sincere gratitude to Dr. K. V. S. V. N. Raju for

giving us continuous support to complete this work. We thank

students of M. Tech. who helped us a lot in doing this work.

We use this opportunity to express our thanks to A.U.

Engineering College Principal and staff for giving us

infrastructural facilities. We thank krithi Ramamritham of IIT,

Bombay whose papers guided us to do this work. We dedicate

this work to the Principal of S.R.K.R. Engineering College for

giving us financial support.

9. REFERENCES

[1] Datta, A., Dutta, K., Thomas, H., VanderMeer, D., &

Ramamritham, K. 2004. Proxy-based acceleration of

dynamically generated content on the world wide web:

An approach and implementation. ACM Transactions on

Database Systems (TODS), 29(2).

[2] Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman,

R., & Weihl, B. 2002. Globally distributed content

delivery. IEEE Internet Computing, 6(5).

[3] Gupta, R., & Ramamritham, K. 2007. Optimized query

planning of continuous aggregation queries in dynamic

data dissemination networks. In Proceedings of the 16th

international conference on World Wide Web. ACM.

[4] Shah, S., Ramamritham, K., & Shenoy, P. 2002.

Maintaining coherency of dynamic data in cooperating

repositories. In Proceedings of the 28th international

conference on Very Large Data Bases. VLDB

Endowment.

[5] Ramamritham, K. 2010. Maintaining coherent views

over dynamic distributed data. In Proceedings of the 6th

international conference on Distributed Computing and

Internet Technology. Springer Berlin Heidelberg.

[6] Hochbaum, D. S. 1996. Approximation algorithms for

NP-hard problems. PWS Publishing Co.

[7] Deolasee, P., Katkar, A., Panchbudhe, A., Ramamritham,

K., & Shenoy, P. 2001. Adaptive push-pull:

disseminating dynamic web data. In Proceedings of the

10th international conference on World Wide Web. ACM.

[8] Ninan, A. G., Kulkarni, P., Shenoy, P., Ramamritham, K.,

& Tewari, R. 2003. Scalable consistency maintenance in

content distribution networks using cooperative leases.

IEEE Transactions on Knowledge and Data Engineering,

15(4).

[9] Srinivasan, R., Liang, C., & Ramamritham, K. 1998.

Maintaining temporal coherency of virtual data

warehouses. In Proceedings of Real-Time Systems

Symposium. IEEE.

[10] Gray, C., & Cheriton, D. 1989. Leases: An efficient fault-

tolerant mechanism for distributed file cache consistency.

ACM, 23(5).

[11] Shah, S., Ramamritham, K., & Shenoy, P. 2004. Resilient

and coherence preserving dissemination of dynamic data

using cooperating peers. IEEE Transactions on

Knowledge and Data Engineering, 16(7).

[12] Gadiraju, M., & Kumari, V. V. 2010. Distribution of

continuous queries over data aggregators in dynamic data

dissemination networks. In Information and

Communication Technologies. Springer Berlin

Heidelberg.

[13] Mahesh Gadiraju, V. Valli Kumari. “Primal-dual parallel

algorithm for continuous aggregate query

dissemination”, Submitted to ICACCI2013, Mysore,

India.

[14] Hassin, R., & Levin, A. 2005. A better-than-greedy

approximation algorithm for the minimum set cover

problem. SIAM Journal on Computing, 35(1).

[15] Khuller, S., Vishkin, U., & Young, N. 1994. A primal-

dual parallel approximation technique applied to

weighted set and vertex covers. Journal of Algorithms,

17(2).

IJCATM : www.ijcaonline.org

